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Abstract 

The electrical energy produced at the generating station is conveyed to the consumers through a network of 

transmission and distribution systems. It is often difficult to draw a line between the transmission and 

distribution systems of a large power system. It is impossible to distinguish the two merely by their voltage 

because what was considered as a high voltage because what was considered as a high voltage a few years ago is 

now considered as a low voltage. In general, distribution system is that part of power system which distributes 

power to the consumers for utilization. Analysis of radial distribution systems with embedded series FACTS 

devices is facilitated by a formulation of power flow  equations with bus voltage magnitudes and line flows as 

independent variables The line flow-based (LFB) formulation is shown to provide easy implementation with 

multiple series FACTS devices in the system and enable direct evaluation of the FACTS device ratings. 
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1. INTRODUCTION 

All distribution of electrical energy is done by constant voltage system. In practice, the following distribution 

circuits are generally used.In this system, separate feeders radiate from a single substation and feed the 

distributors at one end only. Fig 1.1 shows a single line diagram of a radial system for d.c. distribution where a 

feeder OC supplies a distributor AB at point A. Obviously, the distributor is fed at one end only i.e., point A is 

this case. Fig 1.2 shows a single line diagram of radial system for a.c. distribution.  

Fig: 1.1 Radial Systems 

This is the simplest distribution circuit and has the lowest initial cost. However, it suffers from the following 

drawbacks: 

The end of the distributor nearest to the feeding point will be heavily loaded.  

The consumers are dependent on a single feeder and single distributor. Therefore, any fault on the feeder or 

distributor cuts off supply to the consumers who are on the side of the fault away from the substation. 
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The consumers at the distant end of the distributor would be subject to serious voltage fluctuations when the load 

on the distributor changes. Due to these limitations, this system is used for short distances only. 

1.2.2. Ring Main System 

In this system, the primaries of distribution transformers form a loop. The loop circuit starts from the substation 

bus-bars, makes a loop through the area to be served, and returns to the substation. Fig 1.2 shows the single line 

diagram of ring main system for a.c distribution where substation supplies to the closed feeder LMNOPQRS. 

The distributors are tapped from different points M, O and Q of the feeder through distribution transformers.  

The ring main system has the following advantages There are less voltage fluctuations at consumer’s 

terminals. The system is very reliable as each distributor is fed via two feeders. In the event of fault on any 

section of the feeder, the continuity of supply is maintained. For example, suppose that fault occurs at any point 

F of section SLM of the feeder. Then section SLM of the feeder can be isolated for repairs and at the same time 

continuity of supply is maintained to all the consumers via the feeder SRQPONM. 

 
Fig 1.2 Ring main System 

 

1.1. Distribution Load Flows      

In this work main consideration is radial distribution system. Distribution power flow methods reported in the 

literature and actually implemented prefer to calculate line flows and voltage magnitudes using forward and 

reverse sweeps along a radial line. Mainly tree load flows are there.  

           1. LFB (Line Flow Based) algorithm 

           2. Decoupled LFB algorithm 

           3. Linear LFB algorithm 

As stated in the introduction, there is a large incentive for the utilization of the power semiconductor 

technology in order to increase the network laudability. The faster response of the semiconductor-based 

controllers helps not only in handling dynamic problems but also in the steady-state problem of power-flow 

control. The main disadvantages of the mechanically switched controllers are the discrete control and the wear 

out of mechanical switches. The FACTS controllers provide smooth control with no (or few) mechanical parts 

and with high reliability. 

FACTS technology opens up new opportunities for controlling power and enhancing the usable capacity of 

present, as well as new and upgraded, lines. The possibility that current through a line can be controlled at a 

reasonable cost enables a large potential of increasing the capacity of existing lines with larger conductors, and 

use of one of the FACTS Controllers to enable corresponding power to flow through such lines under normal 

and contingency conditions. By providing added flexibility, FACTS Controllers can enable a line to carry power 

closer to its thermal rating. Mechanical switching needs to be supplemented by rapid-response power electronics. 

It must be emphasized that FACTS is an enabling technology, and not a one-on-one substitute for mechanical 

switches. 
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2 LFB RADIAL DISTRIBUTION POWER FLOW MODEL 

The nodal variables of bus voltage magnitudes and phase angles in the common power flow models do not 

reflect the ultimately required practical knowledge of the line flows. The power system operation focuses on 

maintaining a satisfactory level of voltage magnitudes, while dispersing real power and reactive power over 

transmission lines or feeders to the loads. Choice of line flows as variables will provide greater flexibility in 

problem resolution from a practical viewpoint.  

The “line flow model” equations are derived using graph theory. In a power system structure, the line 

segments are called elements and their terminals are called nodes (buses). From graph-theory, concepts of trees 

and paths are used in developing the KCL and KVL equations through incidence matrices. 

Real and reactive power balance equations at all busses except slack bus can be written using the incidence 

matrix. Since all shunt connections are excluded in the incidence matrix, their real and reactive power 

contributions are accounted for separately in the power balance equations. Real and reactive power loads, shunt 

capacitors and line charging susceptances can be treated as shunt branches. The real and reactive power 

mismatch equation of each bus except the slack bus is consider. 

In this chapter, basic discussion is related to LFB, Decoupled LFB and linear LFB. Fig.2.1 shows IEEE 13 

node test feeder system. This 13 bus system consist of 12 lines, 1 regulator, 1 transformer and 1 switch. In 

practice standard system contains 3phase unbalanced system data. This data is converted to 3phase balanced data 

or 1phase data. Positive sequence of 3phase unbalanced is nothing but a balanced domain and it simplifies the 

calculations. 

The radial distribution system with thirteen nodes and twelve lines is  shown Fig.2.1. Lines have only series 

impedances. The nodes are numbered arbitrarily. This typical distribution network graph is redrawn in 

Fig.2.2.with bus numbers in a perticular sequence starting from 1. Although bus-1 is given to the source bus here, 

the others encircled are arbitrary numbers as given in the original data list. This is useful when the network is 

reconfigured to meet the demand under different load and feeder scenarios. The flows in the branches are always 

oriented away from the source node, and so the direction arrows are ignored. 

 

2.2. Radial Distribution Network 

The radial distribution network graph has a tree structure with no loops as shown in  Fig.2.2. The total number of 

lines equals the number of buses minus one. The pattern of incidence matrix depends on the order of lines and 

nodes, the incidence matrix of given distribution network is shown Fig.2.3. The Arbitrary order incidence matrix  

have a structure that depends on the order in which the lines are read from the data. Further, the incidence matrix 

is non square and singular. Any line oriented from a bus is given +1 and for towards node - 1 is assigned if the 

slack bus is excluded, the incidence matrix becomes square and non singular. 

 
Fig.2.1 IEEE 13-node test feeder 
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Fig.2.2: Graph of   IEEE 13-node feeder 

 

3 BFS (BREADTH FIRST SEARCH) METHOD 

BFS is a web page searching method. BFS is a uniformed search method that aims to expand and examine all 

nodes of a graph systematically in search of a solution. In other words, it exhaustively searches the entire graph 

without considering the goal until it finds it. It does not use a heuristic.  

The basic idea of BFS is to point out to as many buses as possible before penetrating deep into a tree. This 

means that we visit all the buses adjacent to the current level before going on to another one. 

The brief description of BFS to renumber buses and branches may be summarized in the following three 

steps for building an optimal BFS tree. 

1. Start at source bus as the first level and fan out to the “downstream” buses as the next levels. 

2. On the same level, all bus numbers are ordered consecutively. 

3. Branch renumbering is similar to that of the bus renumbering. At any level, a branch number is one less than 

the “upstream” bus number. 

 
Fig.3.1: BFS numbering tree of the IEEE 13-node system. 
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Fig.3.2: Reorder Incidence Matrix for BFS optimal tree 

An example of using the BFS algorithm is illustrated using the graph of IEEE 13 node feeder Fig.2.2, 

including the source node (at root, originally named as 650) called Bus 1, is shown in incidence matrix Fig.2.3. 

To conform to LFB load flow equations of the later section, the rows of the matrix are related to buses and its 

columns to branches. The BFS renumbering is applied to the 13-node test feeder. Before renumbering that test 

system is divided different sections. The renumbering is given according to the sections. The optimal BFS tree of 

the IEEE 13-node feeder is shown in Fig.3.1. Its reordered incidence matrix, including the source node, in shown 

in Fig.3.2. After the row corresponding to the source node is deleted, bus incidence matrix A  becomes the upper 

triangle matrix in Fig.3.2. This sparse upper triangle incidence matrix results in reducing computational effort 

during the iterative process. 

 

4. IEEE 34 BUS SYSTEM RESULTS 

4.1 Decoupled LFB Method Results 

Table 4.1.Line Data of load Pl and Ql at end buses of each line 

LINE NO LP LQ R X Pl Ql 

1 1 2 0.5473 0.4072 0 0 

2 2 3 0.3669 0.273 0.0055 0.0029 

3 3 4 6.835 5.086 0.0055 0.0029 

4 4 5 1.0253 0.544 0.0016 0.0008 

5 4 6 7.953 5.917 0.0016 0.0008 

6 6 7 6.305 4.6913 0 0 

7 7 8 0.0032 0.0016 0 0 

8 8 9 0.0992 0.0494 0 0 

9 9 10 0.302 0.1603 0.0005 0.0002 

10 9 11 3.267 1.626 0.0034 0.0017 

11 10 12 8.506 4.515 0.0049 0.0024 

12 11 13 0.5352 0.2841 0.0169 0.0087 

13 11 14 0.2688 0.1338 0.004 0.002 

14 12 15 2.427 1.2883 0.0011 0.0005 

15 14 16 6.5404 3.255 0.0135 0.007 

16 16 17 0.1664 0.0828 0.0067 0.0033 

17 17 18 4.1213 2.1874 0.0004 0.0002 

18 17 19 11.785 5.865 0.0004 0.0002 

19 19 20 0.0032 0.0016 0 0 

20 20 21 1.5679 0.7802 0.0015 0.0007 

21 20 22 0 0 0.0049 0.0025 

22 21 23 0.2862 0.152 0 0 

23 21 24 1.8655 0.9283 0.0032 0.0017 

24 22 25 2.24 1.666 0.0178 0.009 

25 24 26 0.6464 0.3217 0.09 0.045 
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LINE NO LP LQ R X Pl Ql 

26 24 27 0.0896 0.0446 0.0348 0.0212 

27 26 28 0.8576 0.427 0.0009 0.0005 

28 27 29 0.432 0.215 0.0122 0.0063 

29 28 30 0.2752 0.1369 0.0864 0.1258 

30 28 31 0.0896 0.0446 0.0094 0.0062 

31 29 32 1.165 0.5796 0.0028 0.0014 

32 31 33 0.5894 0.436 0.0068 0.0034 

33 32 34 0.1696 0.0844 0.0028 0.0014 

 

Table 4.2.Real &Reactive Power at each Bus 

BUS NO Peff Qeff 

1 0.3538 0.3594 

2 0.3538 0.3594 

3 0.3483 0.3565 

4 0.3428 0.3536 

5 0.0016 0.0008 

6 0.3396 0.352 

7 0.3396 0.352 

8 0.3396 0.352 

9 0.3396 0.352 

10 0.0338 0.0174 

11 0.3053 0.3344 

12 0.0304 0.0157 

13 0.004 0.002 

14 0.2964 0.33 

15 0.0135 0.007 

16 0.2953 0.3295 

17 0.2886 0.3262 

18 0.0004 0.0002 

19 0.2878 0.3258 

20 0.2878 0.3258 

21 0.1963 0.2801 

22 0.09 0.045 

23 0.0032 0.0017 

24 0.1882 0.2759 

25 0.09 0.045 

26 0.062 0.0365 

27 0.1084 0.2304 

28 0.0272 0.0153 

29 0.1075 0.2299 

30 0.0094 0.0062 

31 0.0056 0.0028 

32 0.0211 0.1041 

33 0.0028 0.0014 

34 0.0143 0.1007 

 

      28 0.9365 2.7018 

29 0.9364 2.7248 

30 0.9365 2.7019 

31 0.9365 2.7018 

32 0.936 2.7536 

33 0.9365 2.7017 

34 0.936 2.7577 
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Fig 4.1.Graph: Busno Vs Voltage 

LFB and D-LFB methods have converged in 4 iterations for 13 and 34 bus systems. The linear LFB has 

taken only two iterations but the results are not accurate enough. 

Table 4.3. Comparison of solution times, in seconds. 

IEEE Distribution systems LFB D-LFB Linear LFB 

IEEE 13-node 0.03 0.02 0.01 

IEEE 34-node 0.04 0.03 0.02 

It may be noted that with good accuracy and reduced time the D-LFB establishes its superiority other two 

methods (LFB and linear-LFB). 

 

CONCLUSIONS 

In this thesis three algorithm for line flow study  of radial distribution system have been considered. Three  

algorithms Line Flow Based (LFB), Decoupled LFB, Linear LFB formulation and Decoupled LFB with 

embedded series FACTS devices (TCSC and TCVR) are implemented in this thesis and tested on IEEE 13- bus 

and IEEE 34-bus systems. 

Breadth first search method is used for network modification .The incidence matrix was converted to upper 

triangular matrix. This method incorporated with LFB, it is termed Decoupled LFB. In this method, 

commutation time is low compared to LFB. 

By neglecting losses in the formation of LFB method a new method called linear LFB was developed. 

The three algorithms LFB, Decoupled LFB, Linear LFB are implemented on IEEE 13 bus and IEEE 34 bus 

distribution systems and observed that Decoupled LFB is taking less time and produced accurate results 

compared other two algorithms. Among three methods the Decoupled LFB is the best one. Thus, in this thesis 

Decoupled LFB embedded with series FACTS devices is implemented and developed a software package. 

Variable swapping method is incorporated in the Decoupled LFB for the system with TCSC or TCVR. 
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