A Survey of Feature Selection Strategies for DNA Microarray Classification

Artee Abudayor, Özkan Ufuk Nalbantoğlu


Classification tasks are difficult and challenging in the bioinformatics field, that used to predict or diagnose patients at an early stage of disease by utilizing DNA microarray technology. However, crucial characteristics of DNA microarray technology are a large number of features and small sample sizes, which means the technology confronts a "dimensional curse" in its classification tasks because of the high computational execution needed and the discovery of biomarkers difficult. To reduce the dimensionality of features to find the significant features that can employ feature selection algorithms and not affect the performance of classification tasks. Feature selection helps decrease computational time by removing irrelevant and redundant features from the data. The study aims to briefly survey popular feature selection methods for classifying DNA microarray technology, such as filters, wrappers, embedded, and hybrid approaches. Furthermore, this study describes the steps of the feature selection process used to accomplish classification tasks and their relationships to other components such as datasets, cross-validation, and classifier algorithms. In the case study, we chose four different methods of feature selection on two-DNA microarray datasets to evaluate and discuss their performances, namely classification accuracy, stability, and the subset size of selected features.

Keywords: Brief survey; DNA microarray data; feature selection; filter methods; wrapper methods; embedded methods; and hybrid methods.

DOI: 10.7176/CEIS/14-2-01

Publication date:March 31st 2023

Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org