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Abstract

In this study, we look at the derivation of thetastapace model that is applied in non-linear fittgrmethods.
The state-space model is for the double Heston Med#en on two underlying assets. The non-linféering

methods include unscented Kalman filter, extendatinién filter and particle filter. This study extendork of
Namundjebo (2016) who looked at the applicatiomarfi-linear filtering methods to the Double Hestonddl.
We extend this work to the derivation of the stggace model of the Double Heston Model with twoaitying

assets. The two underlying assets are assumedulocberelated.

Keywords. non-linear filtering, unscented Kalman filter, emtled Kalman filter, Kalman filter, particle filter
state-space model.

1. Introduction

The Heston Model which is named after Steven Hestoran example of a stochastic volatility model. A
stochastic volatility model refers to a model whére volatility of the asset returns are drivenabgtochastic
variance process. State space models have a wide od applications including stochastic volatilityodels in
finance.

Filtering is engineering terminology for extractingformation about a signal from partial and noisy
observations. Filtering can be used to estimatgremic system’s internal states given that theesyshas a
series of current and past noisy observations.obiservation variables are observable unlike theeays states
which are unobservable. The system’s states conditiprobability distribution can then be estimatisthg the
filtering approach

We begin with the prediction step. Suppose that/dwtorx, represents the current system's state at thenturre
time k, and the prediction aof, at time k is given by, ,_;. An assumption is made that the previous estimates
%x—, are known, they are used to predict the stateovégf,_;.

In the update step, the predicted st&gs_, are combined with the current observatippdo estimate the
current stateg, . Given that the observations are noisy, we arerésted in the best estimag, of x; that
minimizes the error, — X ,. This is done by recursion at each time step k.

A Kalman filter is an example of an optimal filleg method which is applicable in the field of scien
engineering and finance. It can be used for thenatibn of a model’s parameters, when the modétsebn
non-observable data. It is considered easy to sgtated with little computational burdens. The Kainfidter is
also ideal when a large volume of information nmaesttaken into account, because it is very fasfinance it
can be used in hedging under partial observatiolatility estimation, optimal asset allocation,.etc

There are two basic building blocks of a KalmarefFjlthe measurement equation and the transitioati.
The measurement equation relates an unobserveablatd an observable variable. The transition toas
based on a model that allows the unobserved variabthange through time. The method requires difstl|
that the model is expressed on a state-space farstate-space model is characterized by a measateme
equation and a transition equation.

The Kalman filter is however only limited to linearodels with Gaussian noises. Some non-linearrifitje
methods that are applicable to non-linear systewiside the extended Kalman filter and the unsceKtddhan
filter. Particle filters can be applied to non-Ememodels with non-Gaussian noises.

A discrete dynamical system is considered with ueolable state vectas,, fork = 1,2, ...., wherek denotes
time
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Xk
= fie(Xp—1, Wi) (1.0.1)
andf; is a possibly non-linear and time-dependent famcthat represents the evolution of the state soGe
The state process is driven by noise denotewt,by

Suppose that an observable vegtpat time k is also given such that:

Vi = hy O, v) (1.0.2)
where b, is a possibly non-linear and time-dependent fanctthat defines the measurement. The
observations noise is denotedidyy The state process in Equation 1.0.1 is calledtidie transition equation and
the observation process in 1.0.2 is called measemeraquation. In order to obtain an estimate far th
unobservable state, at a given time k given that we have all obseoratiup to time k, The Bayes rule can be
used to compute the following

p(xk|y1:x)

_ Pl )p i yre-1)
P Wil y1ie-1)

(1.0.3)

wherep(.) denotes probability density(y,|x;) is the measurement probability or the likelihooedtion of
the observatioly, given a state;,.

In addition:
PO = [ PORIRIPCrelye )
and
POkIyi) = [ PGl PGy Ddxe s
(up

p(xx|y1.k—1) is the probability density of the current stateconditioned on the measurements up to the time
stepk — 1. This probability is obtained in the predictioest

p(xx|y1.) is the probability density of the current stajeconditioned on all the current and past measuré&snen
This probability is computed in the update step.

2. Filtering Techniques
2.1 Kalman Filter
Kalman filter is only optimal for linear systems.

Given that the state functigfp from Equation 1.0.1 and the measurement fundtjoffom the Equation 1.0.2
are linear and their corresponding naiseandv, respectively, are normally distributed and adeitizquation
1.0.1 can be expressed as

Xk
= kak—l +Wk (211)

and Equation 1.0.2 becomes

Vi
= Hkxk +vk (212)

The matrixM, is assumed to be known, it defines the state ittensvolution, and the matrik, defines the
measurement process which is also assumed to benkn&n assumption is made that the state noise
w,~N(0, Q;) and the measurement noige~N (0, R;) are uncorrelated Gaussian random variables. litiadd

wy, vy, are independent of,, y, respectively.

By substitutingx, andy, from Equations 2.1.1 and 2.1.2 in Equations 1a0i@® 1.0.4, the computations result in
the Kalman filtering algorithm where the distritarts are given as

(x| x—1)~N (M xpe—1, Qi),
Pk |xx)~N (Hy Xy, Ry,).
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The objective is to find an estimate of the stagetorx, given the observations,. An estimate of the state
vectorx, is obtained from the past estimated statgs, in the prediction step. We have that

X k-1 = MyXp—s
k| k — 1 represents the estimated state of the statesing previougk — 1) estimated states.
k| k represents the estimatesfusing estimated statesidtk — 1.
The computation of the past states is conducteddking use of the expectationxgf given in Equation 2.1.1.
The error in estimation error is obtained from
ex = Xx — Xk k-1
and the estimate error covariance
Pi = leie;"]
The prediction of the observations is computed from
Vi = kald k-1

The estimate afy, is obtained fron%,,,_, and a measurement residual weighted by Kalmanigain the
update step as

Rk = X k-1 + Kk — 9i)
The measurement residual is computed figre= y,, — 7. The estimate error is
€ = Xk — X\kl k
and the estimate error covariance
P, = [eyei]
The Kalman gairk), is an averaging factor which is key in the Kalnfidber. Since the predicted statég ,_;

andy, are known, the value of the Kalman g&ipis set so that it minimizes the varianceepfWe will always
have0 < K, < 1.

However, some systems can be more complex andimear| where the nonlinearity can be in the statesess
or in the measurements process or both.

Kalman filter is only optimal for linear systemshédrefore the need for nonlinear filters. Next wecdss an
extension of the Kalman filter known as the exteh#&lman filter which can handle non-linear Gaussia
systems.

2.2 Extended Kalman Filter
This is an extension of the optimal Kalman filtedas used where the dynamical systems are noatline

Consider a case where the state transition fungji@md the observation functidiy given in Equations 1.0.1
and 1.0.2 respectively are both non-linear andr tbeiresponding noises are uncorrelated Gaussiatona
variables, we have that,~N (0, Q;) andv,~N (0, R;). Given that the densities in 1.0.3 and 1.0.4 areally
distributed, then the extended Kalman filter carapplied to obtain an estimate of the state vegtagiven the
observationg, at time step k.

In the extended Kalman filter algorithm, the statethe prediction step are predicted as
X\kl k-1 = fx(Rk-1,0)

The non-linear functions in the state transitiod areasurement equations are linearized to obteindlariance
using Jacobian matrices:

A = 01 0) _ 0fi(%k-1,0)
0o Oh;(Rk) -1,0) U = 0fi(%| k-1, 0)
v ax] ’ H avj

The predicted state covariance is thus
Pg = AgPr_1 Al + Wi Qe WY
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Prediction of the measurement is given by
i = hk(fm k—1'0)
with covariance
Fk = HkPk_HIZ + UkRkUlz

The state vectar, is estimated using the predicted statgs—, in the update step. The measurement residual is
weighted by the Kalman gait,,

Rk = Xy k-1 T Kieby
where the measurement residudjis= y, — Ji.
The optimal gain is
Ky = Pc Hg (F)™!
and the updated covariance
Py = P =K, H P

2.3 Unscented Kalman Filter

A weakness of the extended Kalman filter is thatritvides poor estimates for systems that are yigbh-
linear. The Kalman gain is obtained from the camacee of the measurement and the states. Thus a@gimate
of the covariance leads to unreliable values ferkalman gain.

The unscented Kalman filter was proposed by Jainel Uhimann (1996). They showed that for systeratate
highly non-linear with normal distributions, theagented Kalman filter estimates more accuratelgoaspared
to the extended Kalman filter. In addition, thegabdemonstrated the difficulty in implementing #dended
Kalam filter since approximate techniques for thenputation of Jacobian matrices are required.

The unscented Kalman filter makes an approximatibthe state random variable distribution usinget of
chosen deterministic sample points known as sigmiat® which capture the states mean and the states
covariance. Two weights are assigned to each sjmpimd.

An example is given as follows
Let
y =qx), (2.3.1)

q represents a function that is non-linear. Givangtf of x which is Gaussian, the pdf of y is obéal as given
below:

Let dim(x) =L, E[x] =% and the covariance matrix afis P.. A set of2L + 1 weighted sigma points
{W,, X (i)} are generated with

X(0) = %
X(i=1,. . ,L):;?+(,/(L+/1)Px)_
X@=L+1,....20)=%— (,/(L n A)Px)

A scaling parametet is defined as

i-L

A=a?(L+Kx)—L

anda determines the spreads of sigma points around &,usnally set as small as possildés a secondary
scaling parameter.

A set of two weights is assigned to each sigmatpoin) fori =1, ...... 2L
A A
(m) (m) 2
w™ = —— W™= ——+1-
0 L+2 0 T k
w1 o _ 1
¢ 2(L+2) ¢ 2(L+ A1)

(2.3.2)

163



Research Journal of Finance and Accounting www.iiste.org
ISSN 2222-1697 (Paper) ISSN 2222-2847 (Online) H-,i,l
\Vol.9, No.22, 2018 IIS E

B contains prior information of the distributionxfAn optimal value off = 2 is used for normal distributions.
We then proceed as follows:
Y@=L+1,....,2L) = q(X(©)

Then the mean of y is given by
2L

9= Wy @
i=1

with covariance
2L
P =Y WOUD-NYD -
i=1

Wan and Van Der Merwe (2000) show how to obtainuhscented Kalman filter algorithm. Given that verd
a non-linear state transition Equation 1.0.1 ambm@&linear measurement Equation 1.0.2. Let the d#ioas of
the state noise and the state process be:

N, = dim(x), N,, = dim(w)
and dimensions of the measurement noise and measntr@rocess be:

N, = dim(y), N, = dim(v)
respectively.
LetL =N, + N,, + N,, and:

X
= [xk,wk,vk]T (2.3.3)

(x¢) is an L-dimensional column vector whose entries the state process, and the state and measurement
noise. An assumption is made tiiaf ) has a mea® and covariance matrig,.
Let

Xt = [)(0, X1swos X2L]
x%is anL x (2L + 1) —matrix of sigma points, with columns defined by
Xo =%

Xi=f+(w/(L+/1)Px) fori=1,...,L

i
xi=x—(J@+ A)Px)i_L fori=L+1,...2L

The matrixy® can be decomposed as follows:

x*isN, x (2L + 1)-dimensional,
xV isN,, x (2L + 1)-dimensional,
xVisN, x (2L + 1)-dimensional.

2.4 Particle Filter

It's also known as the Sequential Monte Carlo methbcan be used to approximate filter distribntan state
space models. The particle filter is an optimal hrodtfor a non-linear system that is non-Gaussianth Bhe
unscented and extended Kalman filters cannot bd aseoptimal methods when a non-linear system s no
Gaussian.

The particle filter method makes use of Monte Cailmulation to obtain the posterior density functim
Equation 1.0.3. Numerous iterations are then pewéadr to approximate the state distributions basedhen
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random samples obtained from the set of random ewnised in the Monte Carlo simulation. The kewigeto
represent the required posterior density functipralset of random samples known as samples withcated
weights and to compute the estimates based on shesgles and weights.

The state distributions are then approximated wifimite set of weighted random samples drawn feokmown,
proposal distributior(q(xo;kl )’1;k))- These random samples are called particles atithatstep k we might
denote n particles for the state as

x,El), x,EZ), e, x,gn).

The particles:éf?c fori =1, .....,n are independent and identically distributed.

Each particle is assigned an importance wefght which determines its probability of being sampiesin the
proposal distribution. The weighted set of n péeticat time step k will be denoted {aél),rk(‘)} for alli =
1,...... , M.

The posterior density function from Equation 1.6aB be approximated as follows
P(xo:k| yl:k)

n
- z 18 (xgp — & (2.4.1)

i=1

whered (.) is a delta function. All we need to do to evaludi transition probability in Equation 2.4.1, weed
to generate a set of particles from a proposatibligton and iteratively compute the importancegts. This is
grouped into three steps: sampling, computing #réigle weights and resampling.

3. Stochastic Volatility M odels

After the October 1987 stock market crash, sigaificvariations from normality have shown up in them

structure of volatility. Various academicians arablers have taken a keen interest on this observatid as a
result, a lot of work has been done on this ardée danger of models used for pricing based on eoriect

assumption of log-normality is the risk of obtaigibiased prices.

The Black-Scholes model which has been used extgsin the past is considered to be successfasset
pricing both in terms of approach and applicahilityith the assumption of geometric brownian motite, risk
neutral density for the underlying assets is takdpe lognormal. Asset prices are often observeddht@ random
volatility. These observations cannot be accurabayassumed to have a lognormal density since ¢nsity
functions are fat-tailed and skewed. Stochasti@tildly models are widely used in the finance irtdydor

derivative pricing and hedging. They are populahér flexibility in capturing the volatility sugice.

The Heston model makes the assumption of stochastatility in the pricing of European call opticend
obtains a closed-form solution. The model furthesumes that the volatility and the underlying apsiee are
correlated. In so doing, the Heston model is en&bleapture various properties of the financiabinfation
which the Black-Scholes model doesn't.

The double Heston model was proposed by Christ#ieet al. (2009) to deal with the failure of thendard
Heston Model to not always capture the term strmectlynamics of the implied volatility especially dases
where the maturity period is short. In the Doubkstén model, an asset return is driven by two-festimchastic
volatility. This has the advantage of improving thedel's flexibility in modelling the volatility ten structure.

In this chapter, we describe the Standard Hestaefrand its extension, the Double Heston modedgeiail and
present their characteristic functions, which argartant in option valuations. We then extend thmulide
Heston model to the case where we have two underigssets. We also present the state-space refatases
for these models, which we use in the filteringimoels to estimate the volatilities.

3.1 TheHeston Model

In this section, we first present the dynamic sysfer the Heston model under a risk-neutral meagurénder

a risk-neutral measu®, the Heston (1993) model assumes that an undgrbtiock priceS, has a stochastic
varianceV;, that follows a Cox, Ingersoll and Ross (1985)cpss. This process is represented by the following
dynamical system:

dS, = (r — q)S.dt + \/V;S,dW,
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wherer is a constant risk-free interest rajds a constant dividend. The termsd andV; above describe the
mean-reverting volatility of the process. The meaped of reversior, determines the relative speed of the
volatility or the weight that the long-run varianaed current variance are given. The average Evile stock,

6, is the long-run variance that the drift pulls thatility towards. The/, term is the current variance, white

is the volatility of the volatility. All the parantersx, 6 ando are positive constant. The teris andZ, are
Wiener processes that must be correlated with etmdr, that is;

(dW,dZ,) = pdt

In the above equation the tepms the correlation coefficient between the retofithe underlying asset and the
changes in the variance. This correlation has prawebe a great advantage to the Heston modeliassthlso
present in empirical studies that have been peddrover the years. The correlation, which is oftegative,
will ensure that the volatility for example willse if the underlying asset value falls dramaticdtyaddition the
variance is also mean-reverting, which is also @vidn the market. The mean-reverting process astéhm
k(6 —v).

For option valuation, we follow the Albrecher et @006) approach, such that the characteristictfom of log
returnsx;, = In(S,/Sk-1) (for k < t) of the Heston model is derived using the so caledlittle Heston trap.
This characteristic function is only slightly diféint from the original formulation of Heston (199®ut it
provides a better computation of the numericalgradon. The European call option price under thsid
Heston model in the one dimensional frameworkvegiby;

C(S,V,K,t) =Se 7P, —Ke P, (3.1.1)
WhereP;(j = 1,2) are the risk-adjusted probabilities of the logtloé¢ underlying pricer, = In(5./(S;-1). K
denotes the strike price.

do

1 1 foo Re [e—ia)lnl(f]:(@; xk'Vk)
0 9

forj=1,2.
The characteristic function$(@; x,, Vi) in the probabilities are given by
f)(@: Xpe, Vk) — ei@ In K+Aj(@,T)+Bj(Q),‘L')Vk

Where

B](Q, T) =

b, —podi+d;[ 1—el”
0—2 1 _gjedj‘l.' ’

, a , 1—e%*
Ai(@,7) = réit + P [(bj — podi + dj)r —2In —>],

_ gjedj‘[

d; = \/(paqﬁi — b))’ - 02 (2upi — $?)

Andi=+v-1,t=T—-k, uy =%, U, = —%, a=k0, b =k —po, b, =k and¢ is called the integration
variable or node.

3.2 The Double Heston M odel

The model makes an assumption that the underlyiock grice,S; is driven by two independent factors of
volatility, V! andV2. The dynamics of the system are given as follosgsiming a risk neutral framework:
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dS, = (r — q)S,dt + /V}Stthl + /VtZStthz

thl = Kl(gl - Vt-l)dt + 01 thng'

thZ = KZ(HZ - Vtz)dt + () Vt-detz

(3.2.1)

wherer is the deterministic risk-free rate of interest,
q denotes the dividend-yield.
An assumption is made that all the parametersanstant.
The Brownian motiong/!, Z; andW?, Z? are correlated.
d[W{, Z1] = pdt forall i=j
d[wi,z’],=0 forall i+#j
fori,j =1,2.

The multidimensional Feynman-Kac Theorem is useabtain the characteristic function for the DouHleston
model

Theorem 3.1. M ulti-dimensional Feynman-K ac Theorem
Let x, be an n-dimensional stochastic process with dyoami
dx, = u(k, x;)dk + a(k, x;, )dW,

(3.2.2)
Wherek <t <T.
The infinitesimal generator of the process in Eoume8.1.2 is defined by
c/l—zn: (k,x* ")a—i-lzn:c o
. e ) LY dxioxi
i=1 =1
(3.2.3)
WhereC,:]' = (O'O'T)ij.
Theorem 3.1 implies that f satisifies the PDF:
of +A =0
at f rf -
(3.2.4)

Applying Ito's lemma and Equation 3.2.1, returps= ln(si—") are given by
-1

1
dx) = (r—q _E(Vkl +Vk2)>dk+,[Vk1del +N/Vk2dwkz

Thus, the dynamical system of the Double Hestonahecah be given as:

1
(r -q- E(V"l + sz)> dk + /V,}aka1 + /szaka2
dx;,
avg | = I k1 (6, — V1)dk + 0y |VEdZ] i

V2
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If we set

Zy=p Wi+ [1—p;Ws

Zy=p Wy t+ [1-p; W,

whereW,, W,, W5, W, are independent Brownian motions. Then the vdhatihatrix from Theorem 3.1 is given

by
2
/ /Vkl Ve 0 0 \
U(xk'k)=| 1 0 0y /Vkl(l_l)lz) 0 I
o1 |Vips

\ Yo 0, |Vip: 0 ey,

So that
Ve + Vi oViepr a,Vip,
oo’ = o Vip, o2V} 0
o, Vi pe 0 of Vi

and the drift is given by

/r—q—%(vklw,f)\
= _y1
\ e /

Then the generated as given in Equation 3.2.3 becomes

1 af af af 1 9%f 9% f
A = (r_q_E(V"l+V"2)>a_xk+K1(61_V"l)a_ll,}+K2(62_V"z)a_ll,f+§(v"1+v"2)a_ac,§+plalv"lm
2f 1 f 1 9%f
+ po0,VE EPAT + Ealekl avi? + EUZZVkZ vz
(3.2.5)

The double Heston model Partial Differential Eqoiatis obtained by substitutirg into Equation 3.2.4.

According to Christoffersen et al. (2009), the Dieubdeston model belongs to the class of affine rsodehis
means thaf has a closed-form solution with an exponentiahaffelationship to the state variables which can
take the form that follows:

f(Bo, 81,85 X1, Vie, ViE) = Elexp(i@oxr + 10, V7 + iB,V7)]
= exp(A(®) + Bo(Dx; + B1(D)V + +B2(D)ViF)
(3.2.6)
Wheret =T -k

The coefficients, By, B;, B, can be obtained as follows. We first substituteidEipn 3.2.6 foif in Equation
3.2.4 to obtain

[(6A 0Byx;, 0BVE 0B,V?2

% ok ok ok ) + By + 2By + u3B,

1
+ E((UUT)nt + (007)2,Bf + (007)33B5 + (067)1,ByB; + (607)13B,B;)

=0
(3.2.7)
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Note thatu andooT are affine, such that
() = Ko + Kyxge + KV + K3V
U(xk )U(xk )T = HO + Hlxk + szlél + H3sz

Where
1
r—gq 0 1 _2
KO = <K161>‘ Kl = <0>, KZ — 2 ) KZ — 2
_Kl 0
K;0; 0
0 _Kz
And
0 0 O 1 op1 O 1 0 oyp,
HO = Hl = (0 0 0)1 HZ = <O—1p1 0_12 0): HZ = < 0 0 0 )
0 0 0 0 0 0 o0, 0 0F
Substituting the variables fromandoos” in the Equation 3.1.5, we get
0A 0Byx; 0B,V
(ﬁ"’_ ak )+(T—q)BO+K10131 +K262B2 + ak
1 1 1 2 1 2p2 1 aBZVk2
+Vk (_EB(] _KlBl +§B0 +EO‘1 Bl +§0‘1p13031)+ ak

1 1 1 1

We will dropf because it is always true thf@at> 0. In order for the drift term to equal O for alllwas of

xx, VeandVZ, their coefficient terms and the constants termistrsum to 0. That gives us the following system
of ODEs

0B,
E= 0
0A
ﬁ+ (r—q)By + k,60,B; +k,0,B, =0
BVl 1 1,01, 1 _
ok 250 — KB, +§BO +EalBl +§‘71P13031 =0
9B, 1

1 2 1 2p2 1 =
W_EBO - KZBZ +EB0 +EO—2 Bz Zo—zszoBz 0
3.2.8)

These are known as Riccati equations. Rouah (28b8)ded solutions to the Riccati equations for $taendard
Heston model equations. Rouah (2013) also argueBthandB, are identical to their counterparts in the
Standard Heston model, therefore their solutioas ar

Bo(T) = 0
K, —p;oidpi +d;[ 1—e¥”
Bi(v,¢) = . : ]2 ][ diz
9 1-gje”

2 0. _ 4.04jT
At ¢) = (r — @it + Z 'ij—,f’ [(Kj — pjoidi +d;)T = 2In (MH
j=1 7

where
Kj — pjoi$l +d;

g podi + 4
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d; = \/(Kj - p]-ajq,’)i)z +al(p+10)
Forj =1,2.

With the known coefficientd, By, By, B,, the characteristic functiofican now be obtained. Using Fourier
inversion, Christofiersen et al. (2009) obtained frice of a European call option under the Doutsston
model as:

C(K) = Se 9P, — Ke ""P,

K denotes the exercise price,

1 1 (®  [e ®MKf(p—i; x, Vi, V)

P, =—+— R d
1 2+nf0 e[ ipS,e—* ]4’
L1 [ 0 VL VD)
P,=-+=| R d
2= 7+7), [ i ]¢

3.3 The Double Heston M odel with Two Underlying Assets

We now extend the Double Heston model discussedeatmothe case where we have two underlying asééds.
assume that we have two underlying stock pri§kandsS? is driven by two independent factors of volatiliti
andV;? respectively. The dynamics of the system are gasefollows assuming a risk neutral framework:

dSt = (r, — q)Sidt + |VASLAWE + Sta,dQ}
dS? = (r, — qp)S?dt + /VtZSEthz + S7a,dQ?
dVi = k,(6; = VHdt + oy ’thdztl

thZ = KZ(HZ - Vtz)dt + [} Vt-detz

3.3.1)
wherery, q;, a;, k; 6;, 0; for i = 1,2 are known constants, such that:
a;, k;,0;,0; >0
2 k;0;
2 )

&

andW}/, Ql, Z} are standard Weiner processes, iFer1,2, we make the assumption that:
dwi,Q1=0 forall 1ij
d[Z},Q’]1=0 forall 1ij

dwi,z’] =0 forall i#j
dwiwil =0 forall i+#j
d[z},Z’] =0 forall i+#j

d[Q,Q/] =p;;dt  forall i#]j

d[Wi,z'] = p;dt forall i=j
dwi,wi] =dt forall i=j
d[Z',Z7] = dt forall i=j
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d[Q', Q'] =dt forall i=j
fori,j=1,2.

In this study, we consider the case where the segeta are uncorrelated, thatijs= 0, for i = 1,2. The model
thus becomes;

dstl = (T‘l - ql)Stldt + thstlth-l
dStz = (rz - qz)StZdt + ’VCZStZthZ
thl = Kl(el - th)dt + [} ’thdZtl

thZ = KZ(HZ - Vtz)dt + [} Vt-detz

(3.2

The multidimensional Feynman-Kac Theorem is useabtain the characteristic function for the DouHlkeston
model written on two underlying assets as follows:

Letx! for i = 1,2 be an n-dimensional stochastic process with dycgami
dxt = pi(k, xt)dk + o(k, x} ) AWy
(383
Wherek <t <T.
The infinitesimal generator of the process in Emue8.3.3 is defined by

n n
B et 0 INT 9
““Zﬂl’( s r )ﬁ’LEZ i gxiox]
1= i=

WhereCij = (O'O'T)l'j.

Applying Ito's lemma, returns, = In( >

-k ) for i = 1,2 are given by
Sk-1

dxj = — —l(Vl) dk + [VidWy + a,dQ¢
Xic n—q 7 Wk AWy + a,dQ;

1
dx? = (rz —q, — E(sz)> dk + /szdez + a,dQ}
Thus, the dynamical system of the Double Hestonahatitten on two underlying assets can be given as

T — —l(Vl) dk + VW + a,dQ}
101 5 Vk k « +a.dQ;

— —l V2) | dk V2dW? dQ?
T, —q; Z(k) + [ViedWi + a,dQ;

—
Q QL Q. Q.
e A

~_
Il

If we set
Zy=p Wi+ |1—piWs
Zy=pWo+ [1-piW,

whereW,, W,, W;, W, are independent Brownian motions. Then the vdhatihatrix from Theorem 3.1 is given
by
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0
Vi 5 0
| 0 ’Vk 0 0
X, k) =
7 Gt ) o1 |Viepr 0 01 ’Vkl(l_/)f) 0
0 oz [Vip: 0 02 ’sz(l_P%)

(=)
.

So that
Vi 0 o Vi ps 0
r_| o Vi 0 o, Viipa
60" = 1 2 /1
o1V p1 0 of Vg 0
0 o, Vi ps 0 o} Vi
and the drift is given by
1 1
—q1— 35 (Vk)
u=|"n-q- —(V )
K1(91 - Vk)
K (6, = Vi)
Then the generated as given in Equation 3.2.3 becomes
1 af af of of o*f
ch:(ﬁ_%_z(vkl))W‘*'(rz __(sz)> 5+ 1,(6; — Vkl)aV1+K2(92 sz)avz Vkla 12
0% f 0% f o’ f 1 o’ f 1 02
T2 V" axzz TPk gapr PV Gays ot gyt 3o i Gy

(3.3.4)

The double Heston model written on two underlyirspeds Partial Differential Equation is obtained by
substitutingA into Equation 3.2.4.

Following a similar approach to Christoffersen at (2009), the Double Heston model written on two
underlying assets belongs to the class of affinelet® This means th#@thas a closed-form solution with an
exponential affine relationship to the state vdaalwhich can take the form that follows:

f(Bo, D1, B2, B35 Xk, X, Ve, ViE) = Elexp(i@ox7 + i@y X7 + i@,V + i@3VF)]
= exp(A(T) + By(D)xj + B (T)x? + B,(D)V¢ + +B5(1)VZ)
(3.3.5)
Wherer =T — k
The coefficients4, By, B;, B,, B; can be obtained as follows.

04 0Byxi 0Bt OBVE O0BVE\ o
ak ak ak ak ak U159 U2b71 Usb> Uab3

1
+ E((UUT)HBS +(007)2,BY + (007)33B5 + (667)13B0B, + (067)24B1B, + (60")44B3)

=0
(3.3.6)
Note thatu andooT are affine, such that
u(xe) = Ko + Kixjp + Kpxz + K3V + KV
a(x;)a(x, )T = Hy + Hyxjt + Hyx? + HyVii + Hy V2
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Where
o () (0
T, —q 2 _Z
Ko = 2K02 Ky =K, = 8' Ks=| o | K,=| 2|
1Y1 _ 0
K,0 0 K1
202 0 K,
And
0O 0 0 O 1 0 o1p1 O
oy _y_| 0o o0 00 [0 o 0 o
Ho=H=H=\"0 000 |© " \ap 02 o |
0 0 0O 0 0 0 0
0 0 0 0
_ |0 1 0 0,0,
He=lo o o o
0 gp, O o3

Substituting the variables fromandoos” in the Equation 3.3.5, we get

0A 0Byxi 0B x} OBV}
FRT” ar )T (. —q1)Bo + (r; — q2)By + K10, B; + K,0,B3 + ok
11 Lo 1 opp 1 0B3Vi
+ (_EBO — KB, + EBO + 501 B; + 501,013032) + ok
1 1,01, 1
+Vk (_EBl_KZBS +EB1 +EO-2B3 +Eo-2p2BlB3) =0
(3.3.7)

We will drop f because it is always true thfat> 0. In order for the drift term to equal O for alllwas of
xx, x5, ViEiandVZ, their coefficient terms and the constants termastraum to 0. That gives us the following
system of ODEs

ok "ok
0A
ﬁ‘*’(ﬁ_‘h)Bo"‘(rz_QZ)&+K191Bz+’<29233=0
9B, 1 1,1 5p 1
E—EBO - KIBZ +§BO +EO-1 BZ +§0-1plBOB2 =0
0B; 1 1, 1,., 1
W—EBl—KzB3+EBl +EO—ZB3+EO—ZpZBlB3:0

(3.3.8)

These are known as Riccati equations. Rouah (28b8)ded solutions to the Riccati equations for $tandard
Heston model equations. Rouah (2013) also argueBthandB; are identical to their counterparts in the
Standard Heston model, therefore their solutioas ar

By(r) =B1(x) =0
Kj — p;oj i +d]-[ 1—e%” ]

Bi(1,$) =
(T, 9) sz 1 _gjed]-‘r

2 o — q.p4T
AT, ¢) = (r — q)pit + Z ’z_gj [(Ki —pjoipi + dj)T —2ln <1lf—j;j>]
j=1

J

(3.3.9)
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Where
g = —pjgidt +d;
7K = pjodi +d;
.\ 2 .
dj = \/(’Cj —pjodi)" +0fp(d +1)
Forj = 2,3.

With the known coefficientd, By, B,, B,, the characteristic functiofican now be obtained. Using Fourier
inversion, Christofiersen et al. (2009) obtained frice of a European call option under the Doutdsston
model with two underlying assets as:

C(K) = S,e TP, — Ke™""P,
K denotes the exercise price,
1 1 r® e—i¢]nK —i xl‘x2lvl‘V2
P1_—+—f Re[ f(@ ko Xk Vi k)]d¢
0

2w ipS.e *
1 1 [ e—i¢an ; xl’xz’Vl’VZ
P2=_+_f Re[ f(d)'k i Vi k)]d¢
2 0 ip

3.4 State-Space Representations

The unobserved volatilitield, {Vk"}i‘k at each timestep needs first to be estimated so as to obtain thegility

smile of the Heston models mentioned above. Nanelnwd{2016) uses a filtering approach to obtainstimate
for the volatilities in the case of the Standardstda and Double Heston model. In this study, wermkithis
approach to the case of the Double Heston stochadttility model written on two underlying assets

V. is the state variable for the Heston model whichriobserved, similarly;! andV? are the state variables for
the Double Heston model written on both one and iwderlying assets which are also unobserved. Ppltiero
prices are taken to be the model observationstansdriance processes are taken to be the transigigations.

Therefore, for us to estimate the unobservableofacand the model's parameters, we simply work tith
relationship between the stock returns or optiooggrand the underlying state variables. Thisasrétationship
between the evolution of the measurement equatiorts the state transition equations. A system of the
measurement and transition equations is calledttte-space representation of the model.

The measurement noise and the state noise ardatedrén the heston models looked at in this st@holesky

decomposition is used to decorrelate the sourcearmfomness so as to ensure that for the filthesptocess
noise and measurement noise are uncorrelateddér tw formulate our models in the state-spaceessmtation,
we need to specify the state transition equatiotsthe measurement equations. We begin by pregetiten
state-space form for the Heston model, then wegawdto the Double Heston model and lastly, we exthis to

the Double Heston model with two underlying assets.

In the standard Heston model, let the spot pficbe the observation and the variabGebe the state. The
measurement equation is then represented by tbk ptice equation and the state transition equatipithe
variance process. The standard Heston model cgivee as

1
ln Sk = ln Sk—l + (T‘ —q— EVk_l) Ak + 1[Vk_1VAka_1

Vk = Vk—l + K(@ - Vk_l)Ak + g,/ Vk—l VAka_l
This system of equations is obtained by applyirgEhler method to the Stochastic Differential Earat
dxk = Il(k, xk)dk + U(k, xk)de

dW, is the Brownian motiory ande are functions depending ¢i andk, over an interval [0T], and we want
to discretize ita® = k; < k, < --- < k,, = T with increments equally spacéd.

Using the Euler discretization we proceed as fodlow

k—1+Ak k—1+Ak

u(rx,)dr + f o (r, %, )dW,

Xg-1 = Xg—-1+0k = f
k-1

k-1
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k—1+Ak k—1+Ak
f uCrx,)dr = plk, xi-) dr

k-1 k-1
= #(k' xk—l)Ak
k—1+Ak k—1+Ak
[ otmam ~ otk - 130 aw,
k-1 k-1

=0k =1, 1) Wi—14ax — Wi—1)
=0k — 1, x,_ VAW, _,
The Euler discretization is given as:
X1 = Xe—r4ake = 1k, X)) DK + o (k — 1, 23 VAW,

1
uCk,xg—1) =1r—q— EVk—l

otk —1,x,_4) = \/K
Thus
In S, =In S,_; + (r -q- %Vk—l) Ak + \/K\/EW,C_I
Similarly;
Vi = Viey + k(0 — Ve_ DAk + 0./V,_VAKZ,_,

whereW, andZ, are correlated. Javaheri (2011) gives an appréaeiiminate the correlation between these
equations by subtracting from the variance pro¢éss_,, w,) a multiple of the quantityt(x;, v,) — y, which
is equal to zero as follows:

Vk = Vk—l + K(Q - Vk—l)Ak + 0./ Vk—l VAka_l

1
- po [ln Sp_1 + (r -q— EVk_l) Ak + V1 VAEW,_; —In Sk]

which gives
1
Vie = Viy + |6 = por = ) = (1 = 500 ) Vi | Ak
S
+ poln (S_k) + 01— p?/Vi_1VAKB_;.
k-1
(3.4.1)
where
1
By = ———=(Zx — pW})
1-—p?
and the measurement equation is
1
yk = lnSk = 1n5k_1 + (7" - q —EVk_l) Ak + WIVk—l VAka_l.
(3.4.2)

B, andW, are thus uncorrelated. The state transition eguédirepresented by Equation 3.4.1.
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Li (2013) shows that if we take the spot pri6gsnd option prices§ (S;, K) as the observations and the variance
V, as the state, then the measurement equationsmesented by

_ p p p 1
InS, =InS,_, + (r—q—;x@)Ak +;Vk+[E(KAk—1)—§Ak Vi

+/1— p2VAk\JV,_ W,
(3.4.3)
Vi = 9(Si Vi, ©) + € (3.4.4)

wherey; is the observable option prices, with identicafldpendent distributed measurement eredrs»>
N(0,02), independent o, andZ,, andg(.) is the theoretical option price computed fromteston model.

The state transition equations are given by thmmae processes

( Vi )= (KGAk) +(1—KAk 0)(Vk_Ak) +<<;JM) 7

Vk—Ak 0 1 0 Vk—ZAk 0

For the Double Heston model, the system equations a

1
InS, =InS,_; + (r —-q- E(Vkl_1 + sz_l)> Ak + |[VE NARWE + VA NARKWE ,,
V]} = Vkl_l + Kl(gl - V]}_I)Ak + 0-1 Vkl_]_ VAkZ,]é_l,

VZ = V2, +K,(6, — V2 Ak + 0, |VZE VAKZE.

(3.4.5)

Taking the observation to be the spot psgeand the states to be the variance procegse?, then the
measurement equation is represented by the stoak lorS, in Equation 3.4.5 and the transition equations by
the variance process®g, V;? in Equation 3.3.5. The problem we face when usivgge equations, the process
noise and the measurement noise are correldf@d, 2], = p,dk andd[W?,Z?%), = p,dk. However, for the
filtering the process and the measurement noises beuuncorrelated.

Sk
Sk-1

1
dx, = ((r —q) — E(Vkl + V,?)) dk + /Vklde1 + /szdeZ
Making use of Cholesky decomposition, let
dwl = p,dZ; + /1 —pdZ}
dWE = p,dZE + /1 —p2dZ;

By Ito's Lemma, we let;, = ln( ) This implies that

(3.4.6)

Whered[Z1,7Y] = d[Z?%,7%] = 0
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SubstitutingdW,!, dW;? in Equation 3.4.6, we get

1 - -
dx;, = ((r—q)—E(V,(1+V,€2)>dk+ /V,}(ple,i-l- /1—pf dZ,%) + /sz (pde,i-i- /1—p§ dZ,%)
1 1 2 1 1 2 1471
+p, /VkZdZ,%+ 11— p2 |V2dZ}:.

(3.4.7)
From Equation 3.2.1, we know that
/Vkle,%
1
=— @Vt — k(8 — VHdk) (3.4.8)
1
/V,de,%
1
=— (dVE — k,(0, — VZ)dk) (3.4.9)
2

By substituting Equation 3.4.8 and 3.4.9 into 3.4@& get

1 _
dx, = (r —-q- E(Vkl + sz)> dk + %(de1 —k,(6, — VHdk) + /1 — p? kale,%
1
+Z—z(deZ iy (8, — VA)dK) + /1 —p3 [vpaze.

Using a similar approach to Li (2013), we obtain:

P1 P2 P1 P2 p1 1
11’15k =lnSk_1 + (T —-q _O__1K161 —O_—ZKZHZ)AIC +O__1Vkl + +0_—2sz + (O_—l(KlAk - 1) _EAk)Vkl—l
1 = ~
+ (5—2 (epbk = 1) = gﬂk) Vi + (1-pf [ViVAK Zi + /1 —p? |v2 bk Z2.
2
(3.4.10)

which is the measurement equation.
The state transition equations are:

<V1> / Vi + 1,(8, — VLA + oy |V NBE z;_l\
k =

VZ
g KV,?_l +162(0; — VE DAk + 0, [VE VAk ZE_, /

(3.4.11)

Clearly, the measurement noiggand Z2 from in Equation 3.4.10 are uncorrelated to tlaest noisei, ZZ in
Equation 3.4.11.

A system is said to be observable if it allowssitates estimation from the measurement equatioA(sheck
therefore needs to be done to see whether the megasnt equation given in Equation 3.4.10 and thtestin
Equation 3.4.11 form an observable system.

Under the Double Heston model written on two unded assets, the system equations are

1
InS} =InSt_, + (rl —qq — E(Vkl_l)> Ak + Vi NARWE,,

177



Research Journal of Finance and Accounting www.iiste.org
ISSN 2222-1697 (Paper) ISSN 2222-2847 (Online) i-lél,l
\Vol.9, No.22, 2018 IIS E

1
InSZ=InS?_; + (rz —0-3 (Vk2_1)> Ak + [VE NARWZ

Vi =Vier + 100, = Ve_)Ak + 0y |V VAKZ} g,

VZ = V2, +K,(0, — V2 Ak + 0, |VE VAKZE.

(3.4.12)

Taking the observation to be the spot pri§gss? and the states to be the variance procdssds?, then the
measurement equation is represented by the stdck lprSt,InS? in Equation 3.4.12 and the transition
equations by the variance procesggsV;? in Equation 3.4.12. The problem we face when utiiege equations,
the process noise and the measurement noise arelated,d[W?!,Z], = p,dk andd[W?,Z?], = p,dk.
However, for the filtering the process and the raemrment noises must be uncorrelated.

Making use of Ito's Lemma, lef. = In (;’t" ) This gives us:

i
k-1

1
dxl% = (7”1_CI1_E(V1¢1)>dk+\/VT<1de1,

1
dxi = (rz —0-3 (Vk2)> dk + /VkZdez,

3.4.13)
Making use of Cholesky decomposition, let
awl = p,dz; + ’1 —p2dZ;
dWE = p,dZE + ’1 —p2dZ}
Whered[Z',Z] = d[Z?%,Z%] = 0
SubstitutingdW,!, dw;? in Equation 3.4.13, we get
1 -
dxj = (rl -q _E(Vkl)> dk + /Vkl (ple,% + /1 —p? dZ,%),
1 1 1 2 1471
= rl_ql_E(Vk) dk+p1 Vklek+ 1_p1 deZk’
1 -
dxZ = <r2 - q, _E(sz)> dk + |V? (pde,i + ’1 - p3 dZ,%),
1 ~
= (r- =500kt gy [vazi + [1- 02 [viazi
(3.4.14)
From Equation 3.2.1, we know that
JVidzi = - (Vi = ky(6; = Vi)dk) (28)
1
JV2dz2 = Ui(dvk2 — k,(8, — VA)dk) (3.4.16)
2

By substituting Equation 3.4.15 and 3.4.16 intaB34we get

1 .
dxj = (rl —q - E(V,})) dk + %(de1 —11(6; — Vi)dk) + |1 - pf J;;dzi'
1
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1 p ’ [ ~

Using a similar approach to Li (2013), we obtain:

1 ~
InSt =InSt_; + (r1 —q1— %Kﬁl)Ak + %Vkl + (% (k Ak — 1) — EAk)Vkl_1 + ’1 —p? |V NAk Z,
1 1

1

P2

InSZ =InSZ_; + (rz -q, —&K262>Ak +—=
02 02

+ [1-p2 V2 Ak Z}.

1
V2 + (p—z (k, 0k — 1) — = Ak ) V2,
o, 2

(3.4.17)
Equation 3.4.17 are the measurement equations.
The state transition equations are:
Vi
Vi
Vi1 + 11 (0, = Ve DAk + oy |V VAk Z_,
= (3.3.18)

Viy + 12(6, = VZ_)Ak + oy ’sz—l Vak Zi_y

Clearly, the measurement noiggand Z2 from in Equation 3.3.17 are uncorrelated to tlaest nois€L, Z2 in
Equation 3.3.18.

A system is said to be observable if it allowssitates estimation from the measurement equatioA(sheck
therefore needs to be done to see whether the megasnt equation given in Equation 3.3.17 and thtestin
Equation 3.3.18 form an observable system.
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