Development a New Intelligent Mobile Robot to Avoid Obstacle

HUSSEIN S. Mohammed, Hassan S. Mohammed, Hiba A. kadim

Abstract


The project is a robot that automatically by passes barriers to reach a specific goal with an ultrasonic help that senses obstacles and measures the remaining transitions before the collision is meet. The robot changes its course with a couple of DC motors, Robot runs automatically without any interference by the Proportional-Integral-Derivative (PID) algorithm. The goal of this paper is to develop a path planning method that is capable of planning the mobile robot path from the starting position to the target position in different environments. However, the parameters of membership functions and PID controller parameters have optimized by using particle swarm optimization (PSO) algorithm. In addition to that, the proposed method with two Schemes of motion controllers are test with varying static and dynamic environments with and without load. The artificial potential field algorithm is introduce for path planning of mobile robot. However, the potential field algorithm is effective in avoiding unknown obstacles, but it contains minimal local problems, then a modified field algorithm is introduce to overcome some of the local minimum problems in the environment. Therefore, it is enhancing the performance of potential field algorithm and to produce a more efficient path planning method, that to allow mobile robot to navigate in dynamic and complex environments. As well as, simulation of mobile robot is design to test and implement the proposed method and control schemes using MATLAB and the software is develops by using C++ language and Arduino IDE.

DOI: 10.7176/CEIS/10-3-03

Publication date: April 30th 2019


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org