Polish Stock Market Performance and Its Relationships with Macroeconomic Variables

Julia Szwej¹, Nikita Shilov²

* E-mail of the corresponding author: juliaszwej@gmail.com, nicktopick@yandex.ru

Abstract

This study is the first attempt to apply the VAR model to analyze the impact of macroeconomic variables on Polish stock market performance measured as stock market indexes. It examines short-run and long-run relationships between selected macroeconomic variables, meaning gross domestic product, money supply, consumer price index proxy for inflation and exchange rate (PLN per USD), and stock prices represented by WIG20 and its 3 separate sectors: banking, fuel and real-estate markets WIG banks, WIG fuels, and WIG real-estate.

Keywords: Stock Prices, Macroeconomic Variables, Cointegration, VAR model, VECM model, Polish stock market.

DOI: 10.7176/RJFA/13-14-07 **Publication date:**August 31st 2022

Introduction

Polish stock market and its impact on the economy have grown significantly over the past decades. Warsaw Stock Exchange which started its activity in 1991, is currently one of the biggest European Stock Exchanges. Indicators such as growing ratio of the capitalization of the Warsaw Stock Exchange to the GDP or Number of companies listed on the Warsaw Stock Exchange illustrated the strong interaction between the stock exchange and the real economy and its significant role in the entire economy. Therefore, an interesting issue seems to be the empirical verification of these relationships between the stock exchange and the real economy. The beginnings of empirical verification of the influence of macroeconomic values on the behavior of stock prices date back to the end of the 1970s and the beginning of the 1980s, it was initially done for the United States, and later for Japan and Great Britain. The study of this type for the Polish market was performed in 2006. The Polish market in this context is relatively little verified. This study is the first one to focus on separate industries and their indexes reactions to macroeconomic changes.

The study has used Dickey-Fuller Unit Root Cause Test and Pearson Correlation Test, Johansen- Juselius Cointegration Test to examine long-term relationships, as well as Granger Causality Test, VECM Causality Test, and VAR model from the short-term perspective.

Methodology

The main methodology used in this article is Vector autoregression model (C.Sims 1980). VAR model is a multiequation model with an autoregression structure. It can be also treated as a generalization of the ARDL model. The VAR model is usually used for stationarity analyzes. To describe and examine nonstationary variables, the VAR is being transformed into Vector Error Correction Model (VECM), which is the most often used in practice. The areas of application of both VAR and VECM models are as follows:

- dependency modeling;
- forecasting;
- cointegration examination, meaning long-term relationship between two nonstationary variables;
- impulse response function analysis, that let the researcher assume to what extend does one variable react to the shock of the other variable;
- variance decomposition, based on which it is determined what is share of other variables in explaining the error of a specific variable in the model;

;

• causality tests.

The VAR model can be represented as follows:

$$\Delta X_t = A_0 D_t + \sum_{i=1}^k A_i \Delta X_{t-1} + \varepsilon_t \quad (1)$$

where:

 X_{t} -vector of observations of the current values of the analyzed processes;

¹ SILC Business School, Shanghai University,266 Jufengyuan Rd, Baoshan, Shanghai 200444, China.

² Fudan Uni

- D_t –a vector containing deterministic components (e.g. trend, seasonality);
- A_i -matrix of autoregressive operators of individual processes;
- A_0 matrix of parameters at the components of the vector Dt;
- ε_t vector of residual processes;
- k- VAR model row.

The VAR model deviates from the classical distinction between endogenous and exogenous variables, and does not limit the value of the parameters. The VAR model deviates from the classical distinction between endogenous and exogenous variables, and does not limit the value of the parameters (Osińska 2006). In the conditions of cointegration of time series, the VECM model is usually used. Time series integration implies the existence of a common long-term equilibrium path for these series. In practice, cointegration occurs when time series are not stationary (most often they are integrated in the first difference) and there is a stationary linear combination thereof. In studies of the phenomenon of cointegration, the most commonly used are the trace test, the maximum eigenvalue test (Johansen 1991, 1992), or the Engle- Granger procedure. The VECM model can be written as follows (Johansen 1995)

$$X_t = \Psi_0 D_t + \sum_{i=1}^{k-1} \Pi_i X_{t-i} + \Pi X_{t-1} + \xi_t$$
(2)

where:

 Π – a matrix of coefficients containing the effects of short-term adjustments and long-term cointegrating relationships $\Pi = \sum_{i=1}^{k} A_i - I;$

 Ψ_0 -matrix of coefficients with deterministic components of a vector D_t ;

 Π_i -matrix of autoregression coefficients $\Pi_i = -\sum_{i=i+1}^k A_i$;

 ξ_t –white noise process.

The complexity of the structure of the model in question and the mutual interactions of variables may make it difficult to interpret the parameters. Accordingly, the impulse response function is used to selectively analyze the effect of one variable on another variable. For this purpose, the vector autoregression model is reduced to the moving average process in which it is taken into account also the impact of random variable (ξ).

$$X_t = \sum_{i=1}^{\infty} \Phi_i \xi_{t-i}$$
 (3)

where:

 $\Phi_i = A^i B^{-1}$,B- matrix of parameters standing at non-lagging vector component values X_t .

The elements of the matrix Φ_i can be interpreted as responses of any variable of vector X_t to an impulse from another variable of this vector, assuming ceteris paribus conditions. A method supplementing the analysis of interactions between the variables is the decomposition of the variance of errors in the forecasts of individual components of the X_t vector. It makes it possible to determine the contribution of each component of this vector to the explanation of the forecast error of the highlighted forecast variable.

Empirical analysis

Data

The data set includes 100 observations from the period of 24 years. The sample used quarterly data from 1996Q1 to 2020Q4. The study contains Warsaw Stock Exchange Index WIG20, WIG banks, WIG fuels, WIG real-estate, Money Supply M2, Consumer Price Index CPI proxy for inflation, Exchange Rate EX and Gross Domestic Product GDP.

Table I Descrip	otion c	Ŋ	var	iables	
				_	

Variable	Description	Variable Type	Source
WIG20	Warsaw Stock Exchange Index	Dependent Variable	Stooq database
	for the 20 biggest and the most		
	liquid companies		
WIG banks	Warsaw Stock Exchange Index	Dependent Variable	Stooq database
	for banking sector		
WIG fuels	Warsaw Stock	Dependent Variable	Stooq database
	Exchange Index for fuels sector		
WIG real-	Warsaw Stock Exchange Index	Dependent Variable	Stooq database
estate	for real-estate sector		
GDP	Gross Domestic Product	Explanatory	Bankier database
	(quarterly percentages)	Variable	
M2	Money Supply (M2) (YOY%)	Explanatory	Bankier database
		Variable	
CPI	Consumer Price Index (proxy	Explanatory	OECD database
	for inflation)	Variable	

Variable	Description	Variable Type	Source
EX	Exchange rate (PLN per USD)	Explanatory Variable	OECD database

Source: own work based on collected data set. Empirical results Pearson Correlation

Table 2 Pearson Correlations (N=100)								
Variable	WIG20	WIG	WIG	WIG	GDP	M2	CPI	EX
		banks	fuels	realestate				
WIG20	1.0000							
WIG banks	0.8024	1.0000						
WIG fuels	0.4512	0.7356	1.0000					
WIG realestate	0.7535	0.3857	0.1781	1.0000				
GDP	0.2900	0.0403	0.0125	0.3670	1.0000			
M2	0.3208	0.7229	0.8577	-0.0321	-0.3611	1.0000		
CPI	-0.3996	-0.6463	-0.4743	-0.2063	0.3135	-0.5525	1.0000	
EX	0.5390	0.2901	-0.1146	0.5427	0.2784	-0.1572	0.1546	1.0000

Source: own work based on collected data set.

Table 2 presents the Pearson's Correlation Test conducted on the previously determined data set and reveals information on the strength and slope of the relationships between the eight macroeconomic variables. The results prove a positive relationship between WIG20/ WIG banks and GDP, M2, exchange rate, between WIG fuels and GDP and M2, and between WIG real-estate and GDP and exchange rate. A negative correlation was observed between all stock market indexes and inflation, WIG fuels and exchange rate, and WIG real estate and M2. Nevertheless, the correlation for most of the pairs is weak (value of 0.10-0.39). The correlation between WIG banks or WIG fuels and M2 are clearly the strongest. M2 is regulated by the Central Bank of Poland, but it is impacted also by the value of cash and non-cash loans granted by commercial banks, therefore the stock prices in this sector are higher in short term.

Stationarity test

To verify the stationarity, two diagnostic tests were used: Dickey-Fuller and Philips- Perron. Tests were performed including both the intercept only model and the intercept and trend components. It is clear that the null hypothesis of non-stationarity cannot be rejected for any of the series in their levels since ADF statistics for all variables are not less than the critical values at any significance level, i.e., 1%, 5%, and 10%. Therefore, we conclude that all series are non-stationary in levels. The test results were consistent in all cases and clearly indicated the non-stationarity of the variables and the stationarity of their first differences. The test outcome proves non stationary as the p-value doesn't change much in the sequence with lags(1). In this way, it was confirmed that the considered variables are first-level integrated.

VAR model

In order to establish the most reasonable and ideal VAR model, we model the sequence data step by step, and use LR / FPE / AIC / SC / HQ criterion to find the optimal lag period. The test results are shown in Table 3, when the lag order P = 1, LR / FPE / AIC / SC / HQ can achieve the best at the same time, the VAR model is the best.

Log	Log- Likelihood	LR		FPE	AIC	SBIC	HQ
0	-94.2444			1.8e-09	2.55611	2.65161	2.79431
1	676.91	1	542.3	3.8e-17*	-15.1227*	-14.2632*	-12.9789*
2	736.705	1	19.59	4.4e-17	-15.0176	-13.3941	-10.9682
3	793.974	1	14.54	5.8e-17	-14.8494	-12.4618	-8.89429
4	863.226	1	38.5*	6.5e-17	-14.9806	-11.8291	-7.11995

Table 3 Optimal Lag Lengths of the VAR Model

Source: own work based on collected data set.

LR: Sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error

AIC: Akaike information criterion SBIC: Schwarz information criterion

HQIC: Hannan-Quinn information criterion

Table 4 Resi	ilts of Vector Autor	egression for WI	G20			
	Coef.	Std.Err.	Z	P> z	[95% Conf. Inter	rval]
			dWIG20			
L1	.1307589	.1140709	1.15	0.252	092816	.3543339
L2	0951668	.1165232	-0.82	0.414	323548	.1332145
L3	.0295774	.1188396	0.25	0.803	203344	.2624987
L4	0732534	.0995174	-0.74	0.462	268304	.1217971
			dWIG banks	5		
L1	1154671	.2150629	-0.54	0.591	5369827	.3060485
L2	.1202152	.2496884	0.48	0.630	3691651	.6095956
L3	0510951	.2464438	-0.21	0.836	5341162	.4319259
L4	.0141579	.1823803	0.08	0.938	3433009	.3716167
			dWIG fuel			
L1	1463878	.2408143	-0.61	0.543	6183752	.3255995
L2	.1019906	.3832825	0.27	0.790	6492292	.8532105
L3	.1006581	.4107926	0.25	0.806	7044806	.9057969
L4	1318114	.2790864	-0.47	0.637	6788106	.4151878
		(dWIG real est	ate		
L1	056549	.1899046	-0.30	0.766	4287553	.3156572
L2	.651094	.3059849	2.13	0.033	.0513747	1.250813
L3	4615752	.2556641	-1.81	0.071	9626676	.0395173
L4	1844523	.1542426	-1.20	0.232	4867623	.1178576
			dGDP			
L1	.8488139	18.87837	0.04	0.964	-36.15211	37.84974
L2	33.38011	21.31618	1.57	0.117	-8.39884	75.15906
L3	29.73333	28.0009	1.06	0.288	-25.14743	84.61408
L4	-7.802389	26.09992	-0.30	0.765	-58.957	43.35252
			dM2			
L1	4074015	1.38624	-0.29	0.769	-3.124393	2.30959
L2	.4220227	1.40747	0.30	0.764	-2.336567	3.180613
L3	.4397201	1.623562	0.27	0.787	-2.742404	3.621844
L4	4060977	1.68731	-0.24	0.810	-3.713167	2.900972
			dCPI			
L1	6.895417	30.12673	0.23	0.819	-52.15189	65.94272
L2	-36.87104	32.3948	-1.14	0.255	-100.3637	26.6216
L3	11.8266	32.45271	0.36	0.716	-51.77955	75.43275
L4	-16.72498	29.79893	-0.56	0.575	-75.12982	41.67986
			dEX			
L1	4851.601	1148.138	4.23	0.000	2601.291	7101.911
L2	-2294.426	1188.722	-1.93	0.054	-4624.278	35.42556
L3	-212.7222	1166.448	-0.18	0.855	-2498.919	2073.474
L4	-654.4366	1211.811	-0.54	0.589	-3029.542	1720.669
cons	3.559231	48.9277	0.07	0.942	-92.33729	99.45575

www.ii	iste.org
	IISTE

Table 5 R	esults of Vector Aut	oregression for WI	G banks	D	50.50 (C	17
	Coef.	Std.Err.	Z	P> z	[95% Conf. Inte	rval]
			dWIG20			
L1	4166223	.5759142	-0.72	0.469	-1.545393	.7121488
L2	0594784	.5596331	-0.11	0.915	-1.156339	1.037382
L3	3775326	.5611123	-0.67	0.501	-1.477292	.7222272
L4	1.190882	.5462758	2.18	0.029	.1202011	2.261563
			dWIG banks			
L1	0461792	.1526885	-0.30	0.762	3454432	.2530847
L2	.0059907	.1460659	0.04	0.967	2802932	.2922745
L3	.0369764	.1602662	0.23	0.818	2771396	.3510923
L4	1043038	.1544983	-0.68	0.500	407115	.1985074
			dWIG fuel			
L1	.1515956	.1704566	0.89	0.374	1824933	.4856845
L2	5040061	.1858996	-2.71	0.007	8683627	1396495
L3	.3353083	.202808	1.65	0.098	0621882	.7328047
L4	3137314	.1948853	-1.61	0.107	6956996	.0682369
			dWIG real estate			
L1	.2696297	.2968349	0.91	0.364	3121561	.8514154
L2	6371976	3199365	1 99	0.046		1 264262
22	10571770	.5177505	1.,,,	0.010	0101336	1.201202
L3	- 0905974	3126101	-0.29	0.772	- 703302	5221072
14	- 8297067	3098743	-2.68	0.007	-1 437049	- 2223642
	.0277007	.5070715	dGDP	0.007	1.157019	
T 1	02 01036	17 70518	1 0/	0.052	7580616	186 5968
12	128 5032	54 77016	2.53	0.052	7580010	245 0584
L2 I 3	150.5952	54.77910 65 56858	2.55	0.011	122 667	124 3.5504
	-4.134939	60.02717	-0.00	0.949	-132.007	124.3371
L4	-8.0/1933	00.93717	-0.15	0.893	-127.3000	111.3027
Т 1	4 720721	2 422241	ulvi2	0.1(7	11 467	1 097524
	-4./39/31	3.432341	-1.38	0.10/	-11.40/	1.98/334
L2	1.50006	3.432514	0.44	0.662	-5.22/544	8.227664
L3	0341692	3.944885	-0.01	0.993	-/./66003	/.69/664
L4	-2.378815	4.011201	-0.59	0.553	-10.24062	5.482994
			dCPI			
Ll	-102.7028	72.04949	-1.43	0.154	-243.9172	38.5116
L2	5.388067	80.85688	0.07	0.947	-153.0885	163.8646
L3	-56.22658	81.02115	-0.69	0.488	-215.0251	102.572
L4	52.68026	69.59442	0.76	0.449	-83.7223	189.0828
			dEX			
L1	13428.38	3059.692	4.39	0.000	7431.494	19425.26
L2	2246.404	3015.939	0.74	0.456	-3664.727	8157.535
L3	2854.444	3073.248	0.93	0.353	-3169.011	8877.898
L4	-685.7138	3287.221	-0.21	0.835	-7128.548	5757.121
_cons	162.2489	121.4626	1.34	0.182	-75.81346	400.3112

Table 6 Results of Vector Autoregression for WIG fuels								
	Coef.	Std.Err.	Z	P> z	[95% Conf. Int	erval]		
		dW	/IG20					
L1	.0371509	.4793305	0.08	0.938	9023196	.9766214		
L2	3280266	.4657798	-0.70	0.481	-1.240938	.5848851		
L3	3808565	.4670109	-0.82	0.415	-1.296181	.5344681		
L4	077721	.4546626	-0.17	0.864	9688433	.8134013		
		dWI	G banks					
L1	1153542	.1270819	-0.91	0.364	36443	.1337217		
L2	.0444164	.1215699	0.37	0.715	1938562	.282689		
L3	092367	.1333887	-0.69	0.489	3538041	.1690701		
L4	.1127045	.1285882	0.88	0.381	1393237	.3647328		
		dW	IG fuel					
L1	.426032	.1418702	3.00	0.003	.1479715	.7040925		
L2	7368888	.1547233	-4.76	0.000	-1.040141	4336366		
L3	.4474597	.1687961	2.65	0.008	.1166254	.778294		
L4	4196308	.1622021	-2.59	0.010	737541	1017205		
		dWIG	real estate					
L1	448401	.2470542	-1.81	0.070	9326184	.0358163		
L2	.9286378	.2662815	3.49	0.000	.4067356	1.45054		
L3	0730534	.2601838	-0.28	0.779	5830044	.4368976		
L4	.078226	.2579068	0.30	0.762	4272621	.5837141		
		d	GDP					
L1	-15.92573	39.77994	-0.40	0.689	-93.89297	62.04151		
L2	121.3904	45.59242	2.66	0.008	32.03092	210.7499		
L3	74.33772	54.5724	1.36	0.173	-32.62221	181.2977		
L4	-123.7037	50.7177	-2.44	0.015	-223.1086	-24.29881		
		d	M2					
L1	-4.659685	2.85672	-1.63	0.103	-10.25875	.9393837		
L2	-6.953151	2.856864	-2.43	0.015	-12.5525	-1.3538		
L3	2.641314	3.283308	0.80	0.421	-3.793852	9.07648		
L4	3.073801	3.338502	0.92	0.357	-3.469542	9.617145		
		d	CPI					
L1	-56.85425	59.96642	-0.95	0.343	-174.3863	60.67778		
L2	25.87248	67.29678	0.38	0.701	-106.0268	157.7717		
L3	88.47989	67.4335	1.31	0.189	-43.68734	220.6471		
L4	-6.352569	57.92308	-0.11	0.913	-119.8797	107.1746		
		d	IEX					
L1	2415.357	2546.566	0.95	0.343	-2575.82	7406.535		
L2	-5508.693	2510.15	-2.19	0.028	-10428.5	-588.8882		
L3	-671.7191	2557.848	-0.26	0.793	-5685.01	4341.572		
L4	369.8651	2735.937	0.14	0.892	-4992.473	5732.204		
cons	175 364	101 0927	1.73	0.083	-22 7741	373,502		

Table 7 Results of Vector Autoregression for WIG real-estates									
	Coef.	Std.Err.	Z	P> z	[95% Conf. Inte	rval]			
		dWI	G20						
L1	3362988	.3090489	-1.09	0.277	9420236	.2694259			
L2	1622132	.3003121	-0.54	0.589	7508142	.4263877			
L3	0184224	.3011059	-0.06	0.951	608579	.5717342			
L4	.3540317	.2931443	1.21	0.227	2205205	.9285839			
		dWIG	banks						
L1	.024931	.0819362	0.30	0.761	135661	.1855229			
L2	.0222677	.0783823	0.28	0.776	1313588	.1758943			
L3	0767355	.0860025	-0.89	0.372	2452974	.0918264			
L4	082169	.0829074	-0.99	0.322	2446645	.0803265			
		dWIC	3 fuel						
L1	0625645	.091471	-0.68	0.494	2418443	.1167153			
L2	0445911	.099758	-0.45	0.655	2401133	.1509311			
L3	.0261497	.1088315	0.24	0.810	1871562	.2394555			
L4	0526541	.10458	-0.50	0.615	2576271	.1523189			
		dWIG re	eal estate						
L1	.4113784	.1592885	2.58	0.010	.0991786	.7235781			
L2	.3908665	.1716853	2.28	0.023	.0543694	.7273635			
L3	0312758	.1677539	-0.19	0.852	3600673	.2975157			
L4	1917069	.1662857	-1.15	0.249	5176209	.1342072			
		dG	DP						
L1	39.94584	25.64816	1.56	0.119	-10.32364	90.21531			
L2	29.4081	29.39577	1.00	0.317	-28.20655	87.02275			
L3	-24.31866	35.18562	-0.69	0.489	-93.28121	44.64389			
L4	8.766529	32.7003	0.27	0.789	-55.32488	72.85794			
		dN	/12						
L1	-1.138301	1.841874	-0.62	0.537	-4.748308	2.471705			
L2	2.692693	1.841967	1.46	0.144	9174954	6.302882			
L3	.627774	2.116917	0.30	0.767	-3.521307	4.776855			
L4	-4.292169	2.152503	-1.99	0.046	-8.510998	0733404			
		dC	PI						
L1	-24.9238	38.66342	-0.64	0.519	-100.7027	50.85512			
L2	38.54875	43.38968	0.89	0.374	-46.49345	123.591			
L3	-28.04605	43.47783	-0.65	0.519	-113.261	57.16893			
L4	16.49978	37.34598	0.44	0.659	-56.69699	89.69656			
		dEX							
L1	2983.015	1641.901	1.82	0.069	-235.053	6201.083			
L2	-3316.039	1618.423	-2.05	0.040	-6488.089	-143.9893			
L3	-3323.419	1649.176	-2.02	0.044	-6555.744	-91.09311			
L4	-784.8212	1763.999	-0.44	0.656	-4242.195	2672.553			
_cons	47.75206	65.17965	0.73	0.464	-79.9977	175.5018			

Impulse Response Function

Figure 1 shows the results of the impulse responses of stock prices to Cholesky one standard deviation innovations of the endogenous variables: stock price (WIG20), stock price for the banking sector (WIG banks), stock price for fuels sector (WIG fuel), stock price for the real-estate sector (WIG real-estate), consumer price

index (CPI), the exchange rate (EX), gross domestic product (GDP) and money supply (M2). The X-axis represents the periods, in the example below 16 quarters were considered while the Y-axis shows the percentage variation to the shock. Reactions of all stock indexes, meaning WIG20, WIG banks, WIG fuel, and WIG real-estate present the same trends with the impulse of one macroeconomic variable. The response of the stock prices themselves to each shock indicates that a one standard deviation shock on WIG20 has a positive effect on its prices throughout the first eight quarters. An extremely rapid effect was observed just after implementation of the shock, which is quickly dropping in the first period and then fluctuate in the eighth one. The impulse of GDP presents the biggest error and a slight increase in reaction to shock after the second period. The impulse of EX presents increase up to around 80% in the first period and then drop -20% in the second period, the ratio fluctuate slightly. The reaction of WIG20 to the shock of M2 manifests in a 20% drop in the first period and then comes back to the regular level. The impulse of CPI remains quite stable but is followed by a relatively huge error. The responses of the macroeconomic variables do not show any reaction of shocks into GDP, M2, CPI, and EX.

As trends of all other WIG indexes remain the same as WIG20, they are all going to be discussed together. Firstly, the impulse of CPI on WIG banks, WIG fuel, and WIG real estate is slightly negative until the fourth period, nevertheless, it is not as significant as impulses of other macroeconomic variables. Secondly, the impulse of EX in long run is reported positive, it is especially visible in the case of WIG banks. An increase in the exchange rate has always positive impact on the banking sector, making them earn more and increase their stock price. The analyzing GDP's impact we can say that the reaction is much more intense in terms of sectoral WIG indexes than on WIG20. Nevertheless, it keeps fluctuating until the sixth period. Finally, the impact of M2 is slightly negative for WIG20, WIG fuels, and WIG real estate, but reports a more rapid reaction on WIG banks in the second period.

	uerbestic, diCPI, dCPI	uentraski, dCPI, dEX	uentresk, dCPI, dGPP	uentrasic, d0 PL dM2	terbark, dC PL dV002D	verbæric, dC PL dWi06 ants	uerbesk: , dO P I, dW (Orbe)	verbesic, dC PI, dViOre
400- 200-								
0 200-								
•œ-	verbesic, d Bi, dC Pi	uentrask:,dB(,dB)	uentoasic, d EX, dO DP	vertestic, d EX, d M2	uentrask:, dEX, dW002D	uerbask; d B(, dV) Kibariks	verbasic, d EX, dW Kotal	ventranic, d EX, dM Kire
200-					\sim		~~~	\sim
200-							-	
400-J	uenbask, dGAPP, dC PI	verbasic, dGDP, dBX	uent-asic, dG-DP, dG-DP	verbesic, dGDP, dM2	warb ask: , d3 0P, dVI 1320	ventrasic, dG DP, dAi IGbanks	uerbesic, dGBP, dWIG tel	uenbasik, dGBP, dMillione
200-								
200-					-			
	ventrasko, dil 12, dC PI	uerbask: , dM2, d Bi	verbesic, dM2, dG0 P	uentrasic, dil 12, dil 12	ventraski, dN2, dN 1020	verbasic, dM2, dM006 arts	verbæsk, dil 12, di Wildsluel	verbesic, dM2, dM0/re
400- 200-								
200-								
	verbasic, dWIG2D, dC PI	ventessic, diVAG-2D, d EK	uentrask, dWIG-20, dG0 P	verteasic, dW 1020, dW2	uentrasic, diVIG 20, dVIG 20	verteasic, dVNO-20, dVNO6 arts	verbestc, dWiG2D, dWiG4uel	verbanic, dV0020,dV00 m
400- 200-					、			
0 200-								
- 	tercesic, divido ensi, do Pi	LERO 2591, DV LUC 2793, DEX	teroasic, avviorants, accer	tendest, dvi tudevis, dvi 2	ceroanic, anno cervis, anno 20	tertesic, ovirstenks, ovirstens	Leto asc, divido ans, dividitar	LETOBIC, DV LIGENS, DVILLIE
D								
1								
•œ-	terbasic, diVIO-tel, dOP1	verbærk, divi loktet, d BK	ventrask: , difi Kontel, d'O P P	terbaric, diVIO-kel, dM2	terbasic, di NiOrlasi, di NiO20	terbasic, dN 104.e1, dN10 banks	verbasic, dWiOstel, dWiOstel	uentrasic (diVilonte), diVilore
200- D						~~~		
200-								
en J	ventrasic , diVilGina , dC PI	ventrasic, dNi Kire, d Bi	verbesite, dN Kins , dO DP	uerbasic, diVIOre, dM2	verbanic, diVilOre, diVilO20	ventrastic, dAl Kim, dAl Kito anka	cerbasic, diVilOre, dVilOrei	verbasic, dAl Kire , dAl Kire
200-								
200-Ļ		* * * * *	*****	* * * * *	* * * * *			* * * * *
Ū	2.000							
				ste	P			
			050/					
			95%	0	ortho	gonalized	п	

Figure 1 Impulse Response Function of macroeconomic variables to each other

Fraphs by infname, impulse variable, and response variable

Opposite impulse response functions were performed for four WIG indexes on macroeconomic variables. It was observed that non of the indexes impact macroeconomic variables in the short run.WIG20, WIG banks, WIG fuels, and WIG real estate has just an impact on each other.

www.iiste.org

Conclusion

The conclusions are that the increase (decrease) in the value of the stock exchange index WIG20 is usually preceded by:

- economic recovery (cooling) expressed by an increase in the real rate of changes in GDP;
- decrease (increase) of inflation;
- increase (decrease) of exchange rate in the long run;
- decrease (increase) of money supply in the short run, and increase (decrease) of money supply in the long run.

The results for sectoral indexes do not differ for WIG20 in the short run. Nevertheless, in long run, 2 study problems were verified contrary to WIG20. They are:

- the decrease in the exchange rate makes the WIG fuel index rise;
- the decrease in money supply makes the WIG real-estate drop.

Implications of this study include the following. (i) Prediction of stock market returns becomes more difficult as the volatility of the macroeconomic variables increases in the short run. (ii) Investors should look at the systematic risks revealed by these macroeconomic variables when structuring their portfolios and diversification strategies. (iii) Policymakers should seek to minimize macroeconomic fluctuations considering the effect of macroeconomic variables changes on the stock market when formulating economic policy.

References

- Al-Sharkas, A., 2004, The dynamic relationship netween macroeconomic factors and the Jordanian Stock Market, International Journal of Applied Econometrics and Quantitative Studies, Vol. 1, No.1, pp. 97-114
- Bilson C., Brailsford T., Hooper V., 1999, Selecting macroeconomic variables as explanatory factors of emerging stock market returns, *Department of Commerce Australia National University Canberra 0200, SSRN*
- Binswanger M., 2004, How do stock process respond to fundamental shocks?, *Finance Research Letters*, No. 1, s.90-99
- Buszkowska E., 2014, An Analysis of the Links between Stock Indexes and Currency Exchange Rates, Publishing House of the Cracow University of Economics, 2014 | 4(928) | p. 5-20.
- Chen, N., Roll, R., Ross, S. A., 1986, Economic Forces and the Stock Market, *Journal of Business*, Vol.59, No. 3, pp. 383-403
- Choudhry T., 2001, Inflation and rates of return on stocks:evidence from high inflation countries *Journal of International Financial Markets*, Vol. 11, No. 1, pp. 75-96.
- Darrat, A.F., 1990, Stock Returns, Money, and Fiscal Policy, Journal of Financial and Quantitative Analysis 25, 387-398.
- Fama, E.F.,1981, Stock Returns, Real Activity, Inflation, and Money, *American Economic Review*, Vol. 71, No. 4, pp. 545-565.
- Gan C., Lee M., Young H. H. A., Zhang J., 2006, Macroeconomic Variables and Stock Market Interactions: New Zeland Evidence, Investment Management and Financial Innovations, Vol. 3,No. 4, pp. 89-101.
- Granger, C. W. J. and Lee, T.-H. (1989). Investigation of production sales and inventory relationships, using multicointegration and non-symmetric error correction models. Journal of Applied Econometrics, 4, Suppl. 145-159.
- Hanousek, J., Filer, R.K. (2000). The Relationship between Economic Factors and Equity Markets in Central Europe. Economics in Transition, 8, pp. 623-638.
- Hasanzadeh A., Kianvand M., 2012, The Impact of Macroeconomic Variables on Stock Prices: The Case of Tehran Stock Exchange, Money and Economy, Vol.6, No. 2, pp. 171-189
- Hsing, Y., & Hsieh, W. J. (2012). Impacts of Macroeconomic Variables on the Stock Market Index in Poland: New Evidence. Journal of Business Economics and Management, 13(2), 334-343. https://doi.org/10.3846/16111699.2011.620133.
- Imrohoroglu S., De Santis G., 1997, Stock returns and volatility in emerging financial markets, *Journal of International Money and Finance* Vol.16 No.4 s.561-579

Jajuga K., 2007, Podstawy inwestowania na rynku papierow wartościowych, GPW, Warszawa.

- Johansen, S. (1992). A representation of vector autoregressive processes integrated of order 2. Econometric Theory, 8, 188-202.
- Johansen, S. (1996). Likelihood-based Inference in Cointegrated Vector Autoregressive Models, (2.nd ed.) Oxford University Press, Oxford.
- McMillan D. G., 2010, Stock Market Fundamentals and Bubbles:Implications for Prices, GDP and Consumption, *SSRN*.
- Mohammad S. D., Hussain A., Jalil M. A., Ali A., 2009, impact of Macroeconomics Variables on Stock Prices:

Emperical Evidance in Case of KSE (Karachi Stock Exchange), *European Journal Of Scientific Research*, Vol.38 No.1, s. 96-103.

- Nelson C., 1976, Inflation and Rates of Return on Common Stocks, *The Journal of Finance*, Vol. 31, No. 2, pp. 471-483.
- Lee, T.-H. (1992). Stock-flow relationships in housing construction, Oxford Bulletin of Economics and Statistics, 54, 419-430.
- Łon E., 2006, Makroekonomiczne uwarunkowania koniunktury na polskim rynku akcji w świetle doświadczeń międzynarodowych, Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań. Samuelson P.A,. Sims Ch., 1980, Macroeconomics and Reality, Econometrica, Vol. 48, No. 1, pp. 1-48.
- Rahman A.A., Sidek N. Z. M., Tafri F. H., 2009, Macroeconomic Determinants of Malysian Stock Exchange, *African Journal of Business Management*, Vol.3, No. 3, pp. 095-106.
- Ronayne D., Which Impulse Response Function?, ESMT European School of Management and Technology , January 2011.
- Tangjitprom N., 2011, Macroeconomic Factors of Emerging Stock Market: the Evidence from Thailand, *International Journal of Financial Research*, Vol.3, No. 2, pp. 105-114.
- Thorbecke W., 1997, On Stock Market Returns and Monetary Policy, *The Journal of Finance*, Vol. 52, No. 2, pp. 635-654.
- Zhao Yu, Zhang Yu, Qi Chunjie, 2011, Are Chinese stock markets mature and open? Evidence from mature stock markets, *African Journal of Business Management*, Vol. 5 No. 12, pp 4657-4665.