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Abstract 

The authors have considered a complex system composed of single repairable unit and operating in ‘n’ 

multiple environmental conditions. The system may either go to complete breakdown shape due to common 

cause failure or it may go to any one of the abnormal weather operation states. The system is repairable 

from the degraded state. The failed system is assumed to be repaired back to its normal weather and 

abnormal weather operation states.  
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1. Introduction 

 The authors have therefore considered a complex system composed of single repairable unit and 

operating in ‘n’ multiple environmental conditions. The system may either go to complete breakdown shape 

due to common cause failure or it may go to any one of the abnormal weather operation states. The system 

is repairable from the degraded state. The failed system is assumed to be repaired back to its normal 

weather and abnormal weather operation states. The failure rates are exponential while repair rates follow 

general time distributions.  

  

  In general there are 3-types of weather condition i.e. cold, hot and warm standby. Cold standby means 

that the redundant components cannot fail while they are waiting. Earlier many researchers [1, 4, 14] have 

discussed when an operative unit fails, its repair starts immediately but in practical problem it may not 
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possible always. In practice, system do not always fail with major breakdown. Igichart and Igichart and 

lemoline; Arti R.(1993); Singh, S.B.(1998) developed various mathematical models consists two types of 

failure namely major and minor. Using Supplementary variables technique Laplace transforms of various 

state probabilities have been evaluated. Numerical examples have also been added to highlight the 

important results. 

 

2. Assumption 

(i). Initially at t = 0, the system operate in its normal weather mode. 

(ii). Failures are statistically independent. 

(iii). Repair facility is available at every state of transition. 

(iv). Repairs follow general time distribution while failures follow exponential time distribution. 

(v). The system has three modes viz; good, degraded and failed.  

(vi). The system cannot move from one abnormal weather operation state to another. 

(vii). After repair, system works like a new one 

 

 

3. Notations 

 

 
i      : Constant failure rates from state P0 to      

       i i

i

P    

 

 
i      : Constant failure rates from state Pi to  

iF i

i

P    

  

( )f s     : Laplace transform of f (t) 
 

 

 D      : Constant failure rate from state P0 to 
DFP  

 

     \ \n x x y     : General repair rates from state 0 0, ,
D ii F FP to P P P to P  

 

 0P t     : The probability that at time t, the system is in good state. 

 

  ,iP x t      : The probability that at time t, the system is in degraded state due to 

       the abnormal weather operation and elapsed repair time lies in 

       interval  , . 1,2,......,x x i n 
 

 

  ,
iFP y t     : The probability that at time t, the system is  in failed state and  

       elapsed repair time lies in interval  ,y y   
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 ,
DFP x t     : The probability that at time t, the system is in failed state due to  

       common cause failure and elapsed repair time lies in interval  

         ,x x  . 

 

 

Figure 1 represents the state transition diagram of the system 

 

 

 

 

 

 

 

 

  

  

  

          

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Formulation of the Mathematical Model 

 By using the probability consideration and continuity arguments, we get the following 

difference-differential equations governing the behaviour of the system: 

   

   Fig. 1: Transition State Diagram 
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      0

0

,i D i i

i

P t P x t x dx
t

  


 
    
   +        

0 0

, ,
i DF F

i

P y t y dy P x t x dx 
 

     (1) 

 

    , 0,i i ix P x t
x t

 
  
      

1,2,3i n            (2) 

               

    , 0,
iFy P y t

y t


  
   

  
1,2,3i n                (3) 

 

    , 0
DFx P x t

x t


  
     

                 (4) 

            

4.1 Boundary Conditions 

    00, , 1,2, ,i iP t P t i n                (5) 

     0, , 1,2, ,
iF i iP t P t i n               (6) 

     00,
DF DP t P t                (7) 

               

4.2 Initial Conditions 

      0 0 1P  , Otherwise zero                (8) 

 

5. Solution of the Model 

 On taking Laplace transform of equations (1) through (7) by using initial conditions one may obtain:  

   

      0

0

1 ,i D i i

i i

s P s P x s x dx  


 
    

 
         

0 0

, ,
i DF F

i

P y s y dy P x s x dx 
 

       (9) 

              

       , 0i is x P x s
x

 
 
     

               (10) 

 

    , 0
iFs y P y s

y


 
   

 
                   (11) 

 

    , 0
DFs x P x s

x


 
    

                 (12) 
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    00,i iP s P s                   (13) 

    00,
iF iP s P s                   (14) 

    00,
DF DP s P s                   (15) 

Integrating the equation (10) and using (13), one may get 

         0

0

, exp

x

i iP x s P s s x x dx  
 

    
 

   

       0 ii iP s P s D s                  (16) 

Where,   
 

 
1

1

i

i

i

i

S s
D s

s










 
 


 

Integrating (11) and using (14) and (10), one may obtain 

     
1

0

, exp

y

F iP y s P s sy y dy 
 

   
  

  

         0i iF iP s P s D s D s                 (17) 

Integrating (12) and using (15), one may obtain 

       0

0

, exp
D

y

F DP x s P s sx x dx 
 

   
  

  

       0DF DP s P s D s                (18) 

By using relevant relations, (9) becomes 

   
 

0

1
P s

A s
                  (19) 

 Where,          
i iD i i i D

i

A s s S s D s S s S s                        (20) 

Thus, finally we have 

   
 

0

1
P s

A s
                  (21) 

   
 

  , 1, 2
iiP s D s i n

A s



                (22) 

   
 

    , 1, 2
i iFP s D s D s i n

A s
 


                  (23) 



Network and Complex Systems                                                                       www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol.3, No.4, 2013 

 

 

15 

   
 

 
D

D
FP s D s

A s



                (24) 

It is interesting to note that sum of equations (21) through (24) 
1

s


 

 

6. Ergodic behaviour of the system 

 By using Abel’s Lemma;      
0

lim lim
s t

s F s F t F say
 

  , provided the limit on R.H.S. exists, we 

obtain the following time independent probabilities from equations (21) through (24) as 

   
 

0

1

' 0
P

A
                 (25) 

   
 

 
' 0 ii iP D

A



                (26) 

   
 

 
' 0i iF iP D M

A
 


               (27) 

   
 ' 0DFP M

A



                (28) 

Where,     
0

' 0
s

d
A A s

ds 

 
  
 

              (29) 

kM = Mean time to repair k
th

 unit 

 

7. Evaluation of up and down state probabilities  

 We have,  

    
1

1up

D

P s
s s



  

 
     

             (30) 

Also,      
1

down upP s P s
s

                (31) 

                

8. Reliability Analysis  

 We have for the system,  

    
1

D

R s
s  


 

               (32) 

Inverting this, we have 

     exp DR t t                    (33) 

 

9. M.T.T.F. Evaluation  

 We know that 

     
0

1
. . . . lim

s
D

M T T F R s
 

 


           (34) 
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10. Numerical Computation  

 For a numerical example, let us consider  

 0.001, 0.002D    and putting in equation (33) one obtains 

     exp 0.003R t t   

 and  
1

. . . .
0.02

M T T F





 

 

11. Interpretation  

11.1 Table 1 and Figure 2; forecast the reliability of the model w.r.t. time and their corresponding 

curve.  

S.No. t R(t) = exp(-0.003 t) 

1 0 1 

2 1 0.997004496 

3 2 0.994017964 

4 3 0.991040379 

5 4 0.988071713 

6 5 0.98511194 

7 6 0.982161032 

8 7 0.979218965 

9 8 0.97628571 

10 9 0.973361242 

11 10 0.970445534 

12 11 0.96753856 

13 12 0.964640293 

14 13 0.961750709 

15 14 0.958869781 

16 15 0.955997482 

 

 

 

Table 1: Reliability function as time 
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11.2 Table 2 and figure 3 reveal that as  increases, MTTF goes on decreases and ultimately the variation 

becomes negligible, and their corresponding curve  

 

S.No. 
M.T.T.F M.T.T.F M.T.T.F M.T.T.F 

D = 0.003 D = 0.005 D = 0.007 D = 0.009 

1 0.001 250 166.666667 125 100 

2 0.002 200 142.857143 111.11111 90.909091 

3 0.003 166.6666667 125 100 83.333333 

4 0.004 142.8571429 111.111111 90.909091 76.923077 

5 0.005 125 100 83.333333 71.428571 

6 0.006 111.1111111 90.9090909 76.923077 66.666667 

7 0.007 100 83.3333333 71.428571 62.5 

8 0.008 90.90909091 76.9230769 66.666667 58.823529 

9 0.009 83.33333333 71.4285714 62.5 55.555556 

10 0.01 76.92307692 66.6666667 58.823529 52.631579 

11 0.011 71.42857143 62.5 55.555556 50 

12 0.012 66.66666667 58.8235294 52.631579 47.619048 

13 0.013 62.5 55.5555556 50 45.454545 

14 0.014 58.82352941 52.6315789 47.619048 43.478261 

15 0.015 55.55555556 50 45.454545 41.666667 

16 0.016 52.63157895 47.6190476 43.478261 40 

 

Reliability V/S time 

 

Figure 2: Reliability function as time 

 

Table 2: MTTF and different values of failure rate 
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12. Conclusion 

 Table 1 and Figure 2 provide information how reliability of the complex engineering repairable 

system changes with respect to the time when failure rate increases reliability of the system decreases.  

 Table 2 and Figure 3 reveal that as  increases, MTTF goes on decreases and ultimately the variation 

becomes negligible.  

The further research area is widely open, where one may think of the application of MTTF 
and sensitivity analysis. 
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