Numerical Evaluation of Steel Columns Buckling under Cyclic Loading

Amin H. Almasri, Hasan S. Noaman

Abstract


This paper aims to exhibit the use of finite element analysis as a numerical method to validate the experimental results of steel column stability under cyclic loading. Finite element package ANSYS was utilized for this purpose. The structural behavior of hollow box steel columns under the merged action of a constant axial load and cyclic lateral loads was investigated. Hot rolled unstiffened steel box column sections were simulated as cantilever-type columns as in common usage in the bridge piers. A nonlinear buckling finite element analysis was carried out in which both material and geometric nonlinearities were taken into account. The results show a reasonable agreement with Load and Resistance Factor Design (LRFD) formula. In addition, transient dynamic analysis was executed to determine the dynamic response of the specimens under the action of two loading tests: monotonic test and three cycle test. Isotropic strain-hardening and kinematic strain-hardening were included in simulating plastic deformation. It is shown that the non-linear finite element analysis shows good capabilities in simulating the buckling behavior of a steel column under cyclic loading.

Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

ISSN: 1993-0461   ISSN: 2225-157X,

Edited and Published by Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan

Mailing address: Prof. Fouad Gharaybeh, Ph.D.

Editor-in-Chief Civil Engineering Department Jordan University of Science and Technology Irbid 22110, Jordan Tel. No. + 962 2 7201000 ext. 22104 Fax No. + 962 2 7201073

Submission & Subscriptions E-mail:jjce@just.edu.jo