
New Media and Mass Communication                                                                                                                                              www.iiste.org 

ISSN 2224-3267 (Paper) ISSN 2224-3275 (Online)  

Vol.90, 2020 

 

7 

Sentiment Analysis of Afaan Oromoo Facebook Media Using 

Deep Learning Approach 
 

Megersa Oljira Rase 

Institute of Technology, Ambo University, PO box 19, Ambo, Ethiopia 

 

Abstract 

The rapid development and popularity of social media and social networks provide people with unprecedented 

opportunities to express and share their thoughts, views, opinions and feelings about almost anything through their 

personal webpages and blogs or using social network sites like Facebook, Twitter, and Blogger.  This study focuses 

on sentiment analysis of social media content because automatically identifying and classifying opinions from 

social media posts can provide significant economic values and social benefits. The major problem with sentiment 

analysis of social media posts is that it is extremely vast, fragmented, unorganized and unstructured. Nevertheless, 

many organizations and individuals are highly interested to know what other peoples are thinking or feeling about 

their services and products. Therefore, sentiment analysis has increasingly become a major area of research interest 

in the field of Natural Language Processing and Text Mining. In general, sentiment analysis is the process of 

automatically identifying and categorizing opinions in order to determine whether the writer's attitude towards a 

particular entity is positive or negative. To the best of the researcher’s knowledge, there is no Deep learning 

approach done for Afaan Oromoo Sentiment analysis to identify the opinion of the people on social media content. 

Therefore, in this study, we focused on investigating Convolutional Neural Network and Long Short Term 

Memory deep learning approaches for the development of sentiment analysis of Afaan Oromoo social media 

content such as Facebook posts comments. To this end, a total of 1452 comments collected from the official site 

of the Facebook page of Oromo Democratic Party/ODP for the study. After collecting the data, manual annotation 

is undertaken. Preprocessing, normalization, tokenization, stop word removal of the sentence are performed. We 

used the Keras deep learning python library to implement both deep learning algorithms. Long Short Term 

Memory and Convolutional Neural Network, we used word embedding as a feature. We conducted our experiment 

on the selected classifiers. For classifiers, we used 80% training and 20% testing rule. According to the experiment, 

the result shows that Convolutional Neural Network achieves the accuracy of 89%. The Long Short Memory 

achieves accuracy of 87.6%. Even though the result is promising there are still challenges.  
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1. Introduction 

The revolution of web2.0 and the increasing numbers of blogs, social media networks, web reviews, and many 

others have fundamentally changed the way people express their opinions and share information on the Internet. 

Due to the rapid development and popularity of social media networks, a huge amount of user-generated content, 

have been made available online. Identifying and determining whether the opinion of user generated content as 

positive or negative has become essential for different businesses and social entities as it is important for service 

providers and vendors to create successful marketing strategies and for the understanding of areas of improvement 

in products and services (Liu, 2012). Sentiment analysis is also important for tracking political opinions and 

politicians to understanding their social image, etc. (Bakliwal, et al., 2013). 

People are able to express their opinions in form of posts, comments, tweets (Twitter), emoticons etc. with 

regard to many issues that affect their day to day lives (Vinodhini & Chandrasekaran, 2012). These online 

comments or opinions can be about several topics like government, organizations, products, politics, and many 

others. Since sentiment analysis can influence the interest of different parties such as customers, companies, and 

governments, organizations are highly interested in analyzing and exploring online opinions. While several 

commercial companies are interested to know the opinion of the public with respects to their products and services, 

many government organizations are interested to know the public feedback with respect to the new policy, rules 

and regulations set out as well as public services delivered. 

Before the expansion of the internet and web2.0 technology, manual surveys had been used as the main 

method for answering the question of what do people think about some of the major economic and social events. 

Careful sampling of the surveyed population and a standardized questionnaire has been the standard way of 

learning about large groups of people. Now a day, the era of wide-spread internet access and social media has 

brought a new way of learning about large populations.  

Therefore, collection and analysis of opinions have become easier because individuals share their views about 

different topics through social networks such as Facebook, Twitter, or they leave comments and reviews regarding 
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topics on a particular website such as web reviews (Akinyi, 2014).  

Analysis of opinions plays an important role in all science areas (politics, economics, and social life) (Liu, 

2012). For example, in marketing, if the sellers know about the customer's satisfaction with a particular product 

they may predict demand on the service or product. The same for politicians, they will know whether people 

support them or not, the government also understands the will of the society on their policy. 

Sentiment analysis is mainly concerned with the analysis of emotions and opinions from the text. We can also 

refer to sentiment analysis as opinion mining to understand the outlook of a speaker or a writer with respect to 

some subject.  The outlook may be their judgment or evaluation, their affective state or the envisioned emotional 

communication (George and Joseph, 2014). Most popular classification of sentiment: positive or negative (binary 

classification) (Chiavetta, et al., 2016).  

The evolution of the Internet and of social media texts, such as Twitter, YouTube, and Facebook messages, 

has created many new opportunities for people to express the attitudes towards any individual, product, services, 

organizations, political parties, etc. on their own language. So that the amount of Afaan Oromoo documents on the 

web is also increasing. However, there are very few works proposed on Afaan Oromoo sentiment analysis. 

Sentiment analysis is not a new field and it has been researched since 2000. The previous works are focus on the 

English language. But in Afaan Oromoo and other under-resourced languages, this field is new and it is at the 

initial state.  

Sentiment analysis can be conducted at different levels. The most famous level of sentiment analysis is 

document level, aspect level, and sentence level. The document level deals with determining the overall opinion 

of the document expressed by the opinion holder (Liu, 2012). This level of analysis assumes that each document 

expresses opinions on a single entity (e.g., a single product egg. review) (Pang, et al., 2002). The aspect level 

sentiment analysis is the task of extracting the relevant aspects of the reviewed product or entity and determining 

the sentiment of the corresponding opinion about them. The assumption of the aspect level sentiment analysis is 

that all opinions are generally directed at a specific topic/object (Popescu and Etzioni, 2005). Sentence level 

sentiment analysis is the more fine-grained analysis of the document. In this, polarity is calculated for each 

sentence as each sentence is considered a separate unit and each sentence can have different opinions. The core 

task in sentence-level sentiment analysis is subjectivity classification (Liu, 2012). The subjective sentence is the 

one that has polarity information that can be classified as positive or negative. Whereas objective sentence is the 

sentence that has factual information and it is classified as neutral or no opinion (Liu, 2012). For example: “The 

Nokia phone is very good!” The sentence is the subjective sentence as the sentences consist of opinionated words. 

Whereas the objective sentence has no opinionated words. For example, “Nokia is the product of Nokia Company” 

this sentence holds factual information and it has no sentiment orientation.  

In this study, we considered the document-level sentiment analysis assumes that a document expresses a 

single sentiment. This approach suitable for some areas like reviews, where a last statement about the entity is 

assumed to be required which is a weighted conclusion arising from different sides even if the review carries 

different opinions. The social networking site Facebook is the targeted website for this paper. This is because 

Facebook has many members and vast user-generated data is available. In this paper, an attempt has been made to 

apply deep learning approach for sentiment analysis on Afaan Oromoo facebook post comments. We also 

addressed the challenges Afaan Oromoo Sentiment Analysis.   

 

2. Related works 

2.1. Sentiment Analysis in Afaan Oromoo 

In Afaan Oromoo the sentiment analysis is new and only a few works were studied. We encountered only two 

researchers on the Afaan Oromoo language. (Tariku, 2017), conducted aspect based summarization of Afaan 

Oromoo news text on the news domain. This work is the first attempt at Afaan Oromoo opinion mining. The 

researchers used manually crafted rules and a lexicon-based approach. The dataset obtained from the ORTO news 

service. As reported by the researcher, even though the system shows good results, the lack of resources such as 

lexical database and linguistic resources such as POS made the work challenging.  There are also gaps that are 

needed to be elaborated more. For example, people express their feeling on social media indirectly and their system 

cannot handle this problem. The other works by (Abate, 2019). The researcher developed an unsupervised 

approach for Afaan Oromoo on a Facebook domain. Data is obtained from the official facebook page of the 

Oromoo democratic page and other Activists pages on current political situations.  N-gram and POS used as 

features. As the researcher claims the proposed work shows a promising result. For more illustration the previous 

studies on AO sentiment analysis is summarized in the table 3 below. 

The general work proposed by the two researchers needs the lexical database and it involves the manual 

collection of lexicons. Moreover, the machine learning method performs better with less human intervention 

(Vinodhini & Chandrasekaran, 2012). In addition, regarding social media texts where nature the texts are informal, 

indirect (Tariku, 2017) , slang and idiomatic it is difficult to deal with the previous techniques. Despite these 

researchers, we proposed a state of the art machine learning and deep learning approaches such as Convolutional 



New Media and Mass Communication                                                                                                                                              www.iiste.org 

ISSN 2224-3267 (Paper) ISSN 2224-3275 (Online)  

Vol.90, 2020 

 

9 

neural network, long-short memory deep learning approaches. According to the literature (Hailong, et al., 2014), 

the lexicon-based models were not very accurate and a good rule-based model was very hard to elaborate, we 

implemented state-of-the-art methods for Afaan Oromoo sentiment analysis.  

 

2.2. Sentiment analysis of Amharic Language 

Unlike Afaan Oromoo Sentiment analysis is not new in Amharic language and many works have been proposed 

by researchers (Alemu, 2018), (Philemon & Mulugeta, 2014), (Gebremeskel, 2010), (Mengistu, 2013), (Tilahun, 

2014) and (Abreham, 2014). The researchers (Gebremeskel, 2010) and (Tilahun, 2014), proposed by using the 

combination of a rule-based and lexicon-based approach (Gebremeskel, 2010) for movie reviews and news 

domains, and (Tilahun, 2014) for Hotel, University, and Hospital. The first work, (Gebremeskel, 2010) proposed 

by using the lexicon and context valence shifter feature selection method. The dataset he used is 303 which is too 

small. The author (Mengistu, 2013) proposed a supervised machine learning approach NB and decision tree 

algorithm, again on movie reviews and news but with some modification on the size of the dataset. The researcher 

used a bag of words and information gain feature selection methods. Another work has been done by the author 

(Abreham, 2014)with some improvement on the dataset as well as he used three different machine learning 

algorithm namely NB, MNB, and SVM. N-gram presence, n-gram frequency and n-gram TF-IDF used for the 

feature extraction method. 

(Philemon & Mulugeta, 2014)  Also proposed a multi-scale sentiment analysis ranging from -2 to +2. The 

author used a set of n-gram (unigram, bigram, and hybrid) for the feature selection method and Naïve Bayes 

classifier for the classification algorithm. As the researcher’s claim, the bigram approach performs better, 43.6%, 

44.3%, and 39.5% for unigram, bigram, and trigram. But according to the researcher's report, the morphological 

richness, data cleanness and the absence of large corpora in Amharic make a sentiment analysis of Amharic 

challenging. Dataset collected from social media, marketing, and news. As (Philemon & Mulugeta, 2014) the 

machine learning approach requires less effort.   (Abreham, 2014) , conducted another solution by using three 

different machine learning algorithms (NB, DT and ME). The author conducted binary classification which assigns 

a given document to negative and positive. Bag of words and information gain is used as features and dataset from 

the news. The researcher (Alemu, 2018) conducted empirical research by using deep learning techniques to 

improve previous works. (Alemu, 2018), proposed a new solution by applying state of the art study. The dataset 

obtained from the official facebook page of Fana Broadcasting Corporation regarding the socio-political domain. 

The proposed solution includes emotion icons such as emoji. This is the first work deep learning approach toward 

Amharic language and as the researcher claims an accuracy of 90.1 %, 82.4 % and 70.1% obtained based the three 

experiments. According to The researcher, the size of training data and test data has an impact on the performance 

of the classifier. For example, with 90% training data and 10% test data, accuracy 90.1% obtained, and with 70% 

training data and 30% test data an accuracy 70.1 obtained. The literature review of Amharic Sentiment Analysis 

and Opinion mining using different approaches and techniques summarized in the following table 4. 

 

2.3. Deep learning for sentiment Analysis 

Deep learning technology is one of the most states of the art machine learning approaches, has been recently 

successfully used in sentiment analysis tasks. (Dong, et al., 2014) Proposed a new model, called the Adaptive 

Recursive Neural Network (AdaRNN) and aims to classify Twitter texts into three sentiment classes: positive, 

neutral, and negative. As reported by the author the AdaRNN achieved 66.3% accuracy. (Huang, et al., 2016) 

Designed Hierarchical Long Short-Term Memory (HLSTM) and gotten 64.1% accuracy on tweet texts. (Tang et 

al., 2015) presented a new variant of the RNN model, called Gated Recurrent Neural Network (GRNN), and 

achieved an accuracy of 66.6 % and 45.3% on two different datasets ( Yelp2013–2015data) and (IMDB data) 

respectively. On the other hand (Qian, Huang, Lei, & Zhu) applied Long Short-Term Memory (LSTM) for binary 

classification of sentiment and gotten 82.1% accuracy on the movie review data. 

Authors (Liu, et al., 2016) designed RNN for text classification with multi-task learning. The following tasks 

are selected: multi-class classification (somewhat negative, negative, neutral, somewhat positive, positive), binary 

classification, subjectivity classification which involves subjective or objective (sentence level) and binary 

classification on document-level. In the article (Liu, et al., 2016) authors presented 3 model architectures of sharing 

information to model text sequence. The first model architecture utilizes one shared layer for all tasks. The second 

architecture utilizes different layers for different tasks. The last model assumes the assignment a certain task to a 

certain level, but also has a shared layer for all the tasks. After experiments were conducted, authors compared 

obtained results and concluded that on some tasks they achieved better results opposed to the state-of-the-art 

baselines.  Even though the RNN achieved better results there is a disadvantage in RNN. The limitations of RNN 

is that it is not very good in holding long term dependencies and the problem of vanishing gradient resurface in 

RNN.  

As (Tsungnan et.al., 1996)it is stated that Recurrent Neural Networks (RNN) are capable of dealing with 

short-term dependencies in a sequence of data. Nevertheless, RNNs have suffered when dealing with long-term 
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dependencies. These long-term dependencies have a great influence on the meaning and overall polarity of a 

document. So having methods of capturing long term dependency is very important. Long Short-term memory 

networks (LSTM) overcomes this long-term dependency problem by introducing a memory into the network.  

(Kim, 2014) Designed multichannel CNN and obtained a maximum of 89.6% accuracy with seven different 

types of data through their CNN model with one convolutional layer. (Moschitti, Severyn and Alessandro, 2015) 

Employed a pre-trained Word2Vec for their CNN model and achieved 84.79% (phrase-level) and 64.59% 

(message-level) accuracies on SemEval-2015 data. The CNN model used in (Severyn, et al., 2015) was essentially 

the same as the model of (Kim, 2014). (Deriu, et al., 2017) Implemented the CNN model which has a combination 

of two convolutional layers and two pooling layers for four different languages which classify twitter data and 

obtained a 67.79% F1 score. Another study (Ouyang, et al., 2015), designed the CNN model with convolution 

pooling layer pairs, and the authors claimed that the model outperformed other previous models.  

As we can understand from the above literature, for the sentiment classification, there are two leading types 

of deep learning techniques: LSTM and CNN. In this work, we proposed a CNN and LSTM model, for effective 

sentiment classification. 

2.3.1.   LSTM for sentiment analysis 

LSTM is one of the recent successful algorithms in sentiment analysis and other natural language processing tasks. 

(Wang, et al., 2015)Described that identifying the sentiment of these social media blogs is a challenging task that 

has attracted increased research interest in recent years and requires state of the art technology to handle these 

problems. As (Wang, et al., 2015) states that the traditional RNNs are not powerful enough to deal with complex 

sentiment terminologies, hence an LSTM network is instigated for classifying the sentiment of social media texts. 

(Liu et al., 2018) Investigated the effectiveness of long short-term memory (LSTM) for sentiment classification of 

short texts with distributed representation in social media.  The researchers addressed that, since social media posts 

are usually very short, there’s a lack of features for effective classification. Thus, word embedding models can be 

used to learn different word usages in various contexts. To detect the sentiment polarity from short texts and longer 

dependency, we need to explore deeper semantics of words using deep learning methods. 

LSTM (Long Short Term Memory) is the kind of RNN that is used to learn long-range dependencies for text 

sequences. LSTM contains memory blocks which also known as gates to control the text flow. The memory blocks 

contain three gates named as input gate; forget gate and output gate to control the flow of information (Miedema, 

2018). The author (Miedema, 2018) also described that, the Shortcoming of the Recurrent Neural network and 

implemented the LSTM for sentiment analysis.  Based on many kinds of literature we explored that LSTM is the 

more advantageous state of the art neural network algorithm for sentiment analysis. So in this work, we focused 

on LSTM. We proposed the LSTM for Afaan Oromoo based on (Miedema, 2018)but we extended with two hidden 

layers of LSTM with different memory units.  In LSTM or RNN Sentiment analysis will be the two dimensional. 

Performed in sequence to vector model, that means the input is the sequence of words and the output is a two-

dimensional vector indicating the positive or negative class of the sentiment.   

2.3.2. Convolutional Neural Network for Sentiment Analysis 

CNN is one of the states of the art deep learning classification algorithm. The convolutional filters that 

automatically learn important features for any task make it more famous. In sentiment analysis also very important, 

since the convolutional filters can capture the semantic and syntactic of sentiment expressions (Rios & Kavuluru, 

2015). In another case, CNN does not need linguistic experts to understand the linguistic structure of the language 

(Zhang, et al., 2015). As (Kim, 2014), a single convolutional layer, a combination of convolutional filters can 

achieve comparable performance even without any special hyperparameter adjustment. Because of these CNN is 

successfully applied to various natural language processing tasks search query (Shen, et al., n.d.), semantic parsing 

for question answering (Yih et al., 2014), sentence modeling (Nal et al., 2014).  

We proposed the CNN model for Afaan Oromoo sentiment analysis based on the architecture developed by 

(Kim, 2014). Our approach composed of multiple parallel kernel sizes or filters. We focused on a multichannel 

CNN model with one hidden layer.  

 

3. The proposed Afaan oromoo Sentiment Analysis Model 

In this section, we introduce the methodology or the steps we followed in order to conduct Afaan Oromoo 

Sentiment Analysis. The proposed Afaan Oromoo Sentiment analysis system architecture is depicted in the 

following system architecture. 

3.1.1. Data collection 

For this study, the primary data source from Oromo Democratic Party /ODP official Facebook page is extracted 

by using face graph API. The reason for choosing this page is that there is a huge user generated opinions. This 

page is the government organization page and the government policy related post is released every day on this 

page. So that the genuine and reliable user-generated data is available on this page.  Moreover, this page is a public 

page and people express their idea about government freely on this page. We focused on sociopolitical related 

issues, government policy, and other related issues. The total amount of reviews collected is 1452, 726 positive 
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and 726 negatives. The extracted data is saved in comma delimiter (CSV) format in excel.  

3.1.2.  Data preprocessing  

As stated previously, for this thesis we used a supervised machine learning method. Since the supervised method 

requires the labeled dataset for training purposes the dataset collected was labeled manually by experts. After that, 

the data is split into training and testing data using scikit-learn train_test_split. The training data used to train the 

classifiers, and the test data used for testing the accuracy of the classifiers. 

We split our dataset according to the 80/20 rule (Philemon & Mulugeta, 2014) i.e. eighty percent of the dataset 

goes to the training set and twenty present goes to the test set. We used the train_test_split method of the sklearn 

library to perform this task in python. train_test_split is faster, simpler so it would be easier to analyze the testing 

errors. 

Another step is preprocessing in order to exclude irrelevant data from the dataset. Preprocessing is very import 

as it reduces the computational time and increases the classifier performance because noisy data can slow the 

learning process and decrease the efficiency of the system. Accordingly, our preprocessing includes the following:  

Cleaning: Removal of user names, Removal of links, lower casing, Removal of none Afaan Oromoo texts, 

unnecessary characters, etc.  

Stopword removal:  some Afaan Oromoo Stopwords are significant for the sentiment classification and need to 

remain in the text. For instance, the “hin” is used to indicate the negativity of the word: for example, “dhufeera”, 

“hin dhufne”. In another case, some stop words constitute a phrase: “walii hin gallu”, “isin waliin jirra” etc. These 

stop words portray important information. So we filtered removed stop words through a manual process that is not 

relevant for the classification process. 

Normalization: homophones like “baay’ee” and “baayyee” has the same meaning with different writing. The only 

difference is that the apostrophe “’” is replaced by “y”.  

 Normalization of elongated texts, for example, sin jaallannaaaaaa is normalized to sin jaallanna 

 Normalization of numbers into equivalent texts. Example: “sin jaallanna 100% “normalized to” sin 

jaallanna persentii dhibba tokko”. 

Spelling correction: we encounter many wrongly spelled texts. So they need to be corrected to the right spelling.  

3.1.1. Convolutional neural network (CNN) 

In this work, we implemented a multi-channel convolutional neural network that performs by using different kernel 

sizes. As the researcher (Kim, 2014) the multichannel convolutional neural network with multichannel architecture 

has more effective, especially on small datasets. Despite the researcher implemented on top of word2vec, we used 

the randomly initialize word embedding i.e. the word embedding learned during training. The researcher also 

describes experimented with static and dynamic (updated) embedding layers, instead, we focused only on the use 

of different kernel sizes. A multi-channel convolutional neural network for text classification involves using 

multiple versions of the standard model with different sized kernels. This allows the document to be processed at 

different resolutions or different n-grams (groups of words) at a time, whilst the model learns how to best integrate 

these interpretations. The figure below depicts the proposed architecture of CNN. 

In order to build CNN model for sentiment classification, each comment is broken into sentences and, sentences 

are first tokenized into words, and represented as a matrix where each row corresponds to words. That is each row 

is a vector that represents a word vectors that index the word into a vocabulary. Let say S denote the length of the 

sentence and d be the dimension of the word vector, therefore we now have the matrix with shape SXd. That means 

the length of the sentence is S means the count of words in a sentence. Let say the sentence has a total of 9 words, 

and let say the dimension of the word vector is 5, so we have the matrix of shape 9x5. Now we replaced all words 

in the sentence replaced by a fixed dimension of 5.  Now we have a 5-dimensional word vector. The transformation 

input is completed and represented as a high dimensional vector, the next step is to apply convolutional filters. We 

have an Embedding matrix (i.e., input embedding layer) of d dimension. The filter matches the word vector and 

varies the region size h. The region size refers to the number of rows representing words in the sentence matrix 

that would be filtered at a time. Then convolutional filters slide over full rows of input embedding layer with 

different kernel sizes and perform element-wise dot product operations. 

For example, we have the sentence: ‘Baayyee namatti tola ODP abdii fi kallacha qabsoo oromoo!’ 

Let say the first convolution with filter size 2, considering two words, ‘baayyee’, ‘namatti’, the filter 

represented by 2x5 since our word vector dimension is 5. The convolution overlays across the vectors of ‘baayyee’ 

and ‘namatti’. Then it performs the element-wise dot product operation for all 2x5 matrix elements, adds the result 

and produces a single value number. For instance, 0.6x0.1+0.2x0.1+…w10*0.1=0.82.  We assumed that the weight 

is initialized randomly which is performed by the system. Now we got the value for the first sequence for the first 

convolution. Again the convolution moves down one word and overlays across the word vectors of the next words 

and performs the same operations to get the next value. 

So the output of the filter has the form s-h+1*1, in this case, 9-1+1*1=9 for the first convolution. 9-2+1*1=8 

for the second convolution and 9-3+1*1 =7 for the third convolution with 3 filters which is illustrated in the 

architecture above figure 12. 
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The same operation is performed for each convolution for example for filter size 3, it considers three words 

at a time and performs the above procedures. Finally, the result from different convolutional channels is 

concatenated into a single dimension. Before going to the fully connected layer, maximum pooling operation is 

performed to pick the maximum features and finally fed to the fully connected layer for classification. In additions 

the detail parameters used along with the CNN is described as the following: 

To obtain the feature map c we add bias and apply activation function. The feature can be mathematically 

represented as (Kim, 2014): 

��  =  � (� ∗ 	�:���� + �) 

Filter weights are initialized randomly in the beginning and then tuned through the training process. Where 

w is a vector of weights, “* “refers to the dot product, 	�:���� is a sliding window as illustrated in the above 

example, � ∈ ℝ is a bias vector, and � is a non-linear activation function. At each convolutional channel, we apply 

nonlinear activation function which is called ReLU (Moschitti, et al., 2015) and (Kim, 2014), (Jumayl, et al., 2019). 

Rectifier linear unit or ReLU is the most widely used nonlinear activation function on CNN. The task of RELU is 

to avoid negative value.ie.it maps the negative value to zero and returns if the result is positive. ReLU allows 

producing a non-linear decision boundary. So it can be written as: 

�(�) = ��� (0, �) 

It returns x if the value is positive and returns zero if the result is negative. 

The filter is employed to each sequence of words in the sentence that corresponds to the filter size 

{	�:�, 	�:���,…	����:� to generate a feature map (Kim, 2014): 

� (�)  =  [��,��, … , �����] 

Pooling layer: In this work max-pooling operation is used as it is extensively used by many researchers the most 

widely used pooling mechanism. In one thing it allows reducing the size of the feature map as it combines the 

vectors resulting from the different convolutional windows into a single l-dimensional vector and at the same time 

preserving the most relevant feature.  Pooling greatly affects the performance of CNN. The pooling operation is 

used to ideally this vector will capture the most relevant features of the sentence. 

�̂ = ��� {� (�)} 

Such operation provides a single feature �̂ for the feature map produced by the particular kernel w. the other 

technique is flattening. Flattening mechanism is added to convert the pooled result in to one dimension or single 

dimension before going to fully connected of the output layer. 

Fully connected layer: After max-pooling is performed, the concatenated feature vector is fed into a fully 

connected layer. At this layer, the classification result output is produced. Since our work is a binary classification 

task, we used sigmoid (Jumayl, et al., 2019) as the activation function and binary cross-entropy as our loss function. 

Because the Softmax function is used in multiclass classification, whereas sigmoid function is used in binary 

classification.  

Dropout: Dropout is a method where randomly selected neurons are dropped during training. They are “dropped-

out” randomly (Kim, 2014). This technique is used for preventing the network from overfitting. We used the 

dropout at every convolutional channel to avoid bias. At the fully connected layer also we used dropout, with 

parameter 0.1, which means 10% of unnecessary neurons are dropped. 

Training the network: Training is usually performed using a stochastic gradient descent by randomly selecting 

some samples from the dataset. Dropout ensures regularization and applied before a fully connected layer. The 

dropout method assumes that only on the training stage some portion of neurons is removed (dropout rate is set to 

0.) that prevents co-adaptation of neurons and leads to learning more robust features and makes model generalize 

new data well (Srivastava et al., 2014).  

Training of the CNN assumes the fine-tuning of the network parameters. This tuning process called 

backpropagation error. Backpropagation will be applied to compute the gradient of the error function with respect 

to the filter weights. Adam algorithm (Kingma & Ba, 2014) that is a stochastic gradient descent algorithm is used 

for optimizing parameters of CNN (updating weights). 

3.1.2. Long Short Term memory 

The main intuition of the LSTM network is that it has the mechanism of long-term memory and accordingly is 

proficient in handling long-term dependencies.  

LSTM has a special structure called cell blocks. These cells are composed of an input gate, the forget gate 

and the output gate. The figure 2 below emphasis the visualization of the LSTM component.  

3.1.2.1. Forget Gate 

�  =  !"#$ . [&  , ℎ − 1] +  �$+, … … … … . . (1) 
The forget gate is used to forget the unnecessary information.  It has a sigmoid layer that takes the previous output 

at ℎ � and the current input at a time �  and outputs the value between 0 and 1.  

The main objective of this task is to determine the extent to which a value or information is thrown away or remain 

in the cell. This can be done by the value form the current input at time , and the value from the previous hidden 
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state at time , − 1  are combined in to a single tensor.  Then passes through the neural network sigmoid function 

for transformation.  The value from the sigmoid function is squishing between zero and one (0 and 1) because of 

the sigmoid. After multiplying the number with the internal state, the information to be forgotten or kept in to the 

cell is determined by, the value which is closer to zero is forgotten and the value which is closer to one is kept in 

the cell.  

-� �  =0, the previous internal state is totally forgotten 

./	. -� �  =1 will be passed unaltered. 

3.1.2.2. Input Gate 

-  =  !(#� . [ℎ − 1, &  ] + ��) … … … … (2) 
The task of the input gate is to decide the extent of new input or value that will be flown into the cell. I other 

words it determines which of the new input will be updated or ignored.  This can be done by receiving the new 

input and the previously hidden state output passed to another sigmoid layer. Again the output value from the 

sigmoid is between zero and one due to sigmoid. So the output of the input gate then multiplied with the output of 

the candidate layer as the following:  

1 2  =  ,�3ℎ(#4  . [ℎ − 1, & ] + �4) … . . (3)  
The candidate vector 1  6is created by neural network hyperbolic tangent (Tanh) and is added to the internal state. 

Now old cell state 1 � is updated into new cell state 1  via the following rule: 

1  =   � ∗ 1 − 1 + - ∗  17 … … … … … … … (4)   
As we can see from the formula, to obtain the new cell 1 the old state is multiplied by �,, forgetting the value we 

decided to forget earlier. Then we add the product of- ∗  17 . This is the new candidate values, mounted by how 

much we decided to update each state value. 

3.1.2.3. Output Gate 

9  =  !(#:. [ℎ − 1, & ] +   �:) … … … . (5)  
ℎ  =  9 ∗ ,�3ℎ(1 ) … … … … … … … … … … … … . . (6) 

The output gate computes what part of the cell is used to compute the output activation function of LSTM 

and which parts of the cells going to output. This can be done by the cell state is pass through the ,�3ℎ function 

this squishes the value between -1 and 1. And then multiply it by the output of sigmoid function or gate. By this 

method, we get the output we need. When relating to our work, it decides whether the polarity is positive or 

negative. 

Our model composed of two stacked LSTM layers or with two LSTM layers with 256 memory units each.  

This makes the model a deeper more accurate prediction. The same to CNN, we used the embedding layer for 

LSTM. As mentioned earlier Word embeddings facilitate learned word representations. As reported by many 

researchers word embedding is has many advantages in extracting complex language features which have been an 

issue in previous researches (Joshi et al., 2016).  The same step as the CNN, after preprocessing and padding is 

performed and represented in matrix form, this matrix was finally fed as input to the LSTM layer. Then the output 

of the first LSTM is input to the next LSTM layer. The first LSTM layer provides a sequence output rather than a 

single value output to the next LSTM layer.  That means it provides one output per input time step rather than one 

output time step for all input time steps. This adds levels of abstraction of input observations over time and 

representing the problem at different time scales. This approach possibly lets the hidden state at each level to 

operate at different timescale.  

So the additional hidden layers assumed to recombine the learned representation from prior layers and build 

new representations at high levels of abstraction. The sigmoid function is employed the same with CNN since our 

work is a binary classification. Dropout regularization is also used as described in the above section to avoid co-

adoption and to avoid overfitting. The detail of the network parameter and configuration described in chapter four. 

The overview of the proposed architecture of LSTM is depicted in figure 3 below, each comment with 

different lengths need to have the same length, so the shorter comments are padded with to have an equal size with 

the longer sentences. The maximum length of the reviews in our dataset is 1344. So, by adding zero to any reviews 

less than 1344, we make the reviews have equal length. So, there are 1344 time steps in the model for each word 

and accordingly, each word of the review is being fed to the model at each time step. This further passed to the 

word embeddings, the word embedding in a case is the dense representation of words, where words with a similar 

meaning are close to the vector space. By this method, the model learns the relevant feature representation by itself.  

The input to the model is a text of fixed length words, where each word is encoded to integers. So we have 

1344 time steps, at each time step one word is fed to the model. The word is further entered into the embedding 

layer with one neuron, in this layer the words are transformed into a real-valued vector of length 256. In this way, 

256 features are created. Next, an LSTM layer with 256 neurons is added to the network, each of the features is 

multiplied by weight for each LSTM cell, where each LSTM cell contains four gates discussed in the above section.  

Next to the 256 features, the output of the previous time step is also used as an input for the LSTM cells. The 

LSTM enhances recurrent connections to each other and predicts the series of words in the records. The final layer 
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is the output layer with two neurons. Here the weighted sum of the 256 outputs of the LSTM layer is taken and a 

sigmoid activation is added and performs the dot product between features and the weight matrix � used to predict 

the value between 0 and 1 for the two class. 

 

4. Results and Discussion 

The experiment is done to measure the overall performance of the developed deep learning sentiment analysis 

model. CNN and LSTM implemented using Keras deep learning library in python. We used evaluation metrics 

(precision, recall, accuracy and f1 score) to evaluate the performance of the classifiers.  

���=>��? = @A�@B

@A�@B�CA�CB
….. (1) 

TP is the number of true positives: the reviews/comments that are actually positive and estimated as positive. 

TN is the number of true negatives: the reviews/comments that are actually negative and estimated as negative,  

FP is the number of false positives: the reviews/comments that are actually negative but estimated as positive,  

FN is the number of false negatives: the reviews/comments that are actually positive but estimated as negative.  

A Precision can be estimated using the following formula (Jumayl, et al., 2019): 

D>.�-	E3 = @A

@A�CA
… (2) 

Precision shows how many positive reviews received from the classifier are correct. The greater precision the 

fewer number of false hits. However, precision does not show whether all the correct answers are returned by the 

classifier. In order to take into account the latter recall will be used (Jumayl, et al., 2019): 

>.��// = @A

@A�CB
… (3) 

Recall shows the ability of the classifier to “guess” as many correct answers, (reviews with correct labels) as 

possible out of the expected. 

The more precision and recall the better. However, simultaneous achievement of high precision and recall is almost 

impossible in real life that is why the balance between two metrics has to be found. F1 score is a harmonic mean 

of precision and recall (Jumayl, et al., 2019): 

�� = �∗GHII4��:��∗HI4JKK

GHI4���:��HI4JKK
… (4) 

In addition to precision, accuracy, and f1score, the neural network is measured by the average loss and 

accuracy. The loss is calculated on training and validation and its interoperation is how well the model is doing 

for these two sets. It is a summation of the errors made for each example in training or validation sets. The lowest 

loss is the best model.  

To perform classification, we used Tokenizer from Keras preprocessing python library. The Tokenizer 

performs the Vectorization of a text corpus into a list of integers. So each integer maps to a value in a dictionary 

that translates the entire corpus, with the keys in the dictionary being the vocabulary terms themselves. We choose 

Tokenizer because of many reasons, that we can add the parameter num_words, which is accountable for setting 

the size of the vocabulary i.e. the most common num_words will be then kept. Moreover, we have comments in 

which each text sequence has a different length of words. To tackle this, Keras has a pad_sequence() option which 

simply pads the sequence of words with zeroes. 

The results of CNN and LSTM described in the section below: 

 

4.1. Convolutional Neural Network 

We got the architecture of the network configuration through try and error and fine-tuning process. The model we 

proposed using CNN performed well despite our dataset is small. We applied a maximum dropout (0.1). This is a 

help to remove unnecessary biases from the network. The optimal parameter network architecture is obtained 

through fine-tuning. After many searches of efforts, we found that the following network configurations perform 

good results. The following Table 3 shows the CNN network configuration and the two figures fig 4 and 5 show 

how accuracy increases and the loss decreases with parameters defined respectively. 

The confusion matrix of the system is illustrated in the table 4 below. 

As we can understand from the table, from the 145positive reviews, the system correctly classifies 127 and 19 

reviews are misclassified. And, from 146 negative reviews, 13 are misclassified and 132 are correctly classified. 

The precision and recall of the system illustrated in the table 5 below: 

Accordingly, the proposed system by CNN achieved an accuracy of 89% and f1 score of 87%. 

One of the strengths of the model is its capability to handle the contextually of the words. As mentioned earlier, 

social media texts luck contextually and it is difficult to deal with it by using the traditional methods. Our proposed 

model overcomes this problem using deep learning model. This approach learns and extracts features by using 

different kernels at the same time.  

 

4.2.  Long-short Term Memory 

Our LSTM model achieved an accuracy of 87.6% and f1 score 87.7% based on the architecture given in the table 
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6 below.  We investigated the following network architecture for LSTM. 

The two figures above, fig 6 and 7 show how accuracy increases and average loss decreases with the defined 

architecture. 

The confusion matrix of the LSTM classifier is given in the table 7 and the classification report, i.e. precision 

and recall is depicted in Table 8 below after training and testing with the network configuration discussed above. 

The two tables show the precision, recall, and the confusion matrix or the number of true positive, true 

negative and false positive and false negative of the LSTM classifier. 

In general, CNN can abele to handle the longer dependency of the words through different convolutional 

filters. When the context of the word is used to determine the polarity of the text rather than the probability of the 

occurrence of the word both CNN and LSTM are the best approaches. In addition, the two deep learning (CNN 

and LSTM) requires no special feature selection methods, since they discover and learn the relevant features from 

the text. 

The LSTM by its nature has the capability to hold relevant information to the task at hand. This makes it 

better for text classification and sentiment analysis tasks. But relatively slower computational time than CNN. 

 

5. Conclusions and recommendation 

The rapid development of social media networks like Facebook, twitter, etc. provides a variety of benefits, in 

facilitating the way people share their opinion and increase the speed of public comments. Due to this, companies 

and governments receive high volumes of electronic comments every day. Identifying the polarity of the comments 

may be valuable input for decision making. Though, a large number of reviews make it difficult for a company or 

any institutions to react to the opinions rapidly and take appropriate decisions. Therefore, sentiment Analysis has 

become a major area of research interest in the field of Natural Language Processing and Text Mining to overcome 

these problems. The sentiment analysis task is under research since the early 2000s. Nevertheless, it is a new area 

and at an initial state in Afaan Oromoo.  

The main drawback of the lexicon-based approach is the inability to detect sentiment words with domain and 

context specific polarity orientations. In addition, the performance of lexicon-based methods in terms of time 

complexity and accuracy heavily depends on the number of words in the dictionary, that is, performance decreases 

significantly with the exponential growth of the dictionary size.  Hence, according to the literature review, it was 

found that the majority of sentiment analysis approaches rely on supervised machine-learning methods. Therefore, 

it was Long Short Term Memory and Convolutional neural network approaches as far as these methods are state 

of the art among researchers and they provide meaningful results. 

We studied three methods, first Multinomial Naïve Bayes that use Term frequency and inverse document 

frequency representation and n-gram features for training the classifier. Secondly, Long Short Term Memory deep 

learning method that uses word embeddings and two different hidden layers to further make precise the polarity 

of the reviews/comments.  Thirdly Convolutional Neural Network deep learning technology that uses word 

embeddings and applies different convolutional filters and extracts sentiment of the text is studied. Therefore, we 

aimed to perform experiments and investigate the performance of three different algorithms detecting positive and 

negative comments. Furthermore, the algorithm which gives the best results is defined.  

The experimental results show that our proposed CNN performed an accuracy of 89%. Whereas, the LSTM 

achieved an accuracy of 87.6%.  

In general, in this study shows that LSTM performs slightly less than CNN and MNB. The MNB outperforms 

both CNN and LSTM, and it is simple and demands fewer resources than both CNN and LSTM. CNN is relatively 

faster than LSTM and is capable of handling longer text and context of words as LSTM. But, both requires solid 

computational resources and large amount of training sample. 

The system can deal with lengthy comments, as the lengthy comments were a challenge to classify as it was 

common to find a contradiction in the sentiment expressed and longer expression depends on the meaning of its 

predecessors. The two deep learning approaches are good at handling indirect comments, but the MNB machine 

learning approach still has challenge with indirect comments.  

The general limitation of the study is that, Social media is an informal means of communication that includes 

considerable use of slang, malformed words, and colloquial expressions. People use idiomatic expression to 

express feelings in some cases. So, our system got challenges with idiomatic expressions in some cases. 

Based on our work we provided several feature directions:   

 We focused on texts, Emoticons and emoji expressions that carry laugh, sad, angry, and happy, love, etc. 

need to be included and labeled whether emoticon, emoji expression refers to a positive or negative 

meaning. 

 The neural networks LSTM and CNN requires huge data to perform good results. Hence, it is necessary 

to have a well prepared standard corpus. 

  The LSTM and CNN may have a good performance with pre-trained word embeddings (trained on a 

sufficiently large corpus). Therefore, preparing and trying with pre-trained word embeddings. 
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 This study considers the review level or document-level sentiment analysis. Others like sentence level 

can be considered. 

  we considered only the binary sentiment classification, in the future multi-scale or multi-class also needs 

to be considered 

 We focused on facebook domain, so different social media networks like twitter, YouTube, etc. also need 

to be targeted in the future.  
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Author objective features model classes Selected 

model 

Domain 

Afaan 

oromoo  

Data 

source 

No 

Dataset 

(Tariku, 

2017), 

Msc 

Thesis, 

DBU 

Assign feature 

sentiment & 

summarization 

Lexicons 

+rule 

based 

rule based +ve&-ve General 

lexicon 

with rule 

based 

ORTO 

news 

service 

400 

reviews 

(Abate, 

2019) 

Journal 

Article 

Feature 

extraction  

& polarity 

classification 

Lexicon, 

POS, N-

gram 

Unsupervised 

 

+ve,-ve 

&neutral 

bigram (OPDO) 

official 

Facebook 

page, 

political 

bloggers 

page 

600 

reviews 

Table 1 summary of SA and opinion mining of AO 
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Author Objective Features Model Classes Selected Model Domain, No 

      Amharic dataset 

      (data source)  

(Alemu, 2018) 

Journal Article 

Assign docs 

sentiment 

learning word 

embedding CNN 

+ve, very +ve, 

extremely 

+ve, neutral, -

ve, very -ve 

and extremely 

-ve  

Fana BC 

Facebook 

page 

1600 

reviews 

(Philemon & 

Mulugeta, 2014) Assign docs Unigram, NB -2, -1, 0, Naïve Bayes + Social media, 608 

Journal Article sentiment Bigram &  +1, +2 Bigram Product  

  

Hybrid 

valence shifter  (multi-  marketing &  

    scale)  News  

(Abreham, 2014) Assign docs BoW & NB, DT & +ve & -ve Naïve Bayes with EBC, 616 

Thesis (AAU) sentiment IG ME  Information Gain diretube.com  

      &  

      habesha.com  

(Tilahun, 2014) Assign Feature + Rule & +ve, -ve & Feature with Hotel,  

Journal Article feature Opinion + Lexicon neutral 

adjacent left & 

right University & 484 

 sentiment Context Based  adjective Hospital  

  valance      

  shifter      

  & n-      

  grams-TF-      

  IDF      

Abebe, (2013), 

MSc Assign docs BoW, IG NB and DT +ve & -ve Naïve Bayes + Movie 456 

Thesis (UoG) sentiment    Information Gain review+news  

        

(Mengistu, 2013) 

MSc 

Thesis (AAU) 

Assign docs 

sentiment 

n-grams 

presence, 

n-grams 

frequency 

& n- 

grams-TF- 

IDF 

NB, MNB 

& SVM 

+ve, -ve & 

Neutral 

Support Vector 

Machine with 

unigram 

ERTA.com + 

FanaBC.com 

+ 

diretube.com 576 

(Gebremeskel, 

2010) 

Assign docs 

sentiment 

lexicon + 

Context 

valence 

shifter 

Rule & 

Lexicon 

Based 

+ve, -ve & 

Neutral 

General lexicon 

with valence 

shifter 

Movie 

review + 

news doc 303 

Table 2 Summary of Amharic SA and OM 
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Figure 1  CNN Architecture for AO SA 

 

 
Figure 1 LSTM Network 

 

 
Figure 2 proposed LSTM architecture for AO SA 
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Hyperparameter training  parameters 

Embedding dimension 10 

Convolutional filers(kernel size) 1,2, 3,4,5 

dropout 0.1, at fully connected layer 

Pooling Max-pooling 

Number of filters 64 

epochs 10 

Learning rate Default(0.001), beta_1=0.9, beta_2=0.999 

Batch size 32 

Table 2 CNN configuration for AO SA 

 

 
Figure 3  model accuracy of CNN 

 
Figure 4 model loss of CNN 
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True Positive 127 

False Positive 13 

True Negative 132 

False Negative 19 

Table 3 Confusion Matrix of the proposed CNN 

 

class Positive  Negative 

precision 0.90 0.86 

recall 0.87 0.91 

Table 4 classification report of the proposed LSTM 

 

Hyper parameter training  parameters 

Embedding dimension 256 

dropout 0.3 ,  recurrent dropout =0.2 

Memory unit 250 for both LSTM layers 

epochs 10 

Learning rate Default(0.001), beta_1=0.9, beta_2=0.999 

Batch size 20 

Table 5 LSTM network configuration for AO SA  

 
Figure 5 model accuracy with epochs for LSTM 

 



New Media and Mass Communication                                                                                                                                              www.iiste.org 

ISSN 2224-3267 (Paper) ISSN 2224-3275 (Online)  

Vol.90, 2020 

 

22 

 
Figure 6  model loss of LSTM in each epoch 

 

True Positive 127 

False Positive 18 

True Negative 128 

False Negative 18 

Table 6 the confusion matrix of LSTM 

 

Class Positive  Negative 

precision 0.876 0.88 

recall 0.876 0.88 

Table 7 precision and recall performance metrics of the LSTM 

  


