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Abstract 

The aim of this paper is to prove a related common fixed point theorem for six weakly compatible self 
maps in non complete non-Archimedean menger PM-spaces, without using the condition of continuity and 
give a set of alternative conditions in place of completeness of the space.       
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1. Introduction 

There have been a number of generalizations of metric spaces, one of them is designated as Menger space 
propounded by Menger in 1972. In 1976, Jungck  established common fixed point theorems for commuting 
maps generalizing the Banach’s fixed point theorem. Sessa (1982) defined a generalization of commutativity 

called weak commutativity. Futher Jungck (1986) introduced more generalized commutativity, which is 
called compatibility. In 1998, Jungck & Rhodes introduced the notion of weakly compatible maps and 
showed that compatible maps are weakly compatible but converse need not true. Sharma & Deshpande 
(2006) improved the results of Sharma & Singh (1982), Cho (1997), Sharma & Deshpande (2006). Chugh 
and Kumar (2001) proved some interesting results in metric spaces for weakly compatible maps without 
appeal to continuity. Sharma and deshpande (2006) proved some results in non complete Menger spaces, for 
weakly compatible maps without appeal to continuity. In this Paper, we prove a common fixed point theorem 
for six maps has been proved using the concept of weak compatibility without using condition of continuity. 

We will improve results of Sharma & Deshpande (2006) and many others.  

Preliminary notes 

Definition 1.1 Let X be any nonempty set and D be the set of all left continuous distribution functions. An 
order pair (X, F) is called a non-Archimedean probabilistic metric space, if F is a mapping from X×X 

Into D satisfying the following conditions  

(i) F x , y(t) = 1 for every t > 0 if and only if x = y, 

(ii)  F x , y(0) = 0 for x, y∈  X 

(iii)  F x , y(t) =  F y  , x(t) for every x, y ∈  X 

(iv) If   F x , y (t1) = 1 and    F y  , z(t2 ) = 1, 

    Then  Fx , z(max{t1 , t 2 }) = 1 for every x, y, z ∈X, 

Definition 1.2 A Non- Archimedean Manger PM-space is an order triple (X, F,∆ ), where ∆  is a t-norm  
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and (X, F) is a Non-Archimedean PM-space  satisfying the following condition. 

(v) F x , z (max{
1 2
,t t  }  ≥  ∆  (F x , y (

1t ), F y  , z(
2t )) for x,y,z ∈X and 

1 2
,t t  ≥ 0. 

The concept of neighborhoods in Menger PM-spaces was introduced by Schwizer-Skla (1983). If x∈X, t > 
0 and λ ∈  (0, 1), then and (,λ∈ )-neighborhood of x, denoted by Ux ( ,ε λ ) is defined by 

 U x ( ,ε λ ) = {y ∈  X : F y , x(t) > 1-λ } 

If the t-norm  ∆  is continuous and strictly increasing then (X, F,∆ ) is a Hausdorff space in the topology 
induced by the family {Ux (t, y) : x ∈  X, t > 0, λ ∈  (0, 1)} of neighborhoods . 

Definition 1.3 A t-norm is a function  ∆  : [0, 1]   ×   [0, 1]  →  [0, 1] which is associative, 
commutative, non decreasing in each coordinate and ∆ (a, 1) = a for every a∈  [0, 1]. 

Definition 1.4 A PM- space (X, F) is said to be of type (C)g  if there exists a g ∈  Ω  such that  

                  g (Fx , y(t)) ≤   g (Fx , z(t))  + g (F z ,y(t)) 

for all x, y, z ∈  X and t ≥  0, where Ω  = {g : g [0,1] → [0,∞ ) is continuous, strictly decreasing, g(1) 
= 0  and g(0) > ∞ }. 

Definition 1.5 A pair of mappings A and S is called weakly compatible pair if they commute at coincidence 
points. 

Definition 1.6 Let A, S: X→X be mappings. A and S are said to be compatible if  

lim n→∞  g(FASxn , SAxn (t)) = 0  

For all t > 0, whenever {xn } is a sequence in X such that limn→∞  Ax n  = lim n→∞   Sxn  = z for some 
z∈  X. 

Definition 1.7   A Non-Archimedean Manger PM-space (X, F,∆ ) is said to be of type (D)g  if there 
exists a g ∈Ω  such that  

g(∆ (S, t) ≤   g(S) + g(t)) for all S, t  ∈  [0, 1]. 

Lemma 1.1 If a function  φ  : [0, +∞ ) →  [0,-∞ ) satisfying the condition    

                      (∅ ), then we have  

(1) For all t ≥  0, lim n→∞

nφ (t) 0, where 
nφ (t) is the n-th iteration of  φ (t). 

(2) If {
nt } is non-decreasing sequence real numbers and 

1nt +
 ≤  φ (

nt ), n = 1,2,….., then  

lim n→∞ nt  = 0. In particular, if  t ≤  φ (t) for all t ≥  0, then t = 0. 

Lemma 1.2 Let {y n } be a sequence in X such that limn→∞ F
n

y  y 1n+ (t) = 1 for all t > 0. 

If the sequence {yn } is not a Cauchy sequence in X, then there exit 0ε  > 0, 0t  > 0, two sequences 

{ im }, { in } of positive integers such that  

(1) im  > in +1, in → ∞  as i → ∞ , 

(2) F ymi , yni (t 0 ) < 1- 0ε  and F ymi - 1, yni (t 0 ) ≥ 1- 0ε , i = 1,2,…. 

Main Results 



Network and Complex Systems  www.iiste.org 
ISSN 2224-610X (Paper)  ISSN 2225-0603 (Online) 
Vol 1, No.1, 2011 
 

Page | 35 
www.iiste.org  

Theorem 2.1   :  Let A, B, S, T, P and Q be a mappings from X into itself such that 

(i) P(X)⊂ AB(X), Q(X) ⊂ ST(X) 

(ii)  g(FPx, Qy(t)) ≤  φ [max{g(FABy, STx(t)), g(FPx, STx(t)), g(FQy, ABy(t)), g(FQy, STx(t)), 

g(FPx, ABy(t))}] 

          (for all x, y∈X and t>0, where a function φ :[0,+∞ ) → [0,+∞ ) satisfies the condition (∅ ). 

(iii)  A(X) or B(X) is complete subspace of X, then 

(a) P and ST have a coincidence point. 

(b) Q and AB have a coincidence point. 

Further, if  

(iv) The pairs (P, ST) and (Q, AB) are R-weakly compatible then A,B,S,T,P and Q have a unique 
common fixed point. 

Proof: Since P(X) ⊂ AB(X) for any 0x ∈X, there exists a point 1x ∈X , Such that P 0x =AB 1x . Since 
Q(X) ⊂ ST(X) for this point 1x ,we can choose a point 2x ∈X such that B 1x =S 2x  and so on.. 
Inductively, we can define a sequence {ny } in X such that 2ny =P 2nx =AB 2 1nx + and 

2 1ny + =Q 2 1nx + =ST 2 2nx + , for n=1,2,3…….. 

Before proving our main theorem we need the following : 

               Lemma 2.2: Let A,B,S,T,P,Q :X→X be mappings satisfying the condition (i) and (ii).  

               Then the sequence {ny } define above, such that  

                         lim
n→∞

   g(F ny , 1ny + (t)) = 0,   For all t>0 is a Cauchy sequence in X. 

                Proof of Lemma 2.2: Since g∈ Ω , it follows that  

                                         

          lim
n→∞

 F ny , 1ny + (t) = 1 for all t>0 if and only if  

          lim
n→∞

g(F ny , 1ny + (t)) = 0 for all t>0. By Lemma 1.2, if { ny } is not a Cauchy sequence in X, 

there exists 0∈ >0, t>0, two sequence { im },{ in }of positive integers such that  

(A) im > in +1, and in → ∞  as i → ∞ , 

(B) (Fy im ,y in ( 0t )) > g(1- 0∈ ) and g(Fy 1im + ,y in ( 0t )) ≤ g(1- 0∈ ), i=1,2,3…… 

Thus we have  

              

 

 

             g(1- 0∈ )  < (Fy im ,y in ( 0t )) 
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                 ≤ g(Fy im , 
1imy

−
( 0t )) + g(F

1imy
−

,y in ( 0t )) 

(v)                    ≤  g(1- 0∈ ) + g(F
imy ,

1imy
−

( 0t ))   

Thus i→ ∞  in (v), we have  

(vi)             lim
n→∞

g(F
imy , y in ( 0t )) = g(1- 0∈ ). 

On the other hand, we have  

(vii)         g(1- 0∈ ) < g(F
imy , y in ( 0t ))        

                    ≤  g(F
iny , ( )

1 0iny t
+

) + g(F
1iny

+
, ( )0imy t ). 

Now, consider g(F
1iny

+
, ( )0imy t ) in (vii. Without loss generality, assume that both in  and im  are even. 

Then by (ii), we have  

g(F 1,iyn + iym ( 0t )) = g(FP mix  , Q 1nix + ( 0t )) 

 ≤  ∅ [max{g(FST mix  , AB 1nix + ( 0t )) , g(FST mix  , P mix ( 0t )) , g(FAB 1nix +  ,  Q 1nix + ( 0t )) , 

g(FST mix , Q 1nix + ( 0t )) , g(FAB 1nix + , P mix ( 0t ))}] 

(viii) =  ∅ [max{g(Fy 1im − ,y in ( 0t )), g(Fy 1im − , y im ( 0t )), g(Fy in ,y 1in + ( 0t )), g(Fy 1im − ,y 1in + ( 0t )), 

g(Fy in , y im ( 0t )) } ] 

Using (vi),(vii),(viii) and letting i → ∞ n(viii), we have 

g(1- 0∈ ) ≤  ∅ [max{g(1- 0∈ ), 0, 0, g(1- 0∈ ), g(1- 0∈ )}] 

         = ∅  (g(1- 0∈ )) 

         < g(1- 0∈ ), 

This is a contradiction. Therefore {yn } is a Cauchy sequence in X. 

Proof of the Theorem 2.1: If we prove limn → ∞ g(Fyn , y 1in + (t)) = 0 for all t>0, Then by Lemma(2.2) 

the sequence {yn } define above is a Cauchy sequence in X. 

 

Now, we prove limn → ∞ g(Fyn , y 1n +  (t)) = 0 for all t > 0. In fact by (ii), we have 

g(Fy2n , y 2 1n+ (t)) = g(FP 2nX , Q 2 1nX + (t)) 
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               ≤  ∅ [max {g(FST 2nX , AB 2nX , AB 2 1nX + (t)), g(FST 2nX ,P 2nX (t)), 

                  g(FAB 2 1nX + , Q 2 1nX + (t)), g(F 2nX , Q 2 1nX + (t)), g(FAB 1nX + ,P 2nX (t))}] 

                =∅ [max{g(Fy 2 1n− , y 2n (t)), g(Fy2 1n− , y 2n (t)), g(Fy2n ,y 2 1n + (t)),  

                  g(Fy2 1n − , y2 1n+ (t))}],    

                 = ∅ [max{g(Fy 2 1n− , y 2n (t)), g(Fy2 1n− , y 2n (t)), g(Fy2n ,y 2 1n + (t)),     

                         g(Fy2 1n − , y 2n (t)) + g(Fy2n ,y 2 1n + (t)), 0}] 

 If g(Fy2 1n− , y 2n (t) ≤  g(Fy2n ,y 2 1n + (t) for all t > 0, then we have  

   g(Fy2n ,y 2 1n + (t)) ≤ ∅  g(Fy2n ,y 2n ,y 2 1n + (t)), 

Which means that,by Lemma 1.1,  g(Fy2n ,y 2 1n + (t)) = 0 for all t >0. 

Similarly, we have g(Fy2n ,y 2 1n + (t)) = 0 for all t > 0. Thus we have  limn → ∞ g(Fyn , y 1n +  (t)) = 0 

for all t > 0. On the othr hand, if g(Fy2 1n − , y 2n (t)) ≥  g(Fy2n ,y 2 1n + (t)), then by (ii), we have 

g(Fy2n ,y 2 1n + (t)) ≤  g(Fy2 1n − , y 2n (t)), for t > 0.  

 Similarly, g(Fy2 1n + ,y 2 2n+ (t)) ≤  g(Fy2n , y 2 1n+ (t)) for all t > 0 . 

 g(Fyn , y 1n +  (t))   ≤  g(Fy 1n − ,y n (t)), for all t >0 and n= 1,2,3,…….  

Therefore by Lemma (1.1) 

lim n → ∞ g(Fyn , y 1n +  (t)) = 0 for all t > 0, which implies that {yn } is a Cauchy sequence in X. 

Now suppose that ST(X) is a complete. Note that the subsequence {y 1n + } is contained in ST(X) and a 

limit in ST(X) . Call it z. Let p∈(ST) 1−  z. 

We shall use that fact that the subsequence {y2n } also converges to z. By (ii), we have  

g(FPp , y2 1n+ (kt)) = g(FPp ,Qx 2 1n+ (kt)) 

                ≤  ∅ [max{g(FST p , ABx 2 1n+ (t)), g(FSTp , P p (t)), g(FAB 2 1nx + , Q 2 1nx + (t)), 

g(FSTp , Q 2 1nx + (t)), g(FAB 2 1nx + , P p (t))}] 

 = ∅ [max{FST p , 2ny (t),g(FSTp ,P p (t)), g(F 2ny , 2 1ny + (t)), g(F STp , 2 1ny + (t)), g(F 2ny , P p (t))}]   
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Taking the limit n → ∞ , we obtain  

g(FPp , z(kt))≤  ∅ [max{g(Fz, z(t)), g(Fz, Pp (t)), g(Fz, z(t), g(Fz, z(t)), g(Fz, Pp (t))}]                                             

             < ∅ (g(FPp , z(t))), 

For all t>0,which means that Pp = z and therefore, Pp =  ST p =z, i.e. p  is a coincidence point of P 

and ST. This proves (i). Since P(X)⊂ AB(X) and , Pp = z implies that z∈AB(X). 

Let q∈  (AB) 1−  z. Then q = z. 
It can easily be verified by using similar arguments of the previous part of the proof that Qq = z. 

If we assume that ST(X) is complete then argument analogous to the previous completeness argument 

establishes (i) and (ii). 

The remaining two cases pertain essentially to the previous cases. Indeed, if B(X) is complete, then by (2.1), 

z ∈Q(X) ⊂  ST(X). 

Similarly if P(X) ⊂ AB(X). Thus (i) and (ii) are completely established. 

Since the pair {P, ST} is weakly compatible therefore P and ST commute at their coincidence point i.e.  

PSTp = STPp  or Pz = STz. Similarly QABq = ABQq or Qz = ABz. 

Now, we prove that Pz = z by (2.2) we have  

g(FPz, 2 1ny + (t)) = g(FPz, Q 2 1nx + (t)) 

             ≤  ∅ [max{g(FSTz, AB 2 1nx + )), g(FSTz, Pz(t)), g(FAB2 1nx + , Q 2 1nx + (t)), 

            g(FSTz , Q 2 1nx + (t)), g(FST 2 1nx + , Pz(t))}]. 

By letting n → ∞ , we have 

  g(FPz , z(t)) ≤  ∅ [max{g(FPz, z(t)), g(FPz, Pz(t)), g(Fz, z(t)),  g(FPz, Pz(t)), g(Fz, Pz(t))}],   

Which implies that Pz =z =STz. 

This means that z is a common fixed point of A,B, S, T, P, Q. This completes the proof.    

Acknowledgment: The author is thankful to the referees for giving useful suggestions and comments for 
the improvement of this paper.            
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