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Abstract 

In this study, we look at the derivation of the state space model that is applied in non-linear filtering methods. 
The state-space model is for the double Heston Model written on two underlying assets. The non-linear filtering 
methods include unscented Kalman filter, extended Kalman filter and particle filter. This study extends work of 
Namundjebo (2016) who looked at the application of non-linear filtering methods to the Double Heston Model. 
We extend this work to the derivation of the state space model of the Double Heston Model with two underlying 
assets. The two underlying assets are assumed to be uncorrelated. 

Keywords: non-linear filtering, unscented Kalman filter, extended Kalman filter, Kalman filter, particle filter, 
state-space model. 

 

1. Introduction 
The Heston Model which is named after Steven Heston, is an example of a stochastic volatility model. A 
stochastic volatility model refers to a model where the volatility of the asset returns are driven by a stochastic 
variance process. State space models have a wide range of applications including stochastic volatility models in 
finance.  

Filtering is engineering terminology for extracting information about a signal from partial and noisy 
observations. Filtering can be used to estimate a dynamic system’s internal states given that the system has a 
series of current and past noisy observations. The observation variables are observable unlike the system's states 
which are unobservable. The system’s states conditional probability distribution can then be estimated using the 
filtering approach 

We begin with the prediction step. Suppose that the vector �� represents the current system's state at the current 
time k, and the prediction of �� at time k is given by ���|���. An assumption is made that the previous estimates ����� are known, they are used to predict the state vector ���|���. 

In the update step, the predicted states ���|��� are combined with the current observations ��  to estimate the 
current states ���|�. Given that the observations are noisy, we are interested in the best estimate ���|� of �� that 
minimizes the error, �� − ���|�. This is done by recursion at each time step k. 

A Kalman filter is an example of an optimal filtering method which is applicable in the field of science, 
engineering and finance. It can be used for the estimation of a model’s parameters, when the model relies on 
non-observable data. It is considered easy to understand with little computational burdens.  The Kalman filter is 
also ideal when a large volume of information must be taken into account, because it is very fast. In finance it 
can be used in hedging under partial observation, volatility estimation, optimal asset allocation, etc. 

There are two basic building blocks of a Kalman Filter, the measurement equation and the transition equation. 
The measurement equation relates an unobserved variable to an observable variable. The transition equation is 
based on a model that allows the unobserved variable to change through time. The method requires first of all 
that the model is expressed on a state-space form. A state-space model is characterized by a measurement 
equation and a transition equation.  

The Kalman filter is however only limited to linear models with Gaussian noises. Some non-linear filtering 
methods that are applicable to non-linear systems include the extended Kalman filter and the unscented Kalman 
filter. Particle filters can be applied to non-linear models with non-Gaussian noises. 

A discrete dynamical system is considered with unobservable state vector ��, for 	 = 1, 2, … ., where 	 denotes 
time 
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                                                                              ��= �������, ���                                                                                       �1.0.1� 

and �� is a possibly non-linear and time-dependent function that represents the evolution of the state process ��. 
The state process is driven by noise denoted by ��. 

Suppose that an observable vector ��  at time k is also given such that: 

                                                                 �� = ℎ���� , ���                                                                                          �1.0.2� 

where ℎ�  is a possibly non-linear and time-dependent function that defines the measurement �� . The 
observations noise is denoted by ��. The state process in Equation 1.0.1 is called the state transition equation and 
the observation process in 1.0.2 is called measurement equation. In order to obtain an estimate for the 
unobservable state �� at a given time k given that we have all observations up to time k, The Bayes rule can be 
used to compute the following                                                               ����|��:��

= ����|�������|��:��������|��:����                                                                       �1.0.3� 

where ��. � denotes probability density, ����|��� is the measurement probability or the likelihood function of 
the observation ��  given a state ��.  

In addition: ����|��:���� = � ����|�������|��:������� 

and                      ����|��:���� = � ����|�����������|��:���������                     
                                                                                                                                                     (1.0.4) ����|��:���� is the probability density of the current state �� conditioned on the measurements up to the time 
step 	 − 1. This probability is obtained in the prediction step. ����|��:�� is the probability density of the current state �� conditioned on all the current and past measurements. 
This probability is computed in the update step. 

 

2. Filtering Techniques 
2.1 Kalman Filter 
Kalman filter is only optimal for linear systems. 

Given that the state function �� from Equation 1.0.1 and the measurement function ℎ� from the Equation 1.0.2 
are linear and their corresponding noise �� and �� respectively, are normally distributed and additive. Equation 
1.0.1 can be expressed as                                                                            ��= ������ + ��                                                                                          �2.1.1� 

and Equation 1.0.2 becomes                                                                           ��= ���� + ��                                                                                               �2.1.2� 

The matrix �� is assumed to be known, it defines the state transition evolution, and the matrix �� defines the 
measurement process which is also assumed to be known. An assumption is made that the state noise ��~!�0, "�� and the measurement noise ��~!�0, #�� are uncorrelated Gaussian random variables. In addition, �� , �� are independent of �� , ��  respectively. 

By substituting �� and ��  from Equations 2.1.1 and 2.1.2 in Equations 1.0.3 and 1.0.4, the computations result in 
the Kalman filtering algorithm where the distributions are given as ����|�����~!�������, "��, ����|���~!����� , #��. 
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The objective is to find an estimate of the state vector �� given the observations �� . An estimate of the state 
vector �� is obtained from the past estimated states, ����� in the prediction step. We have that ���| ��� = ������� 	| 	 − 1 represents the estimated state of the state �� using previous �	 − 1�  estimated states. 	| 	  represents the estimates of �� using estimated states at 	| 	 − 1. 

The computation of the past states is conducted by making use of the expectation of ��  given in Equation 2.1.1. 

The error in estimation error is obtained from $�� = �� − ���| ��� 

and the estimate error covariance  %�� = &$��$��'( 
The prediction of the observations is computed from ��� = �����| ��� 

The estimate of ���| � is obtained from ���| ��� and a measurement residual weighted by Kalman gain )� in the 
update step as ���| � = ���| ��� + )���� − ���� 

The measurement residual is computed from *� = �� − ���. The estimate error is $� = �� − ���| � 

and the estimate error covariance %� = &$� $�'( 
The Kalman gain )� is an averaging factor which is key in the Kalman filter. Since the predicted states ���| ��� 
and ��� are known, the value of the Kalman gain )� is set so that it minimizes the variance of $� . We will always 
have 0 ≤ )� ≤ 1. 

However, some systems can be more complex and non-linear, where the nonlinearity can be in the states process 
or in the measurements process or both. 

Kalman filter is only optimal for linear systems. Therefore the need for nonlinear filters. Next we discuss an 
extension of the Kalman filter known as the extended Kalman filter which can handle non-linear Gaussian 
systems. 

 

2.2 Extended Kalman Filter 
This is an extension of the optimal Kalman filter and is used where the dynamical systems are non-linear. 

Consider a case where the state transition function ��  and the observation function ℎ�  given in Equations 1.0.1 
and 1.0.2 respectively are both non-linear and their corresponding noises are uncorrelated Gaussian random 
variables, we have that ��~!�0, "�� and ��~!�0, #��. Given that the densities in 1.0.3 and 1.0.4 are normally 
distributed, then the extended Kalman filter can be applied to obtain an estimate of the state vector �� given the 
observations ��  at time step k. 

In the extended Kalman filter algorithm, the states in the prediction step are predicted as ���| ��� = ��������, 0� 

The non-linear functions in the state transition and measurement equations are linearized to obtain the covariance 
using Jacobian matrices: 

,-. = /�-������, 0�/�. ,                    0-. = /�-������, 0�/�.  

�-. = /ℎ-1���| ���, 02/�. ,                    3-. = /�-1���| ���, 02/�.  

The predicted state covariance is thus %�� = ,�%���,�' + 0�"���0�' 
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Prediction of the measurement is given by ��� = ℎ�1���| ���, 02 

with covariance 4� = ��%����' + 3�#�3�' 

The state vector �� is estimated using the predicted states ���| ��� in the update step. The measurement residual is 
weighted by the Kalman gain )� , ���| � = ���| ��� + )� *�  

where the measurement residual is *� = �� − ���. 

The optimal gain is )� = %����'�4� ��� 

and the updated covariance %� = %��−)� �� %�� 

 

2.3 Unscented Kalman Filter 
A weakness of the extended Kalman filter is that it provides poor estimates for systems that are highly non-
linear. The Kalman gain is obtained from the covariance of the measurement and the states. Thus a poor estimate 
of the covariance leads to unreliable values for the Kalman gain.  

The unscented Kalman filter was proposed by Julier and Uhlmann (1996). They showed that for systems that are 
highly non-linear with normal distributions, the unscented Kalman filter estimates more accurately as compared 
to the extended Kalman filter. In addition, they also demonstrated the difficulty in implementing the extended 
Kalam filter since approximate techniques for the computation of Jacobian matrices are required. 

The unscented Kalman filter makes an approximation of the state random variable distribution using a set of 
chosen deterministic sample points known as sigma points which capture the states mean and the states 
covariance. Two weights are assigned to each sigma point. 

An example is given as follows 

Let        � = 5���,                                                                                             �2.3.1� 5 represents a function that is non-linear. Given the pdf of x which is Gaussian, the pdf of y is obtained as given 
below:   

Let dim��� = 9 , E&�( = ��  and the covariance matrix of �  is %; . A set of 29 + 1  weighted sigma points {0- , =�>�} are generated with =�0� = �� =�> = 1, … … , 9� = �� + @A�9 + B�%;C- =�> = 9 + 1, … … ,29� = �� − @A�9 + B�%;C-�D 

A scaling parameter B is defined as  B = EF�9 + G� − 9 

and E  determines the spreads of sigma points around x, and usually set as small as possible. G is a secondary 
scaling parameter. 

A set of two weights is assigned to each sigma point =�>� for > = 1, … … ,29 

0H�I� = B9 + B                        0H�I� = B9 + B + 1 − EF + J  
          0-�I� = 12�9 + B�                             0-�K� = 12�9 + B�                        

                                                                                                                                          (2.3.2) 
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J contains prior information of the distribution of x. An optimal value of J = 2 is used for normal distributions.  

We then proceed as follows: L�> = 9 + 1, … … ,29� = 51=�>�2 

Then the mean of y is given by 

�� = M 0-�I�L�>�FD
-N�  

with covariance 

% = M 0-�K��L�>� − ����L�>� − ���'FD
-N�  

Wan and Van Der Merwe (2000) show how to obtain the unscented Kalman filter algorithm. Given that we have 
a non-linear state transition Equation 1.0.1 and a non-linear measurement Equation 1.0.2. Let the dimensions of 
the state noise and the state process be:  !; = dim���,          !O = dim��� 

and dimensions of the measurement noise and measurement process be: !P = dim��� ,          !Q = dim��� 

respectively. 

Let 9 = !; + !O + !Q , and:                                                                                  ��R 
= &�� , �� , �� ('                                                                                   �2.3.3� ���R � is an L-dimensional column vector whose entries are the state process, and the state and measurement 

noise. An assumption is made that ���R � has a mean �̅ and covariance matrix %; . 
Let TR = &TH,   T� , … . , TFD( TR is an 9 × �29 + 1� –matrix of sigma points, with columns defined by TH = �̅ T- = �̅ + @A�9 + B�%;C-               �VW > = 1, … . , 9 

T- = �̅ − @A�9 + B�%;C-�D               �VW > = 9 + 1, … . ,29 

The matrix TR can be decomposed as follows: 

TR = XT;TOTQ Y 
T; is !; × �29 + 1�-dimensional,  TO is !O × �29 + 1�-dimensional,  TQ is !Q × �29 + 1�-dimensional. 

 

2.4 Particle Filter 
It’s also known as the Sequential Monte Carlo method. It can be used to approximate filter distributions in state 
space models. The particle filter is an optimal method for a non-linear system that is non-Gaussian. Both the 
unscented and extended Kalman filters cannot be used as optimal methods when a non-linear system is non-
Gaussian.  

The particle filter method makes use of Monte Carlo simulation to obtain the posterior density function in 
Equation 1.0.3. Numerous iterations are then performed to approximate the state distributions based on the 
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random samples obtained from the set of random numbers used in the Monte Carlo simulation. The key idea is to 
represent the required posterior density function by a set of random samples known as samples with associated 
weights and to compute the estimates based on these samples and weights. 

The state distributions are then approximated with a finite set of weighted random samples drawn from a known, 
proposal distribution 15��H:�| ��:��2. These random samples are called particles and at time step k we might 
denote n particles for the state �� as �����, ���F�, … . . , ���Z�. 
The particles �H:��-�  for > = 1, … … , [ are independent and identically distributed. 

Each particle is assigned an importance weight �W�� which determines its probability of being sampled from the 
proposal distribution. The weighted set of n particles at time step k will be denoted as {���-�, W��-�} for all > =1, … … , [. 

The posterior density function from Equation 1.0.3 can be approximated as follows                                                               ���H:�| ��:��
≔ M W��-�]1�H:� − �H:��-� 2                                                                   �2.4.1�Z

-N�  

where ]�. � is a delta function. All we need to do to evaluate the transition probability in Equation 2.4.1, we need 
to generate a set of particles from a proposal distribution and iteratively compute the importance weights. This is 
grouped into three steps: sampling, computing the particle weights and resampling. 

 

3. Stochastic Volatility Models 
After the October 1987 stock market crash, significant variations from normality have shown up in the term 
structure of volatility. Various academicians and traders have taken a keen interest on this observation and as a 
result, a lot of work has been done on this area. The danger of models used for pricing based on an incorrect 
assumption of log-normality is the risk of obtaining biased prices.  

The Black-Scholes model which has been used extensively in the past is considered to be successful in asset 
pricing both in terms of approach and applicability. With the assumption of geometric brownian motion, the risk 
neutral density for the underlying assets is taken to be lognormal. Asset prices are often observed to have random 
volatility. These observations cannot be accurately be assumed to have a lognormal density since the density 
functions are fat-tailed and skewed. Stochastic volatility models are widely used in the finance industry for 
derivative pricing and hedging. They are popular is their flexibility in capturing the volatility surface.  

The Heston model makes the assumption of stochastic volatility in the pricing of European call option and 
obtains a closed-form solution. The model further assumes that the volatility and the underlying asset price are 
correlated. In so doing, the Heston model is enable to capture various properties of the financial information 
which the Black-Scholes model doesn’t.  

The double Heston model was proposed by Christofiersen et al. (2009) to deal with the failure of the standard 
Heston Model to not always capture the term structure dynamics of the implied volatility especially in cases 
where the maturity period is short. In the Double Heston model, an asset return is driven by two-factor stochastic 
volatility. This has the advantage of improving the model's flexibility in modelling the volatility term structure. 

In this chapter, we describe the Standard Heston model and its extension, the Double Heston model, in detail and 
present their characteristic functions, which are important in option valuations. We then extend the Double 
Heston model to the case where we have two underlying assets. We also present the state-space representations 
for these models, which we use in the filtering methods to estimate the volatilities. 

 

3.1 The Heston Model 

In this section, we first present the dynamic system for the Heston model under a risk-neutral measure ℚ. Under 
a risk-neutral measure ℚ, the Heston (1993) model assumes that an underlying stock price, ̀a has a stochastic 
variance, ba, that follows a Cox, Ingersoll and Ross (1985) process. This process is represented by the following 
dynamical system: � à = �W − 5� à�c + Aba à�0a 
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�ba = G�d − ba��c + eAba�fa 
where W is a constant risk-free interest rate, 5 is a constant dividend. The terms κ, θ and ba above describe the 
mean-reverting volatility of the process. The mean speed of reversion, G, determines the relative speed of the 
volatility or the weight that the long-run variance and current variance are given. The average level of the stock, d, is the long-run variance that the drift pulls the volatility towards. The ba term is the current variance, while e 
is the volatility of the volatility. All the parameters κ, θ and e are positive constant. The terms 0a and fa are 
Wiener processes that must be correlated with each other, that is; 

 ��0a�fa� = g�c  

In the above equation the term ρ is the correlation coefficient between the return of the underlying asset and the 
changes in the variance. This correlation has proven to be a great advantage to the Heston model as this is also 
present in empirical studies that have been performed over the years. The correlation, which is often negative, 
will ensure that the volatility for example will rise if the underlying asset value falls dramatically. In addition the 
variance is also mean-reverting, which is also evident in the market. The mean-reverting process is the term G�d − ��. 

For option valuation, we follow the Albrecher et al. (2006) approach, such that the characteristic function of log 
returns �� = h[�`� `���⁄ � ��VW 	 ≤ c� of the Heston model is derived using the so called the little Heston trap. 
This characteristic function is only slightly different from the original formulation of Heston (1993), but it 
provides a better computation of the numerical integration. The European call option price under the basic 
Heston model in the one dimensional framework is given by; 

                                                      j�`, b, ), k� = `�$�lm%� − )$�nm%F                                                                �3.1.1� 

Where %.�o = 1,2� are the risk-adjusted probabilities of the log of the underlying price �a = ln�`a/� à���. K 
denotes the strike price. 

%. = 12 + 1s � #$ t$�-∅ vw x �.�∅; �� , b�� >∅ z �∅{
H  

for o = 1, 2. 
The characteristic functions �.�∅; �� , b�� in the probabilities are given by �.�∅; �� , b�� = $-∅ vw x|}~�∅,m�|�~�∅,m��� 

Where 

�.�∅, k� = *. − ge�> + �.eF t 1 − $�~m1 − �.$�~mz, 
,.�∅, k� = W�>k + �eF t1*. − ge�> + �.2k − 2 h[ � 1 − $�~m1 − �.$�~m�z, 

�. = *. − ge�> + �.*. − ge�> + �. , 
�. = �1ge�> − *.2F − eF12�.�> − �F2 

 

And > = √−1 , k = � − 	,  �� = �F , �F = − �F , � = Gd, *� = G − ge, *F = G  and �  is called the integration 
variable or node. 

 

3.2 The Double Heston Model 

The model makes an assumption that the underlying stock price, ̀ a is driven by two independent factors of 
volatility, ba� and baF. The dynamics of the system are given as follows assuming a risk neutral framework: 



Research Journal of Finance and Accounting                                                                                                                                    www.iiste.org 

ISSN 2222-1697 (Paper) ISSN 2222-2847 (Online) 

Vol.9, No.22, 2018 

 

167 

� à = �W − 5� à�c + �ba� à�0a� + �baF à�0aF 

                                     �ba� = G��d� − ba���c + e��ba��fa�                           
�baF = GF�dF − baF��c + eF�baF�faF 

                                                                                                                                                               

(3.2.1) 

where W is the deterministic risk-free rate of interest,  5 denotes the dividend-yield. 

An assumption is made that all the parameters are constant.  

The Brownian motions 0a�, fa� and 0aF, faF are correlated. �&0a- , fa.( = g-�c            �VW �hh      > = o �&0 - , f .(a = 0                �VW �hh      > ≠ o 
for >, o = 1, 2. 
The multidimensional Feynman-Kac Theorem is used to obtain the characteristic function for the Double Heston 
model  

Theorem 3.1. Multi-dimensional Feynman-Kac Theorem 

Let �� be an n-dimensional stochastic process with dynamics ��� = ��	, ����	 + e�	, ����0�                                
                                                                                                                                            (3.2.2) 

Where 	 ≤ c ≤ �. 
The infinitesimal generator of the process in Equation 3.1.2 is defined by 

� = M �-�	, ��, … , �Z� //�- + 12 M j-. /F/�-/�.
Z

-N�
Z

-N�  

                                                                                                                                                           (3.2.3) 

where j-. = �ee'�-. . 
Theorem 3.1 implies that f satisifies the PDF: /�/c + �� − W� = 0                                                
                                                                                                                                                            (3.2.4) 

Applying Ito's lemma and Equation 3.2.1, returns �� = ln � ������� are given by 

��� = �W − 5 − 12 �b�� + b�F�� �	 + �b���0�� + �b�F�0�F 

Thus, the dynamical system of the Double Heston model can be given as: 

�����b���b�F
� =

⎝
⎜⎜⎜
⎛�W − 5 − 12 �b�� + b�F�� �	 + �b���0�� + �b�F�0�F

G��d� − b����	 + e��b���f��
GF�dF − b�F��	 + eF�b�F�f�F ⎠

⎟⎟⎟
⎞
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If we set 

f� = g�0� + �1 − g�F 0� 

fF = gF0F + �1 − gFF 0� 

where 0�, 0F, 0�, 0� are independent Brownian motions. Then the volatility matrix from Theorem 3.1 is given 
by 

e��� , 	� =
⎝
⎜⎜⎜
⎛ �b��

e��b��g� 0
    

�b�F 0 0
0 e��b���1 − g�F � 0

eF�b�FgF 0 eF�b�F�1 − gFF �⎠
⎟⎟⎟
⎞

 

So that 

ee ' = �    b�� + b�F e�b��g�  eFb�FgF  e�b��g�  e�F  b�� 0eFb�FgF  0 eFF  b�F
� 

and the drift is given by 

� = ⎝
⎛W − 5 − 12 �b�� + b�F�G��d� − b���GF�dF − b�F� ⎠

⎞ 

Then the generator � as given in Equation 3.2.3 becomes 

� = �W − 5 − 12 �b�� + b�F�� /�/�� + G��d� − b��� /�/b�� + GF�dF − b�F� /�/b�F + 12 �b�� + b�F� /F�/��F + g�  e�b�� /F�/��b��
+ gF  eFb�F /F�/��b�F + 12 e�Fb�� /F�/b�� F + 12 eFFb�F /F�/b�F F. 

                                                                                                                                                               (3.2.5) 

The double Heston model Partial Differential Equation is obtained by substituting � into Equation 3.2.4. 

According to Christoffersen et al. (2009), the Double Heston model belongs to the class of affine models. This 
means that � has a closed-form solution with an exponential affine relationship to the state variables which can 
take the form that follows: ��∅H, ∅�, ∅F;  �� , b��, b�F� = �&$���>∅H�' + >∅�b'� + >∅Fb'F�(                                                               = $���,�k� + �H�k��� + ���k�b�� + +�F�k�b�F�               
                                                                                                                                                              (3.2.6) 

 Where k = � − 	 

The coefficients ,, �H , ��, �F can be obtained as follows. We first substitute Equation 3.2.6 for � in Equation 
3.2.4 to obtain 

� t�/,/	 + /�H��/	 + /��b��/	 + /�Fb�F/	 � + ���H + �F�� + ���F
+ 12 ��ee '����HF + �ee '�FF��F + �ee '����FF + �ee '��F�H�� + �ee '����H�F�z
= 0                                                                                                                             

                                                                                                                                                              (3.2.7) 
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Note that �  and ee ' are affine, such that � ��� � = )H + )��� + )Fb�� + )�b�F e��� �e��� � ' = �H + ���� + �Fb�� + ��b�F 

Where 

)H = �W − 5G�d�GFdF �,         )� = �000�,              )F = � − 12−G�0 �,        )F =   − 120−GF
¡ 

And 

�H = �� = �0 0 00 0 00 0 0�,      �F = � 1 e�g� 0e�g� e�F 00 0 0�,              �F = � 1 0 eFgF0 0 0eFgF 0 eFF � 

Substituting the variables from � and ee ' in the Equation 3.1.5, we get 

� t¢/,/	 + /�H��/	 £ + �W − 5��H + G�d��� + GFdF�F + /��b��/	
+ b�� ¢− 12 �H − G��� + 12 �HF + 12 e�F��F + 12 e�g��H��£ + /�Fb�F/	
+ b�F ¢− 12 �H − GF�F + 12 �HF + 12 eFF�FF + 12 eFgF�H�F£z = 0 

We will drop � because it is always true that � > 0. In order for the drift term to equal 0 for all values of �� , b��and b�F, their coefficient terms and the constants terms must sum to 0. That gives us the following system 
of ODEs /�H/	 = 0 /,/	 + �W − 5��H + G�d��� + GFdF�F = 0 

/��b��/	 − 12 �H − G��� + 12 �HF + 12 e�F��F + 12 e�g��H�� = 0 /�F/	 − 12 �H − GF�F + 12 �HF + 12 eFF�FF + 12 eFgF�H�F = 0 

                                                                                                                                                        (3.2.8) 

These are known as Riccati equations. Rouah (2013) provided solutions to the Riccati equations for the Standard 
Heston model equations. Rouah (2013) also argue that ��  and �F  are identical to their counterparts in the 
Standard Heston model, therefore their solutions are �H�k� = 0 

�.�k, �� = G. − g.e.�> + �.e.F t 1 − $�~m1 − �.$�~mz 
,�k, �� = �W − 5��>k + M G.d.e.F t1G. − g.e.�> + �.2k − 2h[ �1 − �.$�~m1 − �. �zF

.N�  
 

                                                                                                                                                        (3.2.9) 

where 

�. = G. − g.e.�> + �.G. − g.e.�> + �. 
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�. = �1G. − g.e.�> 2F + e.F��� + >� 

For o = 1,2. 
With the known coefficients ,, �H, ��, �F , the characteristic function �  can now be obtained. Using Fourier 
inversion, Christofiersen et al. (2009) obtained the price of a European call option under the Double Heston 
model as: j�)� = `�$�lm%� − )$�nm%F 

K denotes the exercise price, 

%� = 12 + 1s � #$ t$�-¥ vw x��� − >; �� , b��, b�F�>� à$�m z ��{
H  

%F = 12 + 1s � #$ t$�-¥ vw x���; �� , b��, b�F�>� z ��{
H  

 

3.3 The Double Heston Model with Two Underlying Assets 

We now extend the Double Heston model discussed above to the case where we have two underlying assets. We 
assume that we have two underlying stock prices, à�and ̀ aF is driven by two independent factors of volatility, ba� 
and baF respectively. The dynamics of the system are given as follows assuming a risk neutral framework: 

� à� = �W� − 5�� à��c + �ba� à��0a� + à����"a� 

� àF = �WF − 5F� àF�c + �baF àF�0aF + àF�F�"aF 

                                     �ba� = G��d� − ba���c + e��ba��fa�                            
�baF = GF�dF − baF��c + eF�baF�faF 

                                                                                                                                                        (3.3.1) 

where W- , 5- , �- , G-,d- , e- for  > = 1,2 are known constants, such that: �- , G- , d- , e- > 0 2 G-d-¦-F > 1, 
and 0a-, "a- , fa- are standard Weiner processes, For > = 1,2, we make the assumption that: �&0 - , " .( = 0            �VW �hh      >, o �&f - , " .( = 0            �VW �hh      >, o 
 �&0 - , f .( = 0              �VW �hh      > ≠ o �&0 - , 0 .( = 0            �VW �hh      > ≠ o �&f - , f .( = 0               �VW �hh      > ≠ o �&" - , " .( = g-,.�c        �VW �hh      > ≠ o 
 �&0 - , f .( = g-�c              �VW �hh      > = o �&0 - , 0 .( = �c               �VW �hh      > = o �&f - , f .( = �c                 �VW �hh       > = o 
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�&" - , " .( = �c               �VW �hh       > = o �VW >, o = 1,2. 

In this study, we consider the case where the two assets are uncorrelated, that is �- = 0, for > = 1,2. The model 
thus becomes; 

� à� = �W� − 5�� à��c + �ba� à��0a� 

� àF = �WF − 5F� àF�c + �baF àF�0aF 

                                     �ba� = G��d� − ba���c + e��ba��fa�                                   
�baF = GF�dF − baF��c + eF�baF�faF 

                                                                                                                                                   (3.3.2) 

The multidimensional Feynman-Kac Theorem is used to obtain the characteristic function for the Double Heston 
model written on two underlying assets as follows: 

Let ��-  �VW > = 1,2  be an n-dimensional stochastic process with dynamics                         ���- = �-1	, ��- 2�	 + e1	, ��- 2�0�-                                             
                                                                                                                                                   (3.3.3) 

Where 	 ≤ c ≤ �. 
The infinitesimal generator of the process in Equation 3.3.3 is defined by 

� = M �-�	, ��, … , �Z� //�- + 12 M j-. /F/�-/�.
Z

-N�
Z

-N�  

Where j-. = �ee'�-. . 
Applying Ito's lemma, returns ��- = ln � ��§����§ � for > = 1,2 are given by 

���� = �W� − 5� − 12 �b���� �	 + �b���0�� + ���"a� 

���F = �WF − 5F − 12 �b�F�� �	 + �b�F�0�F + �F�"aF 

Thus, the dynamical system of the Double Heston model written on two underlying assets can be given as: 

⎝
⎜⎛

�������F�b���b�F⎠
⎟⎞ =

⎝
⎜⎜⎜
⎜⎜⎜
⎛�W� − 5� − 12 �b���� �	 + �b���0�� + ���"a�

�WF − 5F − 12 �b�F�� �	 + �b�F�0�F + �F�"aF
G��d� − b����	 + e��b���f��
GF�dF − b�F��	 + eF�b�F�f�F ⎠

⎟⎟⎟
⎟⎟⎟
⎞

 

If we set 

f� = g�0� + �1 − g�F 0� 

fF = gF0F + �1 − gFF 0� 

where 0�, 0F, 0�, 0� are independent Brownian motions. Then the volatility matrix from Theorem 3.1 is given 
by 
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e��� , 	� =
⎝
⎜⎜⎜
⎜⎛

 �b��0
0�b�F  00                           00

e��b��g� 0 e��b���1 − g�F �            0  
0 eF�b�FgF                       0                  eF�b�F�1 − gFF �⎠

⎟⎟⎟
⎟⎞

 

So that 

ee ' =
⎝
⎜⎛

 b��0 0b�F  e�b��g�  0                            0eFb�FgF  e�b��g�  0 e�F  b��                                          0  0 eFb�FgF         0                                    eFF  b�F ⎠
⎟⎞ 

and the drift is given by 

� =
⎝
⎜⎜⎜
⎛W� − 5� − 12 �b���

WF − 5F − 12 �b�F�G��d� − b���GF�dF − b�F� ⎠
⎟⎟⎟
⎞

 

Then the generator � as given in Equation 3.2.3 becomes 

� = �W� − 5� − 12 �b���� /�/��� + �WF − 5F − 12 �b�F�� /�/��F + G��d� − b��� /�/b�� + GF�dF − b�F� /�/b�F + 12 b�� /F�/��� F
+ 12 b�F /F�/��F F + g�  e�b�� /F�/���b�� + gF  eFb�F /F�/��Fb�F + 12 e�Fb�� /F�/b�� F + 12 eFFb�F /F�/b�F F 

                                                                                                                                               (3.3.4) 

The double Heston model written on two underlying assets Partial Differential Equation is obtained by 
substituting � into Equation 3.2.4. 

Following a similar approach to  Christoffersen et al. (2009), the Double Heston model written on two 
underlying assets belongs to the class of affine models. This means that � has a closed-form solution with an 
exponential affine relationship to the state variables which can take the form that follows: ��∅H, ∅�, ∅F, ∅�;  ���, ��F, b��, b�F� = �&$���>∅H�'� + >∅��'F + >∅Fb'� + >∅�b'F�(                                        = $���,�k� + �H�k���� + ���k���F + �F�k�b�� + +���k�b�F�                
                                                                                                                                                 (3.3.5) 

Where k = � − 	 

The coefficients ,, �H , ��, �F, �� can be obtained as follows.  

� t�/,/	 + /�H���/	 + /����F/	 + /�Fb��/	 + /��b�F/	 � + ���H + �F�� + ���F + ����
+ 12 ��ee '����HF + �ee '�FF��F + �ee '����FF + �ee '����H�F + �ee '�F����F + �ee '�����F�z
= 0                                                                                                  

                                                                                                                                              (3.3.6) 

Note that �  and ee ' are affine, such that � ��� � = )H + )���� + )F��F + )�b�� + )�b�F e��� �e��� � ' = �H + ����� + �F��F + �Fb�� + ��b�F 
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Where 

)H =  W� − 5�WF − 5FG�d�GFdF
¡,         )� = )F = �0000�,            )� =

⎝
⎜⎛ − 120−G�0 ⎠

⎟⎞,           )� =
⎝
⎜⎛

0− 120−GF⎠
⎟⎞ 

And 

�H = �� = �F = � 000     000     000    000      0 0  0    0  � ,        �� =   10 00 e�g�  0 00e�g�  0 e�F          0  0 0 0    0 ¡ ,
     �� =  00 01 00 0eFgF  0 0 0        0  0 eFgF  0    eFF  ¡ 

 

Substituting the variables from � and ee ' in the Equation 3.3.5, we get 

� t�/,/	 + /�H���/	 + /����F/	 � + �W� − 5���H + �WF − 5F��� + G�d��F + GFdF�� + /�Fb��/	
+ b�� ¢− 12 �H − G��F + 12 �HF + 12 e�F�FF + 12 e�g��H�F£ + /��b�F/	
+ b�F ¢− 12 �� − GF�� + 12 ��F + 12 eFF��F + 12 eFgF����£z = 0 

                                                                                                                                                (3.3.7) 

We will drop � because it is always true that � > 0. In order for the drift term to equal 0 for all values of ���, ��F, b��and b�F, their coefficient terms and the constants terms must sum to 0. That gives us the following 
system of ODEs /�H/	 + /��/	 = 0 /,/	 + �W� − 5���H + �WF − 5F��� + G�d��F + GFdF�� = 0 /�F/	 − 12 �H − G��F + 12 �HF + 12 e�F�FF + 12 e�g��H�F = 0 /��/	 − 12 �� − GF�� + 12 ��F + 12 eFF��F + 12 eFgF���� = 0 

                                                                                                                                          (3.3.8) 

These are known as Riccati equations. Rouah (2013) provided solutions to the Riccati equations for the Standard 
Heston model equations. Rouah (2013) also argue that �F  and ��  are identical to their counterparts in the 
Standard Heston model, therefore their solutions are �H�k� = ���k� = 0 

�.�k, �� = G. − g.e.�> + �.e.F t 1 − $�~m1 − �.$�~mz 
,�k, �� = �W − 5��>k + M G.d.e.F t1G. − g.e.�> + �.2k − 2h[ �1 − �.$�~m1 − �. �zF

.N�  
 

                                                                                                                                              (3.3.9) 
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Where 

�. = G. − g.e.�> + �.G. − g.e.�> + �. 

�. = �1G. − g.e.�> 2F + e.F��� + >� 

For o = 2,3. 
With the known coefficients ,, �H, ��, �F , the characteristic function �  can now be obtained. Using Fourier 
inversion, Christofiersen et al. (2009) obtained the price of a European call option under the Double Heston 
model with two underlying assets as: j�)� = `�$�lm%� − )$�nm%F 

K denotes the exercise price, 

%� = 12 + 1s � #$ t$�-¥ vw x��� − >; ���, ��F, b��, b�F�>� à$�m z ��{
H  

%F = 12 + 1s � #$ t$�-¥ vw x���; ���, ��F, b��, b�F�>� z ��{
H  

 

3.4 State-Space Representations 

The unobserved volatilities b� , {b�-}-,� at each timestep 	 needs first to be estimated so as to obtain the volatility 
smile of the Heston models mentioned above. Namundjebo (2016) uses a filtering approach to obtain an estimate 
for the volatilities in the case of the Standard Heston and Double Heston model. In this study, we extend this 
approach to the case of the Double Heston stochastic volatility model written on two underlying assets.  b� is the state variable for the Heston model which is unobserved, similarly, b�� and b�F are the state variables for 
the Double Heston model written on both one and two underlying assets which are also unobserved. The option 
prices are taken to be the model observations and the variance processes are taken to be the transition equations. 

Therefore, for us to estimate the unobservable factors and the model's parameters, we simply work with the 
relationship between the stock returns or option prices and the underlying state variables. This is the relationship 
between the evolution of the measurement equations and the state transition equations. A system of the 
measurement and transition equations is called the state-space representation of the model. 

The measurement noise and the state noise are correlated in the heston models looked at in this study. Cholesky 
decomposition is used to decorrelate the sources of randomness so as to ensure that for the filters, the process 
noise and measurement noise are uncorrelated. In order to formulate our models in the state-space representation, 
we need to specify the state transition equations and the measurement equations. We begin by presenting the 
state-space form for the Heston model, then we proceed to the Double Heston model and lastly, we extend this to 
the Double Heston model with two underlying assets. 

In the standard Heston model, let the spot price `�  be the observation and the variance b�  be the state. The 
measurement equation is then represented by the stock price equation and the state transition equation by the 
variance process. The standard Heston model can be given as  

ln  `� = ln  `��� + ¢W − 5 − 12 b���£ ∆	 + Ab���√∆	0��� 

b� = b��� + G�d − b����Δ	 + eAb���√Δ	f��� 

This system of equations is obtained by applying the Euler method to the Stochastic Differential Equation: ��� = ��	, ����	 + e�	, ����0� �0� is the Brownian motion, � and e are functions depending on `� and k, over an interval [0, T], and we want 
to discretize it as 0 = 	� < 	F < ⋯ < 	I = � with increments equally spaced ∆c. 

Using the Euler discretization we proceed as follows: 

���� − ����|∆� = � ��W, �n��W���|∆�
��� + � e�W, �n��0n���|∆�

���  
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� ��W, �n��W���|∆�
��� ≈ ��	, ����� � �W���|∆�

���  

= ��	, �����∆	 

� e�W, �n��0n ≈ e�	 − 1, ����� � �0n���|∆�
���

���|∆�
���  

= e�	 − 1, ������0���|∆� − 0���� = e�	 − 1, �����√∆c0��� 

The Euler discretization is given as: ���� − ����|∆� = ��	, �����∆	 + e�	 − 1, �����√∆	0��� 

��	, ����� = W − 5 − 12 b��� 

e�	 − 1, ����� = Ab��� 

Thus 

ln  `� = ln  `��� + ¢W − 5 − 12 b���£ ∆	 + Ab���√∆	0��� 

Similarly; b� = b��� + G�d − b����Δ	 + eAb���√Δ	f��� 

where 0� and f� are correlated. Javaheri (2011) gives an approach to eliminate the correlation between these 
equations by subtracting from the variance process ������, ��� a multiple of the quantity ℎ��� , ��� − ��  which 
is equal to zero as follows: b� = b��� + G�d − b����Δ	 + eAb���√Δ	f���

− ge ln `��� + ¢W − 5 − 12 b���£ Δ	 + Ab��� √Δ	0��� − ln `�® 
which gives 

b� = b��� + �Gd − ge�W − 5�� − ¢G − 12 ge£ b���® Δ	
+ ge ln ¢ `�`���£ + eA1 − gF Ab���√Δ	����.                                

                                                                                                                                            (3.4.1) 

where 

�� = 1A1 − gF �f� − g0�� 

and the measurement equation is 

�� = ln `� = ln `��� +  ¢W − 5 − 12 b���£ Δ	 + Ab��� √Δ	0���.                 
                                                                                                                                   (3.4.2) �� and 0� are thus uncorrelated. The state transition equation is represented by Equation 3.4.1. 
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Li (2013) shows that if we take the spot prices `�  and option prices j�`� , )� as the observations and the variance b� as the state, then the measurement equations are represented by 

ln `� = ln `��� +  @W − 5 − ge GdC Δ	 + ge b� + ge �GΔ	 − 1� − 12 Δ	® b���
+ A1 − gF√Δ	Ab���0�                                                              

                                                                                                                                  (3.4.3)          ��H = ��`� , b� , Θ� + °aH                                                                                              �3.4.4� 

where ��H  is the observable option prices, with identical independent distributed measurement errors °aH →!�0, eHF�, independent of 0� and f�, and ��. � is the theoretical option price computed from the Heston model. 

The state transition equations are given by the variance processes 

¢ b�b��²�£ = @κθΔ	0 C + @1 − κΔ	 01 0C ¢ b��²�b��F²�£ + ¢eAΔ	b��²�0 £ f� 

For the Double Heston model, the system equations are 

ln `� = ln `��� +  �W − 5 − 12 �b���� + b���F �� ∆	 + �b���� √∆	0���� + �b���F √∆	0���F , 
b�� = b���� + G��d� − b���� �Δ	 + e��b���� √Δ	f���� , 
b�F = b���F + GF�dF − b���F �Δ	 + eF�b���F √Δ	f�F. 

                                                                                                                                                  (3.4.5) 

Taking the observation to be the spot price `�  and the states to be the variance processes b��, b�F , then the 
measurement equation is represented by the stock price ln ̀ � in Equation 3.4.5 and the transition equations by 
the variance processes b��, b�F in Equation 3.3.5. The problem we face when using these equations, the process 
noise and the measurement noise are correlated, �&0 �, f �(� = g��	 and �&0 F, f F(� = gF�	. However, for the 
filtering the process and the measurement noises must be uncorrelated. 

By Ito's Lemma, we let �� = h[ @ ������C. This implies that 

         ��� =  ��W − 5� − 12 �b�� + b�F�� d	 + �b���0�� + �b�F�0�F                                             
                                                                                                                                                                       (3.4.6) 

Making use of Cholesky decomposition, let 

�0�� = g��f�� + �1 − g�F �fµ�� 

�0�F = gF�f�F + �1 − gFF �fµ�F 

Where �&f �, fµ �( = �&f F, fµ F( = 0 
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Substituting �0��, �0�F in Equation 3.4.6, we get 

��� =  ��W − 5� − 12 �b�� + b�F�� d	 + �b�� �g��f�� + �1 − g�F �fµ��� 
 + �b�F �gF�f�F + �1 − gFF �fµ�F� 

 
 

=  ��W − 5� − 12 �b�� + b�F�� d	 + g��b���f�� + �1 − g�F �b���fµ�� +  
+ gF�b�F�f�F + �1 − gFF �b�F�fµ�F.                                                           

                                                                                                                                                                      (3.4.7) 

From Equation 3.2.1, we know that 

                                �b���f��
= 1e� ��b�� − G��d� − b����	�                                                                                              �3.4.8�   

                              �b�F�f�F
= 1eF ��b�F − GF�dF − b�F��	�                                                                                                 �3.4.9� 

By substituting Equation 3.4.8 and 3.4.9 into 3.4.7, we get 

��� =  �W − 5 − 12 �b�� + b�F�� d	 + g�e� ��b�� − G��d� − b����	� + �1 − g�F �b���fµ��
+ gFeF ��b�F − GF�dF − b�F��	� + �1 − gFF �b�F�fµ�F. 

Using a similar approach to Li (2013), we obtain: 

ln `� = ln `��� + ¢W − 5 − g�e� G�d� − gFeF GFdF£ ∆	 + g�e� b�� + + gFeF b�F + ¢g�e� �G�∆	 − 1� − 12 ∆	 £ b����
+ ¢gFeF �GF∆	 − 1� − 12 ∆	 £ b���F + �1 − g�F �b���� √∆	 fµ�� + �1 − gFF �b���F √∆	 fµ�F.                

                                                                                                                                                                    (3.4.10) 

which is the measurement equation. 

The state transition equations are: 

�b��b�F� = ⎝
⎛b���� + G��d� − b���� �∆	 + e��b���� √∆	 f����

b���F + GF�dF − b���F �∆	 + eF�b���F √∆	 f���F ⎠
⎞  

                                                                                                                                                                  (3.4.11) 

Clearly, the measurement noise fµ�� and  fµ�F from in Equation 3.4.10 are uncorrelated to the states noise f��, f�F in 
Equation 3.4.11. 

A system is said to be observable if it allows its states estimation from the measurement equation(s). A check 
therefore needs to be done to see whether the measurement equation given in Equation 3.4.10 and the states in 
Equation 3.4.11 form an observable system. 

Under the Double Heston model written on two underlying assets, the system equations are 

ln `�� = ln `���� +  �W� − 5� − 12 �b���� �� ∆	 + �b���� √∆	0���� , 
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ln `�F = ln `���F +  �WF − 5F − 12 �b���F �� ∆	 + �b���F √∆	0���F , 
 

b�� = b���� + G��d� − b���� �Δ	 + e��b���� √Δ	f���� , 
b�F = b���F + GF�dF − b���F �Δ	 + eF�b���F √Δ	f�F. 

                                                                                                                                                         (3.4.12) 

Taking the observation to be the spot prices `��, `�F  and the states to be the variance processes b��, b�F, then the 
measurement equation is represented by the stock price ln `�� , ln `�F  in Equation 3.4.12 and the transition 
equations by the variance processes b��, b�F in Equation 3.4.12. The problem we face when using these equations, 
the process noise and the measurement noise are correlated, �&0 �, f �(� = g��	  and �&0 F, f F(� = gF�	 . 
However, for the filtering the process and the measurement noises must be uncorrelated. 

Making use of Ito's Lemma, let ��- = h[ ¢ ��§����§ £. This gives us: 

 ���� =  �W� − 5� − 12 �b���� �	 + �b���0�� , 
 ���F =  �WF − 5F − 12 �b�F�� �	 + �b�F�0�F, 

                                                                                                                                                        (3.4.13) 

Making use of Cholesky decomposition, let 

�0�� = g��f�� + �1 − g�F �fµ�� 

�0�F = gF�f�F + �1 − gFF �fµ�F 

Where �&f �, fµ �( = �&f F, fµ F( = 0 

Substituting �0��, �0�F in Equation 3.4.13, we get 

 ���� =  �W� − 5� − 12 �b���� �	 + �b�� �g��f�� + �1 − g�F �fµ��� , 
=  �W� − 5� − 12 �b���� �	 + g��b���f�� + �1 − g�F �b���fµ��, 

 ���F =  �WF − 5F − 12 �b�F�� �	 + �b�F �gF�f�F + �1 − gFF �fµ�F� , 
=  �WF − 5F − 12 �b�F�� �	 + gF�b�F�f�F + �1 − gFF �b�F�fµ�F, 

                                                                                                                                                             (3.4.14) 

From Equation 3.2.1, we know that 

                                              Ab���f�� = �̧� ��b�� − G��d� − b����	�                                                 (3.4.15) 

                                              Ab�F�f�F = �̧¹ ��b�F − GF�dF − b�F��	�                                                 (3.4.16) 

By substituting Equation 3.4.15 and 3.4.16 into 3.4.14, we get 

 ���� =  �W� − 5� − 12 �b���� �	 + g�e� ��b�� − G��d� − b����	� + �1 − g�F �b���fµ��, 
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 ���F =  �WF − 5F − 12 �b�F�� �	 + gFeF ��b�F − GF�dF − b�F��	� + �1 − gFF �b�F�fµ�F, 
Using a similar approach to Li (2013), we obtain: 

ln `�� = ln `���� +  ¢W� − 5� − g�e� G�d�£ ∆	 + g�e� b�� + ¢g�e� �G�∆	 − 1� − 12 ∆	 £ b���� + �1 − g�F �b���� √∆	 fµ��, 
ln `�F = ln `���F +  ¢WF − 5F − gFeF GFdF£ ∆	 + gFeF b�F  + ¢gFeF �GF∆	 − 1� − 12 ∆	 £ b���F

+ �1 − gFF �b���F √∆	 fµ�F. 
                                                                                                                                                           (3.4.17) 

Equation 3.4.17 are the measurement equations. 

The state transition equations are: 

                              �b��b�F�
= ⎝

⎛b���� + G��d� − b���� �∆	 + e��b���� √∆	 f����
b���F + GF�dF − b���F �∆	 + eF�b���F √∆	 f���F ⎠

⎞                                                        �3.3.18� 

Clearly, the measurement noise fµ�� and  fµ�F from in Equation 3.3.17 are uncorrelated to the states noise f��, f�F in 
Equation 3.3.18. 

A system is said to be observable if it allows its states estimation from the measurement equation(s). A check 
therefore needs to be done to see whether the measurement equation given in Equation 3.3.17 and the states in 
Equation 3.3.18 form an observable system. 
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