Possible Processes for Origin of First Chemoheterotrophic Microorganisms with Modeling of Physiological Processes of Bacterium Bacillus Subtilis as a Model System in 2H2O

Ignat Ignatov, Oleg Mosin

Abstract


In this research we studied possible processes for origin of first chemoheterotrophic microorganisms with modeling of physiological processes of a Gram-positive chemoheterotrophic bacterium Bacillus subtilis, producer of purine ribonucleoside inosine as a model system in heavy water. The physiological influence of deuterium on the chemoheterotrophic bacterium B. subtilis was studied on a heavy water (HW) medium with a maximal concentration of 2H2O (89–90 atom% 2H). Also various suitable samples of hot mineral water and sea water derived from different sources of Bulgaria were investigated using IR- and DENS-spectroscopy. It was shown that hot alkaline mineral water with temperature from +65 0C to +95 0C and pH value from 9 to 11 is more suitable for the origination of first organic forms than other analyzed water samples. There were discussed the reactions of condensation and dehydration occurring in alkaline aqueous solutions at t = +65–95 0C and рН = 9–10, resulting in synthesis from separate molecules the larger organic molecules as short polipeptides and pyrines, as well as the possible mechanisms of the deuterium accumulation in form of HDO in hot water. The metabolism of the bacterium B. subtilis and the resistance to deuterium was also analyzed on an evolutionary level taking into account the hydrological conditions of primodial hydrosphere and the presence of H2HO, as well as the qualitative and quantitative composition of the cellular protein, amino acids and carbohydrates on media with maximum deuterium content. We demonstrated on the example of chemoheterotrophic bacteria that first microorganisms might have been originated in hot mineral water with Ca2+ at t = + 65-95 0C and pH = 911 that is more suitable for maintenance and origin of life than other analyzed water samples.

Keywords: heavy water, glycolysis, purines, amino acids, Bacillus subtilis, hot mineral water, origin of life and living mater


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: JMPB@iiste.org

ISSN 2422-8427

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org