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Abstract: In this paper, we propose integral type commondfiy®int theorems in Menger spaces satisfying
common property (E.A). Our results generalize sgareviously known results in Menger as well asriospaces.
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1. Introduction:

in 1942 Menger [21] initiated the study of probadtit metric space (often abbreviated as PM spand)by now
the theory of probabilistic metric spaces has dlyemade a considerable progress in several direciisee [32]).
The idea of Menger was to use distribution fundiqimstead of nonnegative real numbers) as valdea o
probabilistic metric. This PM space can cover eigrse situations where in one can not exactly é&icea distance
between two points, but can only know the possibilf a possible value for the distance (betwegaiaof points).
In 1986, Jungck [13] introduced the notion of cotitga mappings and utilized the same to improve mortativity
conditions in common fixed point theorems. This aept has been frequently employed to prove existenc
theorems on common fixed points. However, the stiafdgommon fixed points of hon-compatible mappimgss
initiated by Pant [32]. Recently, Aamri and Mout&ild1] and Liu et al. [39] respectively definedetproperty
(E.A) and the common property (E.A) and provedriggng common fixed point theorems in metric spabdéost
recently, Kubiaczyk and Sharma [15] adopted thepery (E.A) in PM spaces and used it to prove tesoh
common fixed points. Recently, Imdad et al. [26ppigd the common property (E.A) in PM spaces amdqut
some coincidence and common fixed point resultddémger spaces.

The theory of fixed points in PM spaces is a pérpmbabilistic analysis and continues to be arivacarea of
mathematical research. Thus far, several authodsest fixed point and common fixed point theorem®M spaces
which include [5, 7, 8, 10, 16, 17, 18, 24, 26, 28, 34, 31, 36, and 37] besides many more. In 2B@&nciari [3]
obtained a fixed point result for a mapping satigfyan integral analogue of Banach contractionqjple. The
authors of the papers [2, 4, 6, 26, 11, and 29emoa host of fixed point theorems involving rataty more
general integral type contractive conditions. In iateresting note, Suzuki [35] showed that Meir-lcee
contractions of integral type are still Meir-Keel@mmtractions. The aim of this paper is to provegnal type fixed
point theorems in Menger PM spaces satisfying comproperty (E.A).

2 Preliminaries:
Definition 2.1 [7] A mapping FO - 0" is called distribution function if it is non-deasing, left continuous with
inf{F(t) : tO0} = 0 and sup{F(t) : 0O} = 1.
Let L be the set of all distribution functions whas H be the set of specific distribution functidalso known as
Heaviside function) defined by
0, ifx<0
HC) = {1, if x>0
Definition 2.2 [21] Let X be a nonempty set. An ordered pair (Xidcalled a PM space if F is a mapping from X x
X into L satisfying the following conditions:
(i) Fpox) = H(x) if and only if p = q,
(it) Fpo(X) = Fyp(x),
(iii) Fpqx) = L and g (y) = 1, then E(x + y) = 1, for all p, ¢, & X and x, y> 0.
Every metric space (X, d) can always be realized BM space by considering F : X x-X L defined by Fp,q(x) =
H(x = d(p, q)) for all p, dJ X. So PM spaces offer a wider framework (than thfathe metric spaces) and are
general enough to cover even wider statisticahtitns.
Definition 2.3. [7] A mappingA : [0, 1] x [0, 1] - [0, 1] is called a t-norm if
0] A(a,1)=aA(0,0) =0,
(i) A (a, b) =A (b, a),
(iii) A (c, d)>A (a, b) for ca, d> b,
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(iv) A(A(a, b), c) A (a,A (b, ¢)) forall a, b, €110, 1].
Example 2.4. The following are the four basic t-norms:
(i) The minimum t-norm: {(a, b) = min{a, b}.
(i) The product t-norm: g'(a, b) = a.b.
(iii) The Lukasiewicz t-norm: {I[{(a, b) = max{a + b - 1, 0}.
(iv) The weakest t-norm, the drastic product:
min{a, b}, ifmax{a, b} =1
To(a b) :{ 0, otherwise
In respect of above mentioned t-norms, we havédlieving ordering:
Definition 2.5. [21] A Menger PM space (X, B) is a triplet where (X, F) is a PM space dni a t-norm satisfying
the following condition:
Fo X+ Y) ZA(Fo ), FadY))-

Definition 2.6. [28] A sequence {g} in a Menger PM space (X, &) is said to be convergent to a point p in X if for
everyll > 0 and\ > 0, there is an integer M(A) such tha¥, ,, > 1\ for all n>M(J,A).
Lemma 2.7. [7, 9] Let (X, FA) be a Menger space with a continuous t-nérmvith {x.}, {y »} O X such that {x}
converges to x and {y converges to y. If £,(.) is continuous at the poiny thenlim,,_,., F ,, (to) = Fy,, (to).
Definition 2.8. Let (A, S) be a pair of maps from a Menger PM saGE, A) into itself. Then the pair of maps (A,
S) is said to be weakly commutingFifs, sax(t) =F4, s, (t), for each XJ X and t > 0.
Definition 2.9. [34] A pair (A, S) of self mappings of a Menger Pddace (X, FA) is said to be compatible if
Faspp,sap, (x) = 1 for all x > 0, whenever {g is a sequence in X such that App, - t, forsometin Xasn 1.
Clearly, a weakly commuting pair is compatible buéry compatible pair need not be weakly commuting.
Definition 2.10. [19] A pair (A, S) of self mappings of a Menger Ridace (X, F) is said to be non-compatible if
and only if there exists at least one sequengkifixX such that

lim,,_, o AX, = lim,_, Sx,=t 0 X for some t1 X
Implies thatlim,,_,o, Fysy,, sax, (to) (for some > 0) is either less than 1 or non-existent.
Definition 2.11. [15] A pair (A, S) of self mappings of a Menger Ridace (X, B) is said to satisfy the property
(E.A) if there exists a sequence,xn X such that

lim,_, o AX, = lim,_ ., Sx,=t0 X
Clearly, a pair of compatible mappings as well asaompatible Mappings satisfies the property (E.A).
Inspired by Liu et al. [39], Imdad et al. [26] d&fid the following:
Definition 2.12. Two pairs (A, S) and (B, T) of self mappings of aiger PM space (X,B) are said to satisfy the
common property (E.A) if there exist two sequensg$, {y .} in X and some t in X such that

lim,_,o AX, = lim,_4 Sx, =lim,_ Ty, = lim,_, By,=t
Definition 2.13. [12] A pair (A, S) of self mappings of a nonempét X is said to be weakly compatible if the pair
commutes on the set of their coincidence pointstipe= Sp (for some fil X) implies ASp = SAp.
Definition2.14. [24] Two finite families of self mappings {fand {B;} are said to be pairwise commuting if:

(l) AiAj = Ain, |,J O {1, Zm},

(i) BiB; = BB, i,j 0{1, 2...n},

(iii) ABj=BA;i0{1 2.m},jO{1,2.n}

3. Main Result
The following lemma is useful for the proof of seeding theorems.
Lemma 3.1. Let (X,F,A) be a Menger space. If there exists some(R, 1) such that for all p,i[g X and all x > 0,

29 yeyde = 779 goyde (3.1.1)
whereg: [0,0) - [0,0) is a summable non-negative Lebesgue integrabletifin such that
fcl #(t)dt > 0 for each 11 [0, 1), then p = q.

Remark 3.2. By settingg(t) = 1 (for each £0) in (3.1.1) of Lemma 3.1, we have
fOFp,q(kX) Ht)dt = Fyq (kx) = Foq (x) = fOFp.q(x) Ht)dt,

which shows that Lemma 3.1 is a generalizatiothefLemma 2 (contained in [8])

11



Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) iy
Vol3, No 6, 2013 STE

Lemma 3.3. Let A, B, S and T be four self mappings of a Mengpace (X,FA) which satisfy the following
conditions:

(i) the pair (A, S) (or (B, T)) satisfies the prope(E.A),

(ii) B(yn) converges for every sequencgi{in X whenever T()) converges,

(i) for any p, g0 X and for all x > 0,

fOFAp,Bq(kx) ¢(t)dt 2

. Fsprq)FT1q,BqX) Fsp Tq(X)Fsp Ap(*)
min{Fsp 14 (X),Fsp ap(%).F1q8q(X).Fsp pq(%).Frq ap(0)—L-L 154 P21 LD

Fsppq@ ' Frqap®)
o #(t)dt (3.3.2)
where@: [0,0) - [0,) is a non-negative summable Lebesgue integrablgifun such that
f: #(t)dt > 0 for each 11 [0, 1), where 0 <k <1 and
(iv) A(X) O T(X) (or B(X) O S(X)).
Then the pairs (A, S) and (B, T) share the comnroperty (E.A).
Proof. Suppose that the pair (A, S) enjoys the propéttg), then there exists a sequencg {r X such that
limy,_,e0 Axy = lim,_,, Sx,=t, for somet 0 X.
Since A(X)O T(X), for eachx, there existy, 0 X such thatx, = Ty,, and hence
lim, oo Ty, = limy,_o Axp,=1t
Thus in all, we havdx, — t, S — t and Ty - t. Now we assert th&y;, - t.
To accomplish this, using (3.3.1), wiph= X,, g = y,, one gets

FAxn,Byn (kx)
f #(t)dt
0

Sxn.Tyn CF Ty Byn (0 Fsxp Tyn (O F sxp, Axy (X)
FSxp,Byn (X) ' FTyp,Axpy (X)

}
#(t)dt

>

. F
fmm{Fan.Tyn(x)'stn.Axn(x)'FTyn.Byn(x)'FSXn.B)’n(x)’FTyn.Axn(x)'
0

Letlim,_»B (). Also, let x > 0 be such th& (-) is continuous inx andkx. Then, on making A « in the above
inequality, we obtain
Fea(kx) MRy ¢ (G0, (0,1 G0, (), (), e 1 (O Pt 0O ()
Fe(x) Fp(x)
#(t)dt =
0

#(t)dt

0

or

Ft1(kx) F(x)
f #(t)dt = f #(t)dt
0 0

This implies that =t (in view of Lemma 3.1) which shows that the pdi#s S) and (B, T) share the common
property (E.A).
Theorem 3.4. Let A, B, S and T be self mappings of a Menger s F,A) which satisfy the inequality (3.3.1)
together with
(i) the pairs (A, S) and (B, T) share the commarperty (E.A),
(i) S(X) and T(X) are closed subsets of X.
Then the pairs (A, S) and (B, T) have a point dhcimence each. Moreover, A, B, S and T have ausmigpmmon
fixed point provided both the pairs (A, S) and [B,are weakly compatible.
Proof. Since the pairs (A, S) and (B, T) share the comproperty (E.A), there exist two sequenceg nd {y,.}
in X such that

limy, e AXy = limy, o Sx, = limy, oo Ty, = lim,_, By,=t, for some t/7X.
Since S(X) is a closed subset of X, hetiee,_,, Sx, = t € S(X). Therefore, there exists a point] X such thaSu
=t. Now, we assert tha&u = Su.To prove this, on using (3.3.1) with=u, q = y,, one gets
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FAu,Byn(kx)
[ Ho)dt
0

FsuTyn (OF Ty Byn () FsuTyy () F sy au(x)
Fsu,Byn () ’ FTyn,Au(x)

}
#(t)dt

>

j‘ min{F sy 7y, (X),F su,au(X),FTyp,Byn (X).F su,Byy (), F Ty, au(X),
0

which on making n. e, reduces to
Fau (k) i {Fy 060 Fo GO o (60 (030 Fo g () LT OO Fet GO ()
f #(t)dt > f ’ ’
0

#(t)dt

0

or fOFAu,t(kx) ¢(t)dt 2 fOFAu,t(x) ¢(t)dt
Now appealing to Lemma 3.1, we hae = t and henc@u = Su Therefore, u is a coincidence point of the pAir (
S).

Since T(X) is a closed subset of X, therefdier,_,., Ty, =t € T(X) and hence one can find a pomt] X such
thatTw = t. Now we show thaBw = Tw. To accomplish this, on using (3.3.1) withs x,, g = w, we have

F pxp,Bw (kX)
j #(t)dt
0

. FxnTw (x)FTW,BW (x) Fsyx ,TW(X)FSx JAX (x)
jmm{Fan,Tw(x)-Fan,Axn(x)-FTw,Bw(x)-Fan,Bw(x)'FTw,Axn () —L1 L Lon
0

F 5y, Bw(X) ’ Frw,Axp (X)

}
#(t)dt

>

which on making B e, reduces to

. Ft t(X)F (x) Fg ¢ (X)F¢ ¢(x)
Min{Fy ¢ (X),Fe. £ (X),Ft pw (), Fr gy (), Fy, ¢ () —2——LBW — b L1

J‘OFt,Bw(kx) Ht)dt > fo Fepw(®) = Fri®) Ht)dt

or
Ft,Bw(x)

Ft,Bw(kx)
f H)dt > f Hb)dt
0

0

On employing Lemma 3.1, we haBev = t and henc&@w = Bw. Thereforew is a coincidence point of the pair (B,
T).

Since the pair (A, S) is weakly compatible akd= Sy thereforeAt = ASu = SAu = St

Again, on using (3.3.1) with = t, g = w, we have

F at,gw (kx)
f #(t)dt
0

Fst.rw(X)Frw w(X) Fstw(X)Fst at(X)
Fs¢ pw(x) © Frwar(x)

min{Fs¢ 7w (X),Fst,at (X),FTw,Bw (X),F s¢,Bw (X),FTw,4t (),
> f #(t)dt
0
or
F at,t(kx) min{FAt,t(x)-FAt,At(x)'Ft,t(x)-FAt,t(x)'Ft,At(x).FAtIfjfigg(x).FAt'tgli?;?t(x)
j #(t)dt = j ' ' #(t)dt
0 0
or
Faec(x) Faee(x)
J T p0de = [ p(t)dt
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Appealing to Lemma 3.1, we haé = St = twhich shows thatis a common fixed point of the pair (A, S).
Also the pair (B, T) is weakly compatible aBd/ = Tw, hence

Bt = BTw = TBw = Tt.
Next, we show that t is a common fixed point of plaégr (B, T). In order to accomplish this, using3(3) withp = u,
g =t, we have

FAu,Bt(kx)
f H(t)dt
0

su,Tt X)Fre,Bt (%) Fsu,t(X)Fsu,4u(x)

F
min{F sy 7¢(X),F su,au(X),Fre, Bt (X),Fsu,Bt (X),Frt, au(X), F @ : 2 )
> f Su,Bt\X Tt,AulX ¢(t)dt
0
or
Fg pe(kx) min{Ft,Bt(x)-Ft,t(x)-FBt,Bt(x)'Ft,Bt(x)'FBt,t(x)'Ft'Bt;fLilg;ft(x)'Ft'B;;iCz?;;(x)
j #(t)dt > f ' ' #(t)dt
0 0
or

th,Bt(kx) ¢(t)dt > fOFt,Bt(x) ¢(t)dt

0

Using Lemma 3.1, we havét = t which shows that t is a common fixed point of ger (B, T). Hence t is a
common fixed point of both the pairs (A, S) and T8, Uniqueness of common fixed point is an eagyseguence
of the inequality (3.3.1). This completes the proof

Theorem 3.5. Let A,B, S and T be self mappings of a Menger spgaGe, A) satisfying the inequality (3.3.1).
Suppose that
(i) the pair (A, S) (or (B, T)) has property (E.A),
(ii) B(yn) converges for every sequencgi{in X wheneverT(y,) converges,
(iii) A(X) O T(X) (or B(X) O S(X)),
(i) S(X) (or T(X)) is a closed subset of X.
Then the pairs (A, S) and (B, T) have a point dhcimence each. Moreover, A, B, S and T have ausmigpmmon
fixed point provided both the pairs (A, S) and [B,are weakly compatible.
Proof. In view of Lemma 3.3, the pairs (A, S) and (B, Tipge the common property (E.A), i.e. there exiats t
sequences £} and {y,} in X such that
limy, o Axy = limy, o Sx, = limy, o Ty, = limy,_o By,=t for somet 7 X.

If S(X) is a closed subset of X, then proceedinghanlines of Theorem 3.5, one can show that tlre(paS) has a
coincidence point, say u, i.Au = Su = t.

Since A(X)O T(X) and Auld A(X), there exists W X such that Au = Tw. Now, we assert that Bw = Tw.

On using (3.3.1) witlp = x,, = w, one gets

FAXn,BW (kx)
f #(t)dt
0

) F sy, Tw (X)FTw,Bw (X) Fs3p, Tw(X) F 53, Axc, (%)
fmm{Fan,Tw(x)vFan,Axn(x)vFTw,Bw(x)vFan,Bw(x):FTw,Axn () —2 L ATt
0

Fsxp,Bw(X) ’ Frw,axpy (%)

}
#(t)dt

>

which on making B «, reduces to
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Fo (k) IRy (60 (30, Fe v ) o (30 Fe (0, S 600 Pt ()t (0
f #(t)dt > j ’ ’
0

0

#(t)dt

or

J‘OFt,Bw(kx) ¢(t)dt > J‘OFt,Bw(x) ¢(t)dt
Owing to Lemma 3.1, we have= Bw and hencdw = Bwwhich shows thalv is a coincidence point of the pair (B,
T). Rest of the proof can be completed on the lofake proof of Theorem 3.4. This completes ttaofir

Corollary 3.6. Let A and S be self mappings on a Menger space, (,FSuppose that
(i) the pair (A, S) enjoys the property (E.A),
(ii) for all p, O X and for all x > 0,

f: apaa k) 40y gt >

. Fsp,sq¥)Fsq,aq®) Fsp,sq(X)Fsp ap ()
min{Fsp sq(x),Fsp,ap(X),Fsq,aq(X),Fsp,aq(x),Fsqap(x), LR 124 224 2AP

Fspaat T Fsaapt #(t)dt, 0<k<1

0

(i) S(X) is a closed subset of X.

Then A and S have a coincidence point. Moreovethef pair (A, S) is weakly compatible, then A anth&e a
unique common fixed point.
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