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1. Introduction and Preliminaries 

Ever since the notion of fuzzy set was introduced by Zadeh[7]in 1965, the concept of fuzzy metric space was 

introduced by various authors in different directions.Especially,Deng[1], Erceg[2], Kaleva and 

Seikkala[4],Karmosil and Michalek[5] have introduced the concept of fuzzy metric space in different ways. 

George and Veeramani[3]modified the concept of fuzzy metric spaces in the sense of Karmosil and Michalek[5] 

and defined the Hausdorff topology of fuzzy metric spaces.Consequently they showed every metric induces a 

fuzzy metric. Mishra, Sharma and Singh[6]also proved some fixed point theorem in fuzzy metric spaces. Sushil 

Sharma [8] also proved common fixed point theorems for six mappings. 

In fuzzy metric space Banach’s contraction mapping principle [10] is one of the pivotal results of nonlinear 

analysis. It has been the source of metric fixed point and its significance rests in its applicability in different 

branches of mathematics. 

Theorem 2.1[10] Let (X,d) be a complete metric space, c Є [0,1) and f:X→X  be a mapping such that for each 

x,y Є X, 

d(fx,fy) ≤ cd(x,y), 

then f has a unique fixed point a Є X , such that for each x Є X,    Limn→+∞  fnx=a . 

In 2002, Branciari [11]obtained a fixed point theorem for a single mapping satisfying an analogue of a Banach 

contraction principle for integral type inequality. After the paper of  Branciari , a lot of research works have been 

carried out on generalizing contractive conditions of integral type for different contractive mappings satisfying 

various known properties. 

Theorem 2.2(Branciari)[11] Let (X,d) be a complete metric space , c�(0,1) and let f:X → X be a mapping such 

that for each x,y�X, 

� ����	� ≤ � � ����	�
��
,��

�

���
,���

�
 

Where �: �0, +∞� →  �0, +∞� is a Lesbesgue – integrable mapping which is summable on each compact subset 

of �0, +∞�, �����������, ��	 ���ℎ �ℎ��  �! ���ℎ � > 0, 

# ����$
�  > 0, �ℎ��   ℎ�� � ���%��  �&�	 '���� � � ( such that for each x�(, lim,→∞  , & = a 

Theorem 2.3[12] Let (X,d) be a complete metric space and f: X →X such that  

# ����	� ≤  - # ����	���
,�
�.���,���
�

���
,���
�  + / # ����	���
,��

�  +0 # ����	�,123 {��
,���,���,���}
�  

For each x,y � X with non-negative reals -, /, 0 such that 2- + / + 20 < 1, Where �: �0, +∞� →  �0, +∞� is a 

Lesbesgue – integrable mapping which is summable,non-negative and such that for each � > 0, 

� ����	� > 0.
:

�
 

Then f has a unique fixed point in X. 

There is a gap in the proof of Theorem 2.3 . In fact , the authors [12] 

Used the inequality ≤ # ����	� + # ����	�;
�

<
�  for 0 ≤a<b, which is not true in general. The aim of the paper is 

to present in the presence of this inequality an extension of Theorem 2.3 using altering diatance functions.   On 

taking the concept of  Branciari  we establish some common fixed point theorem for two mapping in S-fuzzy 

metric space.        

Definition- [2.4] The 3-tuple (X,S.*) is said to be a S-Fuzzy Metric Space if X is an arbitrary Set, * is a 

continuous t-norm and S is a Fuzzy set on X
3
 x (0,∞) satisfying the following conditions. 

(i)  S(x,y,z,t) >0 

(ii)  S(x,y,z,t)=1 if and only if x=y=z            (Coincidence) 



Network and Complex Systems                                                                                                                                                         www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol.3, No.8, 2013 

 

8 

(iii) S(x,y,z,t)= S(y,z,x,t)= S(z,y,x,,t)              (Symmetry) 

(iv) S(x,y,z,r+s+t)≥S(x,y,w,r)* S(x,w,z,s)*S(w,y,z,t)   

                                                                             (Tetrahedral inequality) 

      (v)       S(x,y,z,.); (o, ∞)→[0,1] is continuous for all x,y,z,w Є X 

                                                                                          and r,s,t >0 

        Geometrically S(x,y,z,t)represents the Fuzzy Perimeter of the triangle whose vertices are the points x,yand z 

with respect to t >0. 

 Definition- [2.5 ] A Sequence {xn} in a S-Fuzzy Metric Space (X,S,*) is called A Cauchy Sequence if and only 

if for each  = >0, t>0  there exists n0Є N such that S(xn,xm,xp,t) > 1- = for all n,m,p ≥ n0 

Definition- [2.6 ] A binary operation *:[o,1 ] X  [o,1 ]  →[0,1] is a (continuous) t-norm if ([0,1],*) is an abelian 

(topological) monoid with unit 1 such that a*b≤ c*d   whenever a≤ c and b≤d       (a,b,c,d є [0,1]) 

Definition- [2.7 ] The 3-tuple (X,S,*) is said to be a Fuzzy Metric Space if X is an arbitrary Set,* is continuous t-

norm and S is Fuzzy set on X
2
 x(o, ∞). 

(i) S(x,y,t) >0 

(ii) S(x,y,t)=1 for all t>0  if and only if x=y 

(iii) S(x,y,t)= S(y,x,t) 

(iv) S(x,y,t)* S(y,z,s) ≤ S(x,z,t+s) 

(v) S(x,y,.); (o, ∞)→[0,1] is a continuous for all x,y,z є X and t,s>0 

Definition- [2.8 ] A Sequence {xn} in a Fuzzy Metric Space (X,S,*) converges to x in X if and only if S(xn,x,t) 

→ 1 as n→∞ 

Definition- [2.9 ] A Sequence {xn} in a Fuzzy Metric Space (X,S,*) is said to be a Cauchy Sequence if and only 

if for each = >0, t>0  there exists n0Є N such 

that S(xn,xm,t) >  1- =  for all n,m ≥ n0 

Definition- [2.10 ] A Fuzzy Metric Space (X,S,*) is said to be complete if every  

Cauchy Sequence in (X,S,*) is a convergent sequence. 

Definition- [2.11 ] A S- Fuzzy Metric Space in which every Cauchy Sequence is a convergent sequence , is 

called a Complete S- Fuzzy Metric Space. 

 

2. Main Result 

Theorem-3.1:- Let T & P be two self mappings of a complete Fuzzy Metric Space (X,S,*) with t-norm * defined 

by a*b=min{a,b} : a,b Є [0,1] 

Satisfying the conditions  

# ����	� >�?
,@�,A,BC�
� ≥ # ����	�1EF { G�3,H,I,J�,G�3,K3,I,J�,G�H,LH,I,J�,M�N,ON,P,Q�M�R,SR,P,Q�

M�N,R,P,Q� ,} 
�  

for all x,y,z in X and 0<k<1, t > 0 

(2.5) S(x,y,z,t) → 1 as t→∞ 

Then T & P have a unique common fixed point. 

Proof:- Consider an arbitrary point x0 in X and define a sequence {xn} in X by x2n+1= Tx2n , x2n+2 = Px2n+1      for 

all  n = 0,1,2………. 

On using (2.4) for any p Є N, we have 

# ����	�G�3T,3U,3V,WJ�
�  = # ����	G�K3X,L3T,3V,WJ�

� � 

                                      ≥ # ����	�1EF {G�3X,3T,3V,J�,G�3X,K3X,3V,J�,G�3T,L3T,3V,J�,MYNX,ONX,NV,QZM�NT,SNT,NV,Q�
M�NX,NT,NV,Q� }   

�    

                                                                                                    
                                      ≥ # ����	�1EF {G�3X,3T,3V,J�,G�3X,3T,3V,J�,G�3T,3U,3V,J�,MYNX,ONT,NV,QZM�NT,NU,NV,Q�

M�NX,NT,NV,Q� }   
�  

 

                                      ≥ # ����	�1EF {G�3X,3T,3V,J�,G�3T,3U,3V,J�}
[  

This implies that  

# ����	�G�3T,3U,3V,WJ� 
�  ≥ # ����	�G�3X,3T,3V,J�

�  

Again using (2.4) for any PєN we have 

# ����	�G�3U,3\,3V,WJ� 
�  = # ����	�G�L,K3U,3V,WJ�

�  

                                      =# ����	�G�K3T,L3T,3V,WJ�
�  

                                      ≥# ����	�1EF {G�3U,3T,3V,J�,G�3U,K3U,3V,J�,G�3T,L3T,3V,J�,MYNU,ONU,NV,QZM�NT,SNT,NV,Q�
M�NT,NU,NV,Q� }   

�  



Network and Complex Systems                                                                                                                                                         www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol.3, No.8, 2013 

 

9 

                                      ≥# ����	�1EF {G�3T,3U,3V,J�,G�3U,3\,3V,J�,G�3T,3U,3V,J�,MYNU,N\,NV,QZM�NT,NU,NV,Q�
M�NT,NU,NV,Q� }   

�  

                                      ≥# ����	�1EF {GY3U,3\,3V,JZ,GY3T,3U,3V,JZ}
�  

This implies that  

# ����	�G�3U,3\,3V,WJ�
�  ≥ # ����	G�3T,3U,3V,J�

� � 

Inductively we have 

# ����	�G�3],3]^T,3V,WJ�
�  ≥ # ����	G�3]_T,3],3V,J�

� � 

                                    ≥ # ����	G�3]_U,3]_T,3V,J/W�
� � 

                                    ≥ …………………… 

                                    ≥ …………………… 

                                    ≥ # ����	G�3X,3T,3V,J/W]_T�
� �           

 Or 

# ����	�G�3],3]^T,3V,WJ�
�  ≥ # ����	G�3X,3T,3V,J/W]�

� � 

 

So for p,q ЄN & t>0 we have for k=3 

# ����	�G�3],3]^V,3]^V^a,bJ�
�   

                                 ≥ # ����	GY3],3]^T,3]^V^a,JZ∗GY3],3]^T,3]^V,JZ∗G�3]^T,3]^V,3]^V^a,J�
� � 

                                 ≥ # ����	dT∗eU∗e\∗ef
� � 

                                                             Where gh= S jx�, xh, xF.l.m, J
W]n, 

                                                                                   go= S jx�, xh, xF.l, J
W]n , 

                                                                         AbqSYxF.h, xF.o, xF.l.m, t/3Z, 
                                                                         AtqS jxF.o, xF.L, xF.l.m, J

bn 

                          ≥# ����	eT∗eU∗eu∗ev∗ew�
� � 

                                                          Where   gx= SYx�, xh, xF.l.m, t/3kF.hZ,                                                                       
                                                                                 gz= SYx�, xh, xF.l, t/3kF.hZ, 
                                                                                 g{= SYxF.o, xF.l, xF.l.m, t/3Z, 
                        ≥ # ����	eT∗eU∗eu∗ev∗ew

� �                                                                                 

                        ≥# ����	eT∗eU∗eu∗ev∗ew∗…………………..
� � 

                                                          Where   gx= SYx�, xh, xF.l.m, t/3kF.hZ,                                                                       
                                                                                 gz= SYx�, xh, xF.l, t/3kF.hZ, 
                                                                                 g{= SYxF.o, xF.l, xF.l.m, t/3Z, 
                         ≥# ����	eT∗eU∗eu∗ev∗….∗e}∗e~∗eTX

� � 

                                                    Where   g�= SYx�, xh, xF.l.m, t/kF.L�o3l�oZ,                                                                       
                                                                           g�  = SYx�, xh, xF.l, t/kF.l�o3l�oZ, 
                                                                          gh�= S jxF.l�h, xF.l, xF.l.m, J

bV_Un, 
 

                         ≥# ����	eT∗eU∗eu∗ev∗….∗e}∗e~∗eTT
� � 

                                                   Where   ghh= SYx�, xh, xF.l.m, t/3L�hkF.l�hZ,   
 

On taking lim n→∞ we have 

lim n→∞  S (xn,xn+p,xn+p+q,3t) ≥ 1*1*1*……………………..(2p-1) times 

Which implies that 

S (xn,xn+p,xn+p+q,3t) → as n→∞ 

i.e. for even �>0,t>0,  n0ЄN such that 

S (xn,xn+p,xn+p+q,t) > 1-� for all  n≥n0 

Thus {xn} is a Cauchy Sequence. By the completeness of the space , there is a point u in X such that 
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lim n→∞  xn=u 

Now we shall prove that u is a fixed point of T 

By(2.4) we have 

# ����	���?�,
U�^U,
�BC�
� ≥ # ����	���?�,@
U�^T,
� ,BC�

� , 

≥ � ����	�
1EF��Y�,
U�^T,
�,CZ,�Y�?�,
�,�Z,�Y
U�^T,@
U�^T,��,CZ�,�Y�,?�,
�,CZ���U�^T,@
U�^T,
�,C�

���,
U�^T,
�,C�
�

 

On taking  ���,→∞ we have 

# ����	���?�,�,�,BC�
� ≥ # ����	�1EF {���,?�,�,C�,h}

�  

                                    =# ����	����,?�,�,C�
�     

                 Which yields Tu=u 

Similarly we can prove Pu=u 

Thus Tu=u=Pu 

Hence u is a common fixed point of T&P. For the uniqueness of u, let v be another common fixed point of T&P. 

Then by (2.4) we have 

 

# ����	����,�,�,�C�
�  =# ����	���?�,@�,�,BC�

�  

                                  ≥ # ����	����,�,�,C�
�  

 

Which gives us           u=v 

To prove T&P are continuous at u. Let {yn} be a sequence in X such that  

lim n→∞  yn =u 

On using (2.4) we have 

   # ����	���?��,
U�^U,
�,BC�
�  = # ����	�?��,@
U�^T,
�,BC

�  

�
1EF {>���,
U�^T,
�,C�,�Y , , ,Z,���}

�
 

                              ≥  min{S(yn,x2n+1,xm,t),S(yn,Tyn,xm,t),S(x2n+1,Px2n+1,xm,t),      

                                            
G�HF,KHF,31,J�G�3oF.h,L3oF.h,31,J�

G�HF,3oF.h,31,J� }          

On taking   lim n→∞   or   m→∞   we have 

S(lim Tyn,u,u,kt) ≥ min{1,S(u,limTyn,u,t)} 

This implies that 

lim n→∞   Tyn=u=Tu=T lim n→∞   yn 

Hence T is continuous at u, Similarly we can show that Pis continuous at u. 

Theorem-3.2:- Let {Tn} & {Pn} be two self mappings of a complete Fuzzy Metric Spaces (X,S,*) with t-norm * 

defined by  

a*b = min {a,b : a,b Є [0,1]} satisfying the conditions  

� �	�
��?��,@��,A,BC�

�
≥ � �	�

1EF {��
,�,A,C�,��
,?��,A,C�,�Y�,@��,A,CZ,��
,?��,A,C����,@��A,C�
��
,�,A,C� }

�
 

For all x,y,z in X: 0<K<1,  t>0,  i,j Є N 

S(x,y,z,t) → 1 as t  → ∞ 

Then {Tn} and {Pn}have a unique common fixed point in X. 

Proof:- Consider an arbitrary point x0inX. Define a sequence {Xn} such that x2n+1=T2n+1x2n and 

x2n+2=P2n+2x2n+1    ∀ n=0,1,2,…………. 

On using for any Pєn we have 

# �	���
T,
U,
�,BC�
�  =# �	���?T�X ,@U�T ,
�,BC�

�  

≥ # �	�1EF {�Y
X,
T,
�,CZ,�Y
X,?T�X ,
�,CZ,�Y
T,@U�T ,
�,CZ,�j�X,�T�X,��,�n���T,�U�T,��,��
���X,�T,��,�� }

�    

≥ # �	�1EF {�Y
X,
T,
�,CZ,�Y
X,
T,
�,CZ,�Y
T,
U,
�,CZ,�Y�X,�T,��,�Z���T,�U,��,��
���X,�T,��,�� }

�  

                                                            

Which implies that 

 # �	��Y
T,
U,
�,BCZ
� ≥ # �	��Y
X,
T,
�,CZ

�  
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Again using (2.2.1) for any pЄN we have 

 # �	��Y
U,
\,
�,BCZ
� = # �	��Y@U
T,?\
U,
�,BCZ

�  

                                  ≥ # ����	���,��Y
U,
T,
�,CZ,�Y
U,?\�U,
�,CZ�Y
T,@U�T ,
�,CZ�,�j�U,�\�U,��,�n���T,�U�T,��,��
���T,�U,��,�� }

�  

                                  ≥ # ����	���,��Y
T,
U,
�,CZ,�Y
U,
\,
�,CZ�Y
T,
U,
�,CZ�,�Y�U,�\,��,�Z���T,�U,��,��
���T,�U,��,�� }

�                                                         

                                                                                    

Which implies that 

 # ����	���
U,
\,
�,BC�
� ≥ # ����	���
T,
U,
�,C�

�  

Inductively we have 

 # ����	���
� ,
�^T,
�,BC�
�   ≥ # ����	���
�_T,
�,
�,C�

�  

                                             ≥ # ����	���
�_U,
�_T,
�,C/B�
�  

                                              ≥ …………………… 

                                              ≥ …………………… 

                                             ≥ # ����	���
X,
T,
�,C/B�_T�
�  

                                      Or 

 # ����	���
� ,
�^T,
�,BC�
� ≥ # ����	���
X,
T,
�,C/B��

�  

So for p,q ЄN & t>0 we have for k=3 

 # ����	���
� ,
�^�,
�^�^�,bC�
� ≥ # ����	��Y
�,
�^T,
�^�^�,CZ∗�Y
�,
�^T,
�^�,CZ∗��
�^T,
�^�,
�^�^�,C�

�                                        

≥ # ����	��Y
X,
T,
�^�^�,C/B�Z∗�Y
X,
T,
�^�,C/B�Z∗�j
�^T,
�^U,
�^�^�,�\n∗��
�^U,
�^�,
�^�^�,C/b�
�                     ≥    

# ����	�dT∗dU∗d\∗df∗du
�  

                                                  Where   gh= S(&�, &h, &,.�.� , �/�,) 

                                                                        go= S(&�, &h, &,.�, �/�,)  

                                                               gb= S(&�, &h, &,.�.� , �/3�,.h) 

                                                                        gt= S(&�, &h, &,.�, �/3�,.h) 

                                                               gx= S(&,.o, &,.�, &,.�.� , �/3) 

 

≥    # ����	�dT∗dU∗d\∗df∗du………………
�  

                                                  Where   gh= S(&�, &h, &,.�.� , �/�,) 

                                                                        go= S(&�, &h, &,.�, �/�,)  

                                                               gb= S(&�, &h, &,.�.� , �/3�,.h) 

                                                                        gt= S(&�, &h, &,.�, �/3�,.h) 

                                                               gx= S(&,.o, &,.�, &,.�.� , �/3) 

 

    ≥    # ����	�dT∗dU∗d\∗df∗………..∗dv∗dw∗d}
�  

                                                  Where   gh= S(&�, &h, &,.�.� , �/�,) 

                                                                        go= S(&�, &h, &,.�, �/�,)  

                                                               gb= S(&�, &h, &,.�.� , �/3�,.h) 

                                                                        gt= S(&�, &h, &,.�, �/3�,.h) 

                                                               gz= S(&�, &h, &,.�.� , �/�,.��o3��o) 

                                                               g{= S(&�, &h, &,.�, �/�,.��o3��o) 

                                                               g�= S(&,.��h, &,.�, &,.�.�,�/3��o) 

                                

    ≥    # ����	�dT∗dU∗d\∗df∗………..∗dv∗dw∗d~
�  

                                                  Where   gh= S(&�, &h, &,.�.� , �/�,) 

                                                                        go= S(&�, &h, &,.�, �/�,)  

                                                               gb= S(&�, &h, &,.�.� , �/3�,.h) 

                                                                       gt= S(&�, &h, &,.�, �/3�,.h) 

                                                              gz= S(&�, &h, &,.�.� , �/�,.��o3��o) 
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                                                          g{= S(&�, &h, &,.�, �/�,.��o3��o) 

                                                          g�= S(&�, &h, &,.�.� , �/3��h�,.��h) 

 

On taking lim n→∞ we have 

lim n→∞  S (xn,xn+p,xn+p+q,3t) ≥ 1*1*1*……………………..(2p-1) times 

Which implies that 

S (xn,xn+p,xn+p+q,3t) → as n→∞ 

i.e. for even �>0,t>0,  n0ЄN such that 

S (xn,xn+p,xn+p+q,t) > 1-� for all  n≥n0 

Thus {xn} is a Cauchy Sequence. By the completeness of the space , there is a point u in X such that 

lim n→∞  xn=u 

Now we shall prove that u is a fixed point of Ti 

By(2.4) we have 

 # ����	���?��,
U�^U,
�,BC�
�  ≥ # ����	���?��,@U�^U
U�^T,
�,BC�

�                                       

≥ # ����	�1EF {���,
U�^T,
�,C�,���,?��,
�,C�,��
U�^T,@U�^U
U�^T,
�,C�,�Y ,�� ,��,�Z���U�^T,�U�^U�U�^T,��,��
�� ,�U�^T,��,�� }

�  

 

On taking  lim n→∞  we have 

 # ����	���?��,�,�,BC�
�   ≥ # ����	�1EF {���,?��,�,C�,h}

�  

                                         =  # ����	����,?��,�,C�
�   

                Which yields Tiu=u 

Similarly we can prove Pju=u 

Thus u is common fixed point of Ti and Pj 

To prove uniqueness, let v be another common fixed point of Ti and Pj. 

Then by (2.2.1) we have 

 # ����	����,�,�,BC�
� =# ����	���?��,@��,�,BC�

�  

                                  ≥ # ����	����,�,�,C�
�  

               Which gives u=v 

Thus u is a unique common fixed point of Ti and Pj 

Now 

To prove that Ti and Pj are continuous at u. Let {yn} be a sequence in X such that  

lim n→∞  yn =u 

On using (2.4) we have 

 # ����	���?���,
U�^U,
�,BC�
� = # ����	���?���,@�
U�^T,
�,BC�

�  

                                                 ≥ #1EF {����,
U�^T
�,C�,�Y��,?����� ,CZ,�Y
U�^T,@�
U�^T,
�,CZ, }
�  

                              ≥  min{S(yn,x2n+1,xm,t),S(yn,Tiyn,xm,t),S(x2n+1,Pjx2n+1,xm,t),      

                                            
G�HF,KE HF,31,J�G�3oF.h,L¡3oF.h,31,J�

G�HF,3oF.h,31,J� }          

On taking   lim n→∞   or   m→∞   we have 

S(lim Tiyn,u,u,kt) ≥ min{1,S(u,limTiyn,u,t)} 

This implies that 

lim n→∞   Tiyn=u=Tiu=Tilim n→∞   yn 

Hence Ti is continuous at u, Similarly we can show that Pj is continuous at u. 

Therefore Ti and Pj are continuous at u. 

This completes the proof. 
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