Finite Element Analysis for Stress-Strain Parameter of Projectile Impeded Glass Fibre Reinforced Polyester (Gfrp) Composites

Onyechi, Pius C, Edelugo, Sylvester O, Ihueze, Chukwutoo C, Obuka, Nnaemeka, S. P

Abstract


For the treatment of progressive damage, spatial discretization is required so that numerical techniques such as the finite element method or finite difference method would be advantageous. Finite element and finite difference techniques have also been applied to impact problems because they are more versatile at modeling boundary conditions and local phenomena such as stresses and strain under a point load. This paper investigates the stress-strain magnitude on body amour composites of glass fibre reinforced polyester (GFRP), when hit with ogival and conical nosed projectiles through the application of finite element analysis using ANSYS software version 10.1. The finite element result of the plain stress analysis shows that the composite is stronger in the longitudinal direction. This is supported by the fact that the maximum stress of 328.125MPa was recorded in the X direction while the maximum stress of 57.726MPa was recorded in the Y direction. The analysis also indicates that the maximum influence of the stress was experienced around the incident hole and the minimum at the exterior boarders of the samples.

Keywords: Finite Element, Plain Stress Analysis, Projectiles, ANSYS Software, Body Amour, Fibre Reinforcement.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: ISDE@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2871

1Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org