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Abstract 

In this paper, we prove some common fixed point theorems for weakly compatible mappings under a new property in 

fuzzy metric spaces. We prove a new result under (S-B) property defined by Sharma and Bamboria [22]. 
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1. Introduction 

The foundation of fuzzy mathematics was laid down by Zadeh [25] with the evolution of the concept of fuzzy sets in 

1965. The proven result becomes an asset for an applied mathematician due to its enormous applications in various 

branches of mathematics which includes differential equations, integral equation etc.  and other areas of science 

involving mathematics especially in logic programming and electronic engineering. It was developed extensively by 

many authors and used in various fields. Especially, Deng [7], Erceg [8], and Kramosil and Michalek [17] have 

introduced the concepts of fuzzy metric spaces in different ways. To use this concept in topology and analysis, 

several researchers have studied fixed point theory in fuzzy metric spaces  and  fuzzy mappings [2],[3],[4],[5], 

[10],[14], [15] and many others. Recently, George and Veeramani [12],[13] modified the concept of fuzzy metric 

spaces  introduced  by  Kramosil  and  Michalek   and   defined   the  Hausdoff topology of fuzzy metric spaces. They 

showed also that every metric induces a fuzzy metric.Grabiec [11] extended the well known fixed point theorem of 

Banach [1] and Edelstein [9] to fuzzy metric spaces in the sense of Kramosil and Michalek [17].Moreover, it appears 

that the study of Kramosil and Michalek [17] of  fuzzy  metric  spaces  paves  the  way for developing a soothing  

machinery in the field of fixed point theorems in particular, for the study of contractive type maps.  

 

2 . Preliminaries 

Definition 2.1 : [20]   A binary operation 
*
 ∶  [0,1] [0,1] [0,1] is called a continuous t-norm if ([0,1], *) is an 

abelian topological monoid with the unit 1 such that 𝑎 * 𝑏  𝑐 * 𝑑 whenever 𝑎  𝑐 𝑎𝑛𝑑 𝑏  𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 are in 

[0,1]. 

Examples of 𝑡 − 𝑛𝑜𝑟𝑚 are 𝑎 * 𝑏 =  𝑎𝑏 𝑎𝑛𝑑 𝑎 * 𝑏 = min{𝑎, 𝑏}. 

Definition  2.2 : [17]  The 3-tuple (𝑋, 𝑀, *) is called a fuzzy metric space (shortly FM-space) if 𝑋 is an arbitrary set, 

* is a continuous t-norm and M is a fuzzy set in 𝑋2  [0,)  satisfying the following conditions for all 

𝑥, 𝑦, 𝑧 𝑖𝑛  𝑋 𝑎𝑛𝑑 𝑡, 𝑠 > 0, 

(𝐹𝑀 − 1)       𝑀(𝑥, 𝑦, 0) =  0,                                                                          

(𝐹𝑀 − 2)        𝑀(𝑥, 𝑦, 𝑡)  =  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  >  0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 =  𝑦, 

(𝐹𝑀 − 3)       𝑀(𝑥, 𝑦, 𝑡) =  𝑀(𝑦, 𝑥, 𝑡),                                                          

(𝐹𝑀 − 4)       𝑀(𝑥, 𝑦, 𝑡)* 𝑀(𝑦, 𝑧, 𝑠)   𝑀(𝑥, 𝑧, 𝑡 + 𝑠),                             

(𝐹𝑀 − 5)       𝑀(𝑥, 𝑦, . ): [0,1]  [0,1] 𝑖𝑠 𝑙𝑒𝑓𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠.                    

In what follows, (𝑋, 𝑀, *) will denote a fuzzy metric space. Note that 𝑀(𝑥, 𝑦, 𝑡) can be thought as the degree of 

nearness between 𝑥 and 𝑦 with respect to 𝑡. We identify 𝑥 =  𝑦 with 𝑀(𝑥, 𝑦, 𝑡)  =  1 for all 𝑡 >  0 and 𝑀(𝑥, 𝑦, 𝑡)  =
 0  with  and we can find some topological properties and examples of fuzzy metric spaces in (George and 

mailto:rajind.math@gmail.com


Network and Complex Systems             www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol 2, No.4, 2012 

 

39 

Veeramani [12]. 

Example  2.1 :  [12]   Let (𝑋, 𝑑)  be a metric space. Define 𝑎 *  𝑏 =  𝑎𝑏 𝑜𝑟 𝑎 *  𝑏 =  𝑚𝑖𝑛 {𝑎, 𝑏}  and for all 

𝑥, 𝑦 𝑖𝑛  𝑋 𝑎𝑛𝑑 𝑡 >  0, 

                  𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡+𝑑(𝑥,𝑦)
  

Then (𝑋, 𝑀, * ) is a fuzzy metric space. We call this fuzzy metric 𝑀 induced by the metric 𝑑 the standard fuzzy 

metric. 

Lemma  2.1 :  [11]
  
 For all 𝑥, 𝑦  𝑋, 𝑀(𝑥, 𝑦, . ) is non-decreasing. 

Definition  2.3 :   [11]    Let (𝑋, 𝑀, *) be a fuzzy metric space : 

(i) A sequence {𝑥𝑛} 𝑖𝑛 𝑋 is said to be convergent to a point  𝑥 𝑋 (𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑙𝑖𝑚 𝑥𝑛  =  𝑥), if 

  lim𝑛→∞ 𝑀(𝑥𝑛  , 𝑥 , 𝑡) = 1,      for all 𝑡 >  0. 

(ii) A sequence {𝑥𝑛} 𝑖𝑛 𝑋 called a Cauchy sequence if  

                                          lim𝑛→∞ 𝑀(𝑥𝑛+𝑝 , 𝑥 , 𝑡) = 1,      for all 𝑡  >  0 and 𝑝 >  0. 

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete. 

Remark  2.1 :  Since  * is continuous, it follows from (𝐹𝑀 − 4) that the limit of the sequence in 𝐹𝑀 −space  is 

uniquely determined. 

Let (𝑋, 𝑀,  *)  be a fuzzy metric space with the following condition: 

(𝐹𝑀 − 6)          lim𝑡→∞ 𝑀(𝑥, 𝑦, 𝑡)   =   1   for all 𝑥, 𝑦    𝑋 . 

Lemma  2.2 :  [6], [18]    If  for all 𝑥, 𝑦  𝑋 , 𝑡 >  0 and for a number k  (0,1),                 

                                  𝑀(𝑥, 𝑦, 𝑘𝑡)    𝑀(𝑥, 𝑦, 𝑡)   then 𝑥 =  𝑦. 

Lemma 2.3 :  [18]  Let {𝑦𝑛} be a sequence in a fuzzy metric space (𝑋, 𝑀, *) with the condition (𝐹𝑀 − 6). If there 

exists a number    𝑘  (0,1) such that 

       𝑀(𝑦𝑛+2, 𝑦𝑛+1, 𝑘𝑡)  𝑀(𝑦𝑛+1, 𝑦𝑛 , 𝑡) 

for all 𝑡 >  0 and 𝑛 =  1, 2, … … .. then {𝑦𝑛} is a Cauchy sequence in X. 

Definition  2.4 :  [18]   Let 𝑆 and 𝑇 be mappings from a fuzzy metric space (𝑋, 𝑀,*) into itself. The mappings 𝑆 and 

𝑇 are said to be compatible if 

         lim𝑛→∞ 𝑀(𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 , 𝑡 )    =    1,   

for all 𝑡 >  0, whenever  {𝑥𝑛} is a sequence in 𝑋 such that 

         lim𝑛→∞  𝑆𝑥𝑛   =   lim𝑛→∞  𝑇𝑥𝑛    =   𝑧    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑧  𝑋.  

Definition 2.5 :  [6] Let 𝑆 and 𝑇 be mappings from a fuzzy metric space (𝑋, 𝑀,∗) into itself. The mappings 𝑆 and 𝑇 

are said to be compatible of type () if, 

                                    lim𝑛→∞ 𝑀(𝑆𝑇𝑥𝑛 , 𝑇𝑇𝑥𝑛 , 𝑡 )  = 1, lim𝑛→∞ 𝑀(𝑇𝑆𝑥𝑛 , 𝑆𝑆𝑥𝑛 , 𝑡 ) =  1, 

for all 𝑡 >  0, whenever  {𝑥𝑛}  is a sequence in 𝑋 such that 

                       lim𝑛→∞  𝑆𝑥𝑛  =  lim𝑛→∞  𝑇𝑥𝑛  =  𝑧    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑧  𝑋. 

Definition 2.6 :  [16]   A pair of mappings S and T is called weakly compatible pair in fuzzy metric space if they 

commute at coincidence points; i.e. , if  𝑇𝑢  =   𝑆𝑢 for some 𝑢  𝑋, then  𝑇𝑆𝑢  =   𝑆𝑇𝑢. 

Definition  2.7 : Let 𝑆 and 𝑇 be two self mappings of a fuzzy metric space (𝑋, 𝑀, *). We say that 𝑆 and 𝑇 satisfy the 

property (S-B) if there exists a sequence {𝑥𝑛}  in 𝑋 such that  

                        lim𝑛→∞  𝑆𝑥𝑛  = lim𝑛→∞  𝑇𝑥𝑛  =  𝑧    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑧  𝑋.   

Example 2.2 : [22] Let 𝑋 = [0, + ). Define 𝑆, 𝑇 ∶  𝑋  𝑋 by 

            𝑇𝑥 =  𝑥 / 4 𝑎𝑛𝑑 𝑆𝑥 =  3𝑥 / 4, 𝑥  𝑋.         

Consider the sequence  𝑥𝑛 =  1/𝑛, clearly lim𝑛→∞  𝑆𝑥𝑛  =  lim𝑛→∞  𝑇𝑥𝑛  = 0. 
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Then 𝑆 and 𝑇 satisfy (S-B) property. 

Example 2.3 : [22] Let 𝑋 =  [2, + ). Define 𝑆, 𝑇 ∶  𝑋  𝑋 𝑏𝑦 

                                        𝑇𝑥 =  𝑥 +  1 𝑎𝑛𝑑 𝑆𝑥 =  2𝑥 +  1, 𝑥  𝑋. 

Suppose property (𝑆 − 𝐵) holds; then there exists in 𝑋 a sequence {𝑥𝑛} satisfying  

  lim𝑛→∞  𝑆𝑥𝑛  =  lim𝑛→∞  𝑇𝑥𝑛  =  𝑧    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑧  𝑋.  

Therefore 

  lim𝑛→∞ 𝑥𝑛 =  𝑧 –  1 𝑎𝑛𝑑  lim𝑛→∞ 𝑥𝑛 =  
(𝑧 – 1)

2
. 

Then 𝑧 =  1, which is a contradiction since 1  𝑋.  Hence 𝑆 and 𝑇 do not satisfy the property (S-B). 

Remark 2.2 : It is clear from the definition of Mishra et al. [18] and Sharma and Deshpande [23] that two self 

mappings S and T of a fuzzy metric space  (𝑋, 𝑀, *) will be non-compatible if there exists at least one sequence {𝑥𝑛} 

in X such that 

       lim𝑛→∞  𝑆𝑥𝑛  =  lim𝑛→∞  𝑇𝑥𝑛  =  𝑧    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑧  𝑋. 

but lim𝑛→∞ 𝑀 (𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 , 𝑡) is either not equal to 1 or non-existent. Therefore two non-compatible self mappings 

of a fuzzy metric space (𝑋, 𝑀, *) satisfy the property (S-B). 

It is easy to see that if 𝑆 and 𝑇 are compatible , then they are weakly compatible and the converse is not true in 

general. 

Example 2.3. Let  =  𝑅+ . Define 𝑆 and 𝑇 by : 

                 𝑆𝑥 =  𝑥   𝑎𝑛𝑑  𝑇𝑥 =  2𝑥 − 1 

                  𝑆𝑥 =  𝑇𝑥  𝑖𝑓𝑓   𝑥 =  1, 

As   𝑆𝑇(1)  =  𝑆(1) = 1,   𝑇𝑆(1) =  𝑇(1) =  1 

Therefore  {𝑆, 𝑇} are weakly compatible. 

Turkoglu, Kutukcu and Yildiz [24] prove the following : 

Theorem 2.1. Let (𝑋, 𝑀, *) be a complete fuzzy metric space with 𝑡*𝑡 ≥  𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  [0,1]  and let 𝑃, 𝑆, 𝑇 𝑎𝑛𝑑 𝑄 

be maps from 𝑋 into itself such that 

(2.1)    𝑃𝑇(𝑋)  ∪ 𝑄𝑆(𝑋)     𝑆𝑇(𝑋),  

(2.2)   there exists a constant 𝑘  (0,1) such that 

                            𝑀²(𝑃𝑥, 𝑄𝑦, 𝑘𝑡) ∗ [ 𝑀(𝑆𝑥, 𝑃𝑥, 𝑘𝑡)𝑀(𝑇𝑦, 𝑄𝑦, 𝑘𝑡)] ∗ 𝑀²(𝑇𝑦, 𝑄𝑦, 𝑘𝑡 )                   

                                                                           ≥   [𝑝 𝑀(𝑆𝑥, 𝑃𝑥, 𝑡)   +   𝑞 𝑀(𝑆𝑥, 𝑇𝑦, 𝑡)] 𝑀(𝑆𝑥, 𝑄𝑦, 2𝑘𝑡) 

for all 𝑥, 𝑦  𝑋 and 𝑡 >  0, where  0 <  𝑝, 𝑞 <  1 such that  𝑝 +  𝑞  =   1,   

(2.3)   the pairs {𝑃, 𝑆} and {𝑄, 𝑇} are compatible of type (), 

(2.4)   𝑆 and 𝑇 are continuous  and 𝑆𝑇 =  𝑇𝑆.  

Then 𝑃 , 𝑆, 𝑇 𝑎𝑛𝑑 𝑄 have a unique common fixed point. 

Sharma, Pathak and Tiwari [21]  improved Theorem 2.1 and proved the following . 

Theorem  2.2.  𝐿𝑒𝑡 (𝑋, 𝑀, *) be a complete fuzzy metric space with 𝑡∗𝑡 ≥  𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  [0,1]  and let 𝑃, 𝑆, 𝑇 and 𝑄 

be maps from 𝑋 into itself such that 

(2.5)   𝑃𝑇(𝑋) ∪  𝑄𝑆(𝑋)     𝑆𝑇(𝑋), 

(2.6)   there exists a constant 𝑘  (0,1) such that 

                                𝑀²(𝑃𝑥, 𝑄𝑦, 𝑘𝑡) ∗ [ 𝑀(𝑆𝑥, 𝑃𝑥, 𝑘𝑡)𝑀(𝑇𝑦, 𝑄𝑦, 𝑘𝑡)] ∗ 𝑀²(𝑇𝑦, 𝑄𝑦, 𝑘𝑡 )                   

                                                                                 ≥   [𝑝 𝑀(𝑆𝑥, 𝑃𝑥, 𝑡)   +   𝑞 𝑀(𝑆𝑥, 𝑇𝑦, 𝑡)] 𝑀(𝑆𝑥, 𝑄𝑦, 2𝑘𝑡) 

for all 𝑥, 𝑦  𝑋 𝑎𝑛𝑑 𝑡 >  0, where  0 <  𝑝, 𝑞 <  1 such that  𝑝 +  𝑞  =   1, and    
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(2.7)   the pairs {𝑃, 𝑆} 𝑎𝑛𝑑 {𝑄, 𝑇} are weak compatible. 

Then 𝑃 , 𝑆, 𝑇 𝑎𝑛𝑑 𝑄 have a unique common fixed point. 

Rawal [19] proved the following : 

Theorem 2.3.  Let (𝑋, 𝑀, *) be a complete fuzzy metric space with 𝑡∗𝑡 ≥  𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  [0,1]  . Let 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇 be 

mappings of 𝑋 into itself such that 

(2.8)    𝐴(𝑋)  𝑇(𝑋) 𝑎𝑛𝑑  𝐵(𝑋)  𝑆(𝑋), 

(2.9)     there exists a constant k  (0, 1) such that 

                                     𝑀2𝑝(𝐴𝑥, 𝐵𝑦, 𝑘𝑡)   ≥   min { 𝑀2𝑝(𝑆𝑥, 𝑇𝑦, 𝑡), 𝑀𝑞(𝑆𝑥, 𝐴𝑥, 𝑡). 𝑀𝑞’(𝑇𝑦, 𝐵𝑦, 𝑡) ,                                   

                                              𝑀𝑟(𝑆𝑥, 𝐵𝑦, (2 − ) 𝑡). 𝑀𝑟’(𝑇𝑦, 𝐴𝑥, 𝑡), 𝑀𝑠(𝑆𝑥, 𝐴𝑥, 𝑡). 𝑀𝑠’(𝑇𝑦, 𝐴𝑥, 𝑡), 

                                                                                            𝑀𝑙(𝑆𝑥, 𝐵𝑦, (2 − ) 𝑡). 𝑀𝑙’(𝑇𝑦, 𝐵𝑦, 𝑡) } ,         

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦  𝑋 ,    0,  (0,2), 𝑡 >  0 𝑎𝑛𝑑  2𝑝  =   𝑞 +  𝑞’  =   𝑟 +  𝑟’  =   𝑠 +  𝑠’  =   𝑙 +  𝑙’  . 

(2.10)   If the pairs {𝐴, 𝑆} 𝑎𝑛𝑑 {𝐵, 𝑇} are weakly compatible, then 

𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇 have a unique common fixed point in 𝑋.  

3. Main Results 

We prove Theorem 2.3 under a new property [22] in the following way. 

Theorem 3.1.  Let (𝑋, 𝑀, *) be a fuzzy metric space with 𝑡∗𝑡    𝑡 for all 𝑡  [0,1] and condition (𝐹𝑀 − 6).  Let 

𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇 be mappings of 𝑋 into itself such that 

(3. 1)   𝐴(𝑋)  𝑇(𝑋) 𝑎𝑛𝑑  𝐵(𝑋)  𝑆(𝑋), 
(3. 2)   {𝐴, 𝑆} 𝑜𝑟 {𝐵, 𝑇} satisfies the property (𝑆 − 𝐵), 
(3. 3)   there exists a constant 𝑘  (0,1) such that 

  𝑀2𝑝(𝐴𝑥, 𝐵𝑦, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑆𝑥, 𝑇𝑦, 𝑡), 𝑀𝑞(𝑆𝑥, 𝐴𝑥, 𝑡). 𝑀𝑞’(𝑇𝑦, 𝐵𝑦, 𝑡) ,                     

                                                                         𝑀𝑟(𝑆𝑥, 𝐵𝑦, 𝑡). 𝑀𝑟’(𝑇𝑦, 𝐴𝑥, (2 −  )𝑡), 

                                                                            𝑀𝑠(𝑆𝑥, 𝐴𝑥, 𝑡). 𝑀𝑠’(𝑇𝑦, 𝐴𝑥, , (2 −  )𝑡),          

                                                                          𝑀𝑙(𝑆𝑥, 𝐵𝑦, 𝑡). 𝑀𝑙’(𝑇𝑦, 𝐵𝑦, 𝑡) },          

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦  𝑋 ,    0,  (0,2), 𝑡 >  0 𝑎𝑛𝑑 0 <  𝑝, 𝑞, 𝑞’, 𝑟, 𝑟’, 𝑠, 𝑠’, 𝑙, 𝑙’   1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 2𝑝  =   𝑞 +  𝑞’  =   𝑟 +  𝑟’  =   𝑠 +  𝑠’  =   𝑙 +  𝑙’  . 

(3.4)       if the pairs {𝐴, 𝑆} 𝑎𝑛𝑑 {𝐵, 𝑇} are weakly compatible,  

(3.5)      one of 𝐴(𝑋), 𝐵(𝑋), 𝑆(𝑋) 𝑜𝑟 𝑇(𝑋) is closed subset of 𝑋, then 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇 have a unique common  

              fixed point in 𝑋. 

Proof :  Suppose that (𝐵, 𝑇)  satisfies the property (S-B). Then there exists a sequence {𝑥𝑛 } in 𝑋  such that 

lim𝑛→∞ 𝐵𝑥𝑛   =  lim𝑛→∞ 𝑇𝑥𝑛 = 𝑧 for some 𝑧  𝑋. 

Since 𝐵𝑋  𝑆𝑋, there exists in 𝑋 a sequence {𝑦𝑛} such that 𝐵𝑥𝑛  =  𝑆𝑦𝑛. Hence lim𝑛→∞ 𝑆𝑦𝑛 = 𝑧. Let us show that 

 lim𝑛→∞ 𝐴𝑦𝑛 = 𝑧.  Indeed, in view of (3.3)  for   =  1 –  𝑎, 𝑎  (0, 1), we have   

𝑀2𝑝(𝐴𝑦𝑛 , 𝐵𝑥𝑛 , 𝑘𝑡)   ≥   𝑚𝑖𝑛 { 𝑀2𝑝(𝑆𝑦𝑛, 𝑇𝑥𝑛 , 𝑡), 𝑀𝑞(𝑆𝑦𝑛, 𝐴𝑦𝑛, 𝑡). 𝑀𝑞’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡) , 

                                     𝑀𝑟(𝑆𝑦𝑛 , 𝐵𝑥𝑛 , 𝑡). 𝑀𝑟’(𝑇𝑥𝑛, 𝐴𝑦𝑛 , (2 −  ) 𝑡), 

                                                                   𝑀𝑠(𝑆𝑦𝑛 , 𝐴𝑦𝑛 , 𝑡). 𝑀𝑠’(𝑇𝑥𝑛 , 𝐴𝑦𝑛 , (2 −  )𝑡),                                

                                                                𝑀𝑙(𝑆𝑦𝑛, 𝐵𝑥𝑛 , 𝑡). 𝑀𝑙’(𝑇𝑥𝑛, 𝐵𝑥𝑛 , 𝑡) } ,                                          

𝑀2𝑝(𝐴𝑦𝑛 , 𝐵𝑥𝑛 , 𝑘𝑡)   ≥   𝑚𝑖𝑛 { 𝑀2𝑝(𝑆𝑦𝑛, 𝑇𝑥𝑛 , 𝑡), 𝑀𝑞(𝑆𝑦𝑛, 𝐴𝑦𝑛, 𝑡). 𝑀𝑞’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡) , 

                                          𝑀𝑟(𝑆𝑦𝑛 , 𝐵𝑥𝑛 , 𝑡). 𝑀𝑟’(𝑇𝑥𝑛 , 𝐴𝑦𝑛 , (1 + 𝑎)𝑡),      

                                         𝑀𝑠(𝑆𝑦𝑛 , 𝐴𝑦𝑛, 𝑡). 𝑀𝑠’(𝑇𝑥𝑛 , 𝐴𝑦𝑛, (1 + 𝑎)𝑡),     

                                               𝑀𝑙(𝑆𝑦𝑛 , 𝐵𝑥𝑛 , 𝑡). 𝑀𝑙’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡) }, 
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𝑀2𝑝(𝐴𝑦𝑛, 𝐵𝑥𝑛 , 𝑘𝑡)   ≥   𝑚𝑖𝑛 { 𝑀2𝑝(𝐵𝑥𝑛 , 𝑇𝑥𝑛 , 𝑡),                                                           

                                                                              𝑀𝑞(𝐵𝑥𝑛 , 𝐴𝑦𝑛, 𝑡). 𝑀𝑞’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡), 

                                                                              𝑀𝑟(𝐵𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡). 𝑀𝑟’(𝐴𝑦𝑛, 𝐵𝑥𝑛 , 𝑡) * 𝑀𝑟’(𝐵𝑥𝑛, 𝑇𝑥𝑛 , 𝑎𝑡), 

                                                                                        𝑀𝑠(𝐵𝑥𝑛 , 𝐴𝑦𝑛, 𝑡). 𝑀𝑠’(𝐴𝑦𝑛 , 𝐵𝑥𝑛 , 𝑡) * 𝑀𝑠’(𝐵𝑥𝑛 , 𝑇𝑥𝑛 , 𝑎𝑡), 

                                                                                                                 𝑀𝑙(𝐵𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡). 𝑀𝑙’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡) }. 

Thus it follows that       𝑀2𝑝(𝐴𝑦𝑛 , 𝐵𝑥𝑛, 𝑘𝑡) ≥ 𝑀𝑠(𝐵𝑥𝑛 , 𝐴𝑦𝑛 , 𝑡). 𝑀𝑠’(𝐴𝑦𝑛 , 𝐵𝑥𝑛, 𝑡)  *  𝑀𝑠’(𝐵𝑥𝑛 , 𝑇𝑥𝑛, 𝑎𝑡), 

Since the t-norm * is continuous and 𝑀 (𝑥, 𝑦, ) is continuous, letting 𝑎  1, we have  

                                      𝑀2𝑝(𝐴𝑦𝑛, 𝐵𝑥𝑛 , 𝑘𝑡) ≥ 𝑀𝑠+𝑠’(𝐵𝑥𝑛 , 𝐴𝑦𝑛 , 𝑡). 

It follows that 

lim
𝑛→∞

𝑀(𝐴𝑦𝑛, 𝐵𝑥𝑛 , 𝑘𝑡)    ≥   lim
𝑛→∞

𝑀(𝐵𝑥𝑛 , 𝐴𝑦𝑛 , 𝑡)  , 

 

and we deduce that                       lim
𝑛→∞

𝐴𝑦𝑛 = 𝑧. 

Suppose S(X) is a closed subset of X. Then z = Su for some u  X. Subsequently, we have 

                           lim
𝑛→∞

𝐴𝑦𝑛 = lim
𝑛→∞

𝐵𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑆𝑦𝑛 = 𝑆𝑢. 

By (3.3) with  = 1, we have 

  𝑀2𝑝(𝐴𝑢, 𝐵𝑥𝑛 , 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑆𝑢, 𝑇𝑥𝑛 , 𝑡), 𝑀𝑞(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑞’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡) , 

                           𝑀𝑟(𝑆𝑢, 𝐵𝑥𝑛 , 𝑡). 𝑀𝑟’(𝑇𝑥𝑛 , 𝐴𝑢, 𝑡), 

                          𝑀𝑠(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑠’(𝑇𝑥𝑛 , 𝐴𝑢, 𝑡), 

                                  𝑀𝑙(𝑆𝑢 , 𝐵𝑥𝑛 , 𝑡). 𝑀𝑙’(𝑇𝑥𝑛 , 𝐵𝑥𝑛 , 𝑡) }. 

Taking the limn  ∞ , we have 

  𝑀2𝑝(𝐴𝑢, 𝑆𝑢, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑆𝑢, 𝑆𝑢, 𝑡), 𝑀𝑞(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑞’(𝑆𝑢, 𝑆𝑢, 𝑡) , 

                          𝑀𝑟(𝑆𝑢, 𝑆𝑢, 𝑡). 𝑀𝑟’(𝑆𝑢, 𝐴𝑢, 𝑡), 

                           𝑀𝑠(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑠’(𝑆𝑢, 𝐴𝑢, 𝑡), 

                              𝑀𝑙(𝑆𝑢 , 𝑆𝑢, 𝑡). 𝑀𝑙’(𝑆𝑢, 𝑆𝑢, 𝑡) }. 

Thus                            𝑀2𝑝(𝐴𝑢, 𝑆𝑢, 𝑘𝑡)   ≥     𝑀𝑠+𝑠’(𝑆𝑢, 𝐴𝑢, 𝑡). 

This gives                   𝑀(𝐴𝑢, 𝑆𝑢, 𝑘𝑡)   ≥   𝑀(𝑆𝑢, 𝐴𝑢, 𝑡). 

Therefore by Lemma 2.2, we have 𝐴𝑢 =  𝑆𝑢 . The weak compatibility of 𝐴  and 𝑆  implies that 

𝐴𝑆𝑢 =  𝑆𝐴𝑢 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝐴𝐴𝑢 =  𝐴𝑆𝑢 =  𝑆𝐴𝑢 =  𝑆𝑆𝑢. On the other hand, since 𝐴(𝑋)  𝑇(𝑋), there exists a point 

𝑣  𝑋 such that 𝐴𝑢 =  𝑇𝑣. We claim that   𝑇𝑣 =  𝐵𝑣 using (3.3) with  =  1, we have 

  𝑀2𝑝(𝐴𝑢, 𝐵𝑣, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑆𝑢, 𝑇𝑣, 𝑡), 𝑀𝑞(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑞’(𝑇𝑣, 𝐵𝑣, 𝑡) , 

                           𝑀𝑟(𝑆𝑢, 𝐵𝑣, 𝑡). 𝑀𝑟’(𝑇𝑣, 𝐴𝑢, 𝑡), 

                            𝑀𝑠(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑠’(𝑇𝑣, 𝐴𝑢, 𝑡), 

                                𝑀𝑙(𝑆𝑢 , 𝐵𝑣, 𝑡). 𝑀𝑙’(𝑇𝑣, 𝐵𝑣, 𝑡) }, 

  𝑀2𝑝(𝐴𝑢, 𝐵𝑣, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝐴𝑢, 𝐴𝑢, 𝑡), 𝑀𝑞(𝐴𝑢, 𝐴𝑢, 𝑡). 𝑀𝑞’(𝐴𝑢, 𝐵𝑣, 𝑡) , 

                                                                             𝑀𝑟(𝐴𝑢, 𝐵𝑣, 𝑡). 𝑀𝑟’(𝐴𝑢, 𝐴𝑢, 𝑡), 

                                                                            𝑀𝑠(𝐴𝑢, 𝐴𝑢, 𝑡). 𝑀𝑠’(𝐴𝑢, 𝐴𝑢, 𝑡), 

                                                                               𝑀𝑙(𝐴𝑢 , 𝐵𝑣, 𝑡). 𝑀𝑙’(𝐴𝑢, 𝐵𝑣, 𝑡) }. 

Thus  

                      𝑀2𝑝(𝐴𝑢, 𝐵𝑣, 𝑘𝑡)  ≥ 𝑀𝑙+𝑙’(𝐴𝑢 , 𝐵𝑣, 𝑡). 
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It follows that 

                                   𝑀(𝐴𝑢, 𝐵𝑣, 𝑘𝑡)  ≥ 𝑀(𝐴𝑢 , 𝐵𝑣, 𝑡). 

Therefore by Lemma 2.2, we have 𝐴𝑢 =  𝐵𝑣. 

Thus 𝐴𝑢 =  𝑆𝑢 =  𝑇𝑣 =  𝐵𝑣. The weak compatibility of 𝐵  and 𝑇 implies that 𝐵𝑇𝑣 =  𝑇𝐵𝑣 and 𝑇𝑇𝑣 =  𝑇𝐵𝑣 =
 𝐵𝑇𝑣 =  𝐵𝐵𝑣. Let us show that 𝐴𝑢 is a common fixed point of 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇. In view of (3.3) with  =  1, we have 

  𝑀2𝑝(𝐴𝐴𝑢, 𝐵𝑣, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑆𝐴𝑢, 𝑇𝑣, 𝑡), 𝑀𝑞(𝑆𝐴𝑢, 𝐴𝐴𝑢, 𝑡). 𝑀𝑞’(𝑇𝑣, 𝐵𝑣, 𝑡) , 

                                                                                       𝑀𝑟(𝑆𝐴𝑢, 𝐵𝑣, 𝑡). 𝑀𝑟’(𝑇𝑣, 𝐴𝐴𝑢, 𝑡), 

                                                                                                          𝑀𝑠(𝑆𝐴𝑢, 𝐴𝐴𝑢, 𝑡). 𝑀𝑠’(𝑇𝑣, 𝐴𝐴𝑢, 𝑡), 

                                                                                                          𝑀𝑙(𝑆𝐴𝑢 , 𝐵𝑣, 𝑡). 𝑀𝑙’(𝑇𝑣, 𝐵𝑣, 𝑡) }, 

  𝑀2𝑝(𝐴𝐴𝑢, 𝐴𝑢, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝐴𝐴𝑢, 𝐴𝑢, 𝑡), 𝑀𝑞(𝐴𝐴𝑢, 𝐴𝐴𝑢, 𝑡). 𝑀𝑞’(𝐴𝑢, 𝐴𝑢, 𝑡) , 

                                                                                                          𝑀𝑟(𝐴𝐴𝑢, 𝐴𝑢, 𝑡). 𝑀𝑟’(𝐴𝑢, 𝐴𝐴𝑢, 𝑡), 

                                                                                                           𝑀𝑠(𝐴𝐴𝑢, 𝐴𝐴𝑢, 𝑡). 𝑀𝑠’(𝐴𝑢, 𝐴𝐴𝑢, 𝑡), 

                                                                                                            𝑀𝑙(𝐴𝐴𝑢 , 𝐴𝑢, 𝑡). 𝑀𝑙’(𝐴𝑢, 𝐴𝑢, 𝑡) }, 

                             𝑀2𝑝(𝐴𝐴𝑢, 𝐴𝑢, 𝑘𝑡)  ≥    𝑀2𝑝(𝐴𝐴𝑢, 𝐴𝑢, 𝑡).     

This gives 𝑀(𝐴𝐴𝑢, 𝐴𝑢, 𝑘𝑡)  ≥   𝑀(𝐴𝐴𝑢, 𝐴𝑢, 𝑡). 

Therefore by Lemma 2.2, we have 𝐴𝑢 =  𝐴𝐴𝑢 =  𝑆𝐴𝑢 and 𝐴𝑢 is a common fixed point of 𝐴 𝑎𝑛𝑑 𝑆. 

Similarly, we can prove that 𝐵𝑣 is a common fixed point of 𝐵 and 𝑇. Since 𝐴𝑢 =  𝐵𝑣, we conclude that 𝐴𝑢 is a 

common fixed point of 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇. 

If 𝐴𝑢 =  𝐵𝑢 =  𝑆𝑢 =  𝑇𝑢 =  𝑢 𝑎𝑛𝑑 𝐴𝑣 =  𝐵𝑣 =  𝑆𝑣 =  𝑇𝑣 =  𝑣, then by (3.3) with  =  1, we have 

  𝑀2𝑝(𝐴𝑢, 𝐵𝑣, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑆𝑢, 𝑇𝑣, 𝑡), 𝑀𝑞(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑞’(𝑇𝑣, 𝐵𝑣, 𝑡) , 

                                                                                                               𝑀𝑟(𝑆𝑢, 𝐵𝑣, 𝑡). 𝑀𝑟’(𝑇𝑣, 𝐴𝑢, 𝑡), 

                                                                                                               𝑀𝑠(𝑆𝑢, 𝐴𝑢, 𝑡). 𝑀𝑠’(𝑇𝑣, 𝐴𝑢, 𝑡), 

                                                                                                               𝑀𝑙(𝑆𝑢 , 𝐵𝑣, 𝑡). 𝑀𝑙’(𝑇𝑣, 𝐵𝑣, 𝑡) }, 

                                    𝑀2𝑝(𝑢, 𝑣, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {   𝑀2𝑝(𝑢, 𝑣, 𝑡), 𝑀𝑞(𝑢, 𝑢, 𝑡). 𝑀𝑞’(𝑣, 𝑣, 𝑡) , 

                                                                                                               𝑀𝑟(𝑢, 𝑣, 𝑡). 𝑀𝑟’(𝑣, 𝑢, 𝑡), 

                                                                                                                𝑀𝑠(𝑢, 𝑢, 𝑡). 𝑀𝑠’(𝑣, 𝑢, 𝑡), 

                                                                                                                𝑀𝑙(𝑢 , 𝑣, 𝑡). 𝑀𝑙’(𝑣, 𝑣, 𝑡) }, 

This gives     𝑀2𝑝(𝑢, 𝑣, 𝑘𝑡)  ≥     𝑀2𝑝(𝑢, 𝑣, 𝑡). 

Thus     𝑀(𝑢, 𝑣, 𝑘𝑡)  ≥   𝑀(𝑢, 𝑣, 𝑡). 

By Lemma 2.2, we have 𝑢 =  𝑣 and the common fixed point is a unique. This completes the proof of the theorem. 

If we take 𝑆  =   𝑇 in Theorem 3.1, we have the following. 

Corollary  3.1.  Let (𝑋, 𝑀, *) be a fuzzy metric space with 𝑡∗𝑡    𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡  [0,1] and condition (𝐹𝑀 − 6). Let 

𝐴, 𝐵 𝑎𝑛𝑑 𝑆 be mappings of 𝑋 into itself such that 

(3.6)       𝐴(𝑋)  𝑆(𝑋) 𝑎𝑛𝑑  𝐵(𝑋)  𝑆(𝑋), 

(3.7)       {𝐴, 𝑆} 𝑜𝑟 {𝐵, 𝑆} satisfies the property (𝑆 − 𝐵), 

(3.8)        there exists a constant 𝑘  (0,1) such that 

𝑀2𝑝(𝐴𝑥, 𝐵𝑦, 𝑘𝑡)   ≥   𝑚𝑖𝑛 {𝑀2𝑝(𝑆𝑥, 𝐴𝑥, 𝑡) , 𝑀𝑟(𝑆𝑥, 𝐵𝑦, 𝑡). 𝑀𝑟’(𝑆𝑥, 𝐴𝑥, 𝑡), 

                    𝑀𝑠(𝑆𝑥, 𝐴𝑥, 𝑡). 𝑀𝑠’(𝑆𝑥, 𝐵𝑦 𝑡) }, 

                 for all 𝑥, 𝑦  𝑋 , 𝑡 >  0 𝑎𝑛𝑑 0 <  𝑝, 𝑟, 𝑟’, 𝑠, 𝑠’   1, such that 2𝑝  =   𝑟 +  𝑟’  =   𝑠 +  𝑠’ . 

 (3.9)       if the pairs {𝐴, 𝑆} and {𝐵, 𝑆} are weakly compatible,  
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 (3.10)    one of 𝐴(𝑋), 𝐵(𝑋) 𝑜𝑟 𝑆(𝑋) is closed subset of 𝑋, then 𝐴, 𝐵 𝑎𝑛𝑑 𝑆 have a unique common fixed   

                point in X. 
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