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Abstract 

Risk management or risk predicting are closely related with the market volatility which affect the return of portfolio 

estimation. Portfolio managers around the world concerned with risk estimation because portfolio risk management 

is part of their decision-making process.  According to Hull (2006), VaR is widely used by fund managers “to 

provide a single number summarizing the total risk in a portfolio of financial assets.”  Motivates from this, we 

conducted an analysis to compare the effectiveness of VaR analysis and GARCH method in forecasting risk 

estimation.  Risk manager can used the best methods in reducing their customers risk volatility and rank the risk 

level.   

Keywords:  Forecasting, Value at Risk, GARCH, Portfolio estimation, Risk. 

 

1. Introduction 

Value at risk (VaR) is widely used by banks, securities firms, commodity merchants, energy merchants, and other 

trading organization. Such firms could track their portfolio market risk by using historical volatility as a risk metric. 

VaR has become a very popular measure of market risk. VaR is the loss on the portfolio that will not be exceeded 

with a specified probability over a specified time horizon. VaR is an extremely powerful risk measure, because looks 

at downside risk, that is well suited for asymmetrical distribution, and because in principle it can calculated assuming 

any kind of distribution of portfolio returns. VaR is widely used for controlling traders, for determining capital 

requirements and for disclosure to external subjects, both investors and regulators. (Raffaele.Z &Massimiliano.P, 

2000) 

Adapting VaR measures for asset managers (rather than traders) involves finding a proper way to model future 

scenarios, preserving the multivariate properties of asset returns, when time horizon is relatively long.   According to 

Raffaele.Z &Massimiliano.P, (2000)  the VaR concept has been further extended to the portfolio value at risk 

(PVaR) measure used to evaluate the maximum potential loss of a portfolio with a given probability over a specified 

period (Manganelli & Engle, 2002). 

Accordingly, our paper explores the question of whether VaR analysis is better than GARCH model in forecasting 

risk.  We will   compare different VaR analysis methods such as historical simulation method and normal 

distribution.  They are several importances; first, practitioners are rediscovering the importance of portfolio risk 

management as part of their decision-making process. Second, Levy and Levy (2004) show that this model can be 

used for making portfolio selection decisions and third according to Hull (2006, p. 435) notes, VaR is widely used by 

fund managers “to provide a single number summarizing the total risk in a portfolio of financial assets.”  Finally, the 

economic losses arising from ignoring estimation risk can be particularly large (see, e.g., Best and Grauer (1991), 

Chopra and Ziemba (1993), and Chan, Karceski, and Lakonishok (1999)). 

2. Methodology 

Description of the data 

The data set consists of daily stock indices between 2000 and 2009 for the following market: 

a) Malaysia Kuala Lumpur composite Index (KLCI). 

b) India: Bombay Stock Exchange (BSE). 

c) Japan: Nikkei Stock Average 225. 
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d) Singapore: Straits Times Index. 

3. Data Analysis and Discussions 

3.1 Distributions of Returns 

 

 The following tables display the results for normality test for the data tested. 

 

Table 1: Normality test results 

 

Return                     Malaysia Singapore India Japan 

Test Stat 6877.7579 1377.4592 1869.6736 377.8534 

p.value 0.000      0.000      0.000      0.000      

 

Dist. under Null: chi-square with 2 degrees of freedom 

Based on table 1, the null of normality is rejected using this test since P value is less than 0.05 and it is significant. 

 

 

Table 2:  Descriptive Statistics for daily returns 

 

Return Mean Std Dev Skewness Kurtosis 

MALAYSIA 0.00029333 0.008987 -0.2071 11.886 

JAPAN -0.00001288 0.012090 -0.2467 5.026 

INDIA 0.00083497 0.015889 -0.6754 7.437 

SINGAPORE 0.00020421 0.010596 -0.3972 6.901 

 

From the above table 2, we can see that daily return of market indexes have high Kurtosis for daily series.  This 

means that the daily returns are not normally distributed, and the mean of daily return series is very close to zero.  

Daily returns for Malaysia has low standard deviations compare to other market indexes and India has the highest 

standard deviation so it will be more risky.  When the data is not normal, unconditional volatility is not realistic. 

Conditional volatility is empirically observed and probably is the culprit behind fat-tailed asset returns. 

 

3.2 Estimation of ARCH/GARCH Models 

ARCH models assume the variance of the current error term or innovation to be a function of the actual sizes of the 

previous time periods' error terms: often the variance is related to the squares of the previous innovations. To Test 

ARCH Effects we used the Lagrange multiplier (LM) principle can be applied. Consider the null hypothesis of no 

ARCH errors versus the alternative hypothesis that the conditional error variance is given by an ARCH (q) process. 

The test approach proposed in Engle [1982] is to regress the squared residuals on a constant and q lagged values of 

the squared residuals. From the results of this auxiliary regression, a test statistic is calculated as: (N-q)·R2  

 

There is evidence to reject the null hypothesis if the test statistic exceeds the critical value from a chi-square 

distribution with q degrees of freedom.  

Null Hypothesis H 0 :no ARCH effects 
 

Table 3:    Test for ARCH Effects for index return: Lagrange Multiplier (LM) Test 

Index Malaysia Singapore India Japan 

Test Stat 256.8870 149.8258 481.9420 150.1772 

p.value    0.0000    0.0000    0.0000    0.0000    
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 The above table 3, stated that the value of test  Statistics  for the four returns are very  big   if we compare it with 

statistical table for  with 33 degrees of freedom , so F is significant, so reject H 0  .There are ARCH effects. To 

avoid this problem we model all the market tested daily return using GARCH model. 
 
The following tables 4(a),(b),(c) and (d) are the results for GARCH model for all the market tested. 

 
Table 4(a): Results of GARCH model for daily return (Malaysia) 

Model coefficient Std.Error t  value Pr(>|t|) 

φ
1
 0.086901   0.03602   3.920  10301.4

4

×
−  

β
1  

0.6900000 0.04727 14.807 0.000 

 α1  
0.400000 0.04632 8.635 0.000 

α 0  
0.000001 

10604.2
7

×
−

 
3.915 

10669.4
5

×
−

 

AIC = -14395.62 

 

Table 4, provides some descriptive statistics of KLCI daily return. The sample size data are 2086 observations.  Our 
results show that GARCH(1,1)  model is the most significant compare to other GARCH model with higher order 
rank and this is prove by the lowest AIC 

=14395.62.  So our GARCH (1,1) model is the following. 

εσ ttta =           σβαασ
2

11

2

110

2

−− ++= ttt a  

σσ
2

1

2

1

2 0.70.40.000001 −− ++= ttt a  

where ε t  is a sequence of independent and identically distributed (iid) random variables with mean zero and 

variance 1, α 0 > 0, and α i  ≥ 0 for i > 0.  

Table 4(b): Results of GARCH model for Singapore daily return 

Model coefficient Std.Error t  value Pr(>|t|) 

 

φ
1
 0.0751 0.04841 3.931 1031.5

4

×
−  

β
1

 0.7000 0.04035 17.348 0.000 

α1  0.4000 0.0426 9.380 0.000 

α 0  10283.1
6

×
−

 10765.3
7

×
−

 3.407 0.0003341 

  AIC = -13416.12                            
 
For AIC value we choose the model with the smallest AIC value, from table 4(b) above the model has the smallest 
AIC value, which show that there is GARCH (1, 1) effects then 

εσ ttta =
         

σβαασ
2

11

2

110

2

−− ++= ttt a
 

σσ
2

1

2

1

2 0.70.40.000001 −− ++= ttt a  
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Where ε t  is a sequence of independent and identically distributed (iid) random variables with mean zero and 

variance 1, α 0 > 0, and α i  ≥ 0 for i > 0.  

Table 4(c): Results of GARCH model for India daily return from 

Model value Std.Error t  value Pr(>|t|) 

φ
1
 0.09204535   0.02871   3.206  10824.6

4
×

−
 

β
1

 0.70000000   0.05851  11.964  0.000 

α1  0.40000000   0.05033   7.948 10554.1
15

×
−

 

α 0  0.00001014    10961.1
6

×
−

 5.170  10282.1
7

×
−

 

                              

AIC = -11954.27 
 
For AIC value we choose the model with the smallest AIC value, from table 4(c) above the model has the smallest 
AIC value, which show that there is GARCH (1, 1) effects, then 

εσ ttta =             att

2

110

2

−+= αασ +β
1σ

2

1−t  

σσ
2

1

2

1

2 7.04.000001.0 −− ++= ttt a  

 
Table 4(d):  Results of GARCH model for Japan Daily return 

 

Model Coefficient Std.Error  t  value Pr(>|t|) 

θ1  0.08036  0.02679 3.000 10366.1
3

×
−

 

β
1

 0.7000 0.06306 11.101 0.000 

α1    0.4000   0.04474   8.941 0.000 

α 0  10642.2
6

×
−

 10318.8
6

×
−  3.176 10579.7

4
×

−  

 
AIC = -12673.89 
 
For AIC value we choose the model with the smallest AIC value, from table 4(d) above the model has the smallest 
AIC value, which show that there is GARCH (1, 1) then 

εσ ttta =            att

2

110

2

−+= αασ +β
1σ

2

1−t  

σσ
2

1

2

1

2 7.04.00000026.0 −− ++= ttt a  

Based on all table 4 (a), (b), (c) and (d) all market can be modeled by GARCH (1, 1).  This means     volatility is a 

function of lagged squared returns and lagged variances of one day. The coefficient of the ARCH effect (α1) is 

statistically significant at 1% significance level. This indicates that news about volatility from the previous periods 

has an explanatory power on current volatility. Similarly, the coefficient of the lagged conditional variance (β1) is 

significantly different from zero, indicating volatility clustering in all markets return series. The sum of (α1 + β1) 

coefficients is unity, suggesting that shocks to the conditional variance are highly persistent. This implies that wide 

changes in returns tend to be followed by wide changes and mild changes tend to be followed by mild Changes. A 
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major economic implication of this finding for investors is that stock returns volatility occurs in cluster and as it is 

predictable. 

From Table 4(a) (b), (c) and (d), we also notice that asymmetry (gamma) coefficient is positive. The sign of the 

gamma reflects that a negative shock induce a larger increase in volatility greater than the positive shocks. It also 

implies that the distribution of the variance of all market returns is left skewed, implying greater chances of negative 

returns than positive. The positive asymmetric coefficient is indicative of leverage effects evidence in Nigeria stock 

returns. 

3.3 Value at Risk (VaR) 

This section summarizes the steps for calculating Value-at-Risk (VaR) for a portfolio of equity assets using S-PLUS 
7.0 and S+FinMetrics 2.0.  VaR is computed using empirical quantiles, and the normal distribution.  Some basic 
concepts of asset returns and portfolios, and defines the market risk concepts value-at-risk (VaR) and expected tail 
loss (ETL) (which is also called expected shortfall (ES)). 
 
3.3.1 Asset Returns 
 

The portfolio consists of i = 1, . . . , N equity assets. Let Pit denote the price of asset i at time t. The one-period 

simple return on asset i between times t − 1 and t is 

P

PP
R

it

itit

it

1

1

−

−−
=  

 
3.3.2 Value-at-Risk Defined 
 

Consider a one period investment in an asset with simple return R. Let W 0$ denote the initial dollar amount 

invested. The value of the investment after one period in terms of the simple return is )1($ 01$ RWW +=  

 
3.3.3 VaR Based on Simple Returns 

 

For  )1,0(∈α , let  q
R

α
 denote the α × 100% quintiles of the probability distribution of the simple return R. 

Usually, q
R

α
is a low quartile such that α = 0.01 or α = 0.05. As a result,  q

R

α
 is typically a negative number. The α × 

100% dollar Value-at-Risk 

( $VaRα
) is 

  $VaRα
= − $W0

· q
R

α
 

In words, $  represents the dollar loss that could occur with probability α. By convention, it is reported as a 

positive number (hence the minus sign). The VaR as a percentage of the initial portfolio value is simply the 
(negative) low quartile of the simple return distribution: 

   qVaR
R

α

α
α −==

$W

$VaR

0

 

 

3.3.4 Expected Tail Loss Defined 
 

The α × 100% expected tail loss (ETL), in terms of the log return, is defined as ETLα = −E[r|r < − ] 

In words, the ETL is the expected (negative) return conditional on the return being less than the ·100% percentage 

VaR. If the initial investment is $ , then the dollar ETL is $ET L = $  × ET Lα 
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3.3.5 Historical Simulation 
 
A different approach for VaR assessment is called Historical Simulation (HS). This technique is nonparametric and 
does not require distributional assumptions. This is because HS uses essentially only the empirical distribution of the 
portfolio returns.  
 
Historical simulation is one of the popular ways of estimating VaR. It involves using past data in a very direct way as 
guide to might happen in  the future. This data consists of the daily movements in all market  variables over the 
period of time. The first step in this method is to  identify the market variables affecting the portfolio. Then collect 
data on  the movements in these market variables over the period of time. 
 
The first simulation trial assumes that the percentage changes in each  market variable are the same as those on the 
first day covered by the data,  the second simulation trial assumes that the percentage changes in the  portfolio value, 

P∆  is calculated for each probability distribution P∆ .  
This defines a probability distribution for daily change in the value of  portfolio. 

Define iν  as the value of a market variable on day I and suppose that  today is day m . The I th scenario assumes 

that the value of the market  variables tomorrow will be  

1−ν

ν
ν

i

i
m  

Historical simulation (HS) simply refers to the empirical distribution of the observed returns. As a result, the × 100% 
VaR based on HS is just the × 100% empirical quartile of the return distribution. (same idea is in Hull. J. C. 2006) 
 
3.3.6 Normal Distribution 
 

Assume the N ×1 vector of log-returns r has a multivariate normal distribution with mean vector μ and covariance 

matrix Σ, r  N(μ, Σ) 

where μ has elements      (i = 1, . . . , N) and Σ has elementsσ ij  (i, j = 1, . . . , N ). For an individual asset,       ∼  N(       

,      ) 

The α × 100% quartile of the normal distribution for r i
is 

Where      is the × 100% quartile of the standard normal distribution. The distribution of  given that       ≤       is 

truncated normal. The mean of this distribution is the normal ETLα. Greene (2004) shows that 

×+=≤ σµα ii

i

ii qrrE ]/[
)(

)(

z

z
i

i

α

αφ

Φ
 

where  z
i

α = (µ
i
− σα iVaR /) )(Zφ is the standard normal PDF and )(ZΦ is the standard normal CDF. 

Given a random sample of size T of observed returns on N assets from the multivariate normal distribution, the mean 
vector μ and covariance matrix Σ may be estimated using the sample statistics 

∑
=

−=
T

t
trT

1

1µ̂ ,   ))(ˆ(ˆ
1

1 ′−−=Σ ∑
=

− µµ rrT t

T

t
t  

The normal quartile may then be estimated using the plug-in method 

qq
z

ii

i

αα σµ ˆˆˆ += where  is the ith element of µ̂
i
, and σ̂ i  is the square root of the ith diagonal element of  . 

Similarly, the estimate of normal ETLα is 

×+=≤ σµα ˆˆ]/[ˆ ii

i

ii qrrE
)(
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ˆ

ˆ

z

z
i

i

α

αφ
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where  = ( µ̂
i
− )/ σ̂ i , and qRaV

z

ii αα σµ ˆˆˆ +=  

 

qq
z

ii

i

αα σµ += q
z

α

r i q
z

α

µ
i

r i µ
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 Standard errors for these estimates may be conveniently computed using the bootstrap.(same idea is in Eric ,Z. 
2005) 
 
VaR.01 for Malaysia, Singapore, India, Japan based on historical simulation and  normal distribution: 
 

 

 

Malaysia Singapore India Japan 

Historical 

simulation 

-0.0270196 -0.0301499 -0.0481094 -0.0315207 

Normal 

distribution  

-0.0206139 -0.0244462 -0.0361272 -0.0281373 

 

With 1% probability the loss is about 2.7%  , 3% , 4.8% and 3.1% or higher  for (Malaysia, Singapore, India, Japan) 

respectively , based on historical simulation method. 

With 1% probability the loss is about 2%  , 2.4% , 3.6% and 2.8% or higher  for (Malaysia, Singapore, India, Japan) 

respectively , based on normal distribution  method. 

Compare the above results, we found that for historical simulation method the 1% probability loss is higher than the 

normal distribution method. 

We can also make a conclusion that the highest most risky market is India, follow by Japan, Singapore and Malaysia, 

this consistent with our data description statistic in chapter 3, where the standard deviation for India is the highest 

compare to other market.  

 

4. Conclusion 

 

Our results for Garch (1,1) model and VaR model for all the market tested showed that VaR has better in prediction 

the risk because VaR gives the percentage and rank of risk level. 

The main objective of this study is to detect and forecast the risk movement and volatility of the Kuala Lumpur 

Composite Index (KLCI) data and other Asian markets like Singapore, India and Japan from 2000 to 2009. We also 

compared different VaR analysis method such as historical simulation method and normal distribution method in 

portfolio  risk estimation.  Besides that we compare the two VaR methods with GARCH model.  

We discover that with 1% probability the loss is about 2.7% , 3% , 4.8% and 3.1% or higher  for KLCI, Singapore, 

India, Japan respectively based on historical simulation method. 

With 1% probability the loss is about 2%, 2.4% , 3.6% and 2.8% or higher  for KLCI, Singapore, India and Japan 

respectively , based on normal distribution  method. 

Compare the above results, we found that for historical simulation method the 1% probability loss is higher than the 

normal distribution method.  Whereas the GARCH method can only forecast by using the lag value without able to 

rank the risk level. 

 

We concluded that the highest most risky market is India, follow by Japan, Singapore and Malaysia, this consistent 

with our data description statistic where the standard deviation for India is the highest compare to other market.  

 
 

References 

 

Al Janbi, M. A. M. (2008). Integrating liquidity risk factor into a parametric value at risk method. Institutional 

Investor, Vol 3, (3), 76-87.  

Andrey, Y. R. (2005). Methodological Issues and Some Illustrations of Applying Dynamic Value-at-Risk Model in 

Portfolio Management. Working paper, social science research networking database. 

Best, Michael J., and Robert R. Grauer, (1991), On the sensitivity of mean-variance-efficient portfolios to changes in 

asset means: Some analytical and computational results, Review of Financial Studies 4, 315-342. 



Research Journal of Finance and Accounting                                                                                             www.iiste.org 
ISSN 2222-1697 (Paper) ISSN 2222-2847 (Online) 
Vol 3, No.11, 2012 

 

69 

 

Chan, Louis K.C., Jason Karceski, and Josef Lakonishok, (1999), On portfolio optimisation: Forecasting covariances 

and choosing the risk model, Review of Financial Studies 12, 937-974. 

Chopra, Vijay K. and William T. Ziemba, (1993), The effect of errors in means, variances and covariances on 

optimal portfolio choice, Journal of Portfolio Management 19, 6-11. 

Hull. J. C. (2006). Options, futures, and other derivatives. Pearson Prentice Hall. 6th ed. 

Levy, Haim, and Harry M. Markowitz, 1979, Approximating expected utility by a function of mean and variance, 

American Economic Review 69, 308-317. 

Lin. P. C. and  Ko, P.-C (2008). Portfolio value- at – risk forecasting with GA-based extreme value theory. Expert 

Systems with Applications.   

Massimiliano Pallotta, Raffaele zenti (2001) Risk Analysis for Asset Managers: Historical Simulation, the Bootstrap 

Approach and Value at Risk Calculation, social science research networking database.  

Panigirtzoglou, Nikolaos, and George Skiadopoulos, 2004, A new approach to modeling the 34 dynamics of implied 

distributions: Theory and evidence from the S&P 500 options, Journal of Banking and Finance 28, 1499-1520. 

Porte, N. (2007). Revenue volatility and fiscal risks. Emerging markets finance and trade, Vol.43,(6), 6-24. 

Smith D. R. and Perignon C. (2007). Which value-at. risk method works best for bank trading revenues? Working 

paper, social science research networking database. 
 

 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request from readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

