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Abstract 

In this paper we establish some fixed point results for mapping satisfying sufficient contractive conditions on a 

complete -metric space. 
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1. Introduction 

In 1992, Bapure Dhage  in his Ph.D. thesis introduced the concept of a new class of generalized metric space 

called D-metric spaces[2-3]. In 2005 Mustafa and Sims[6]  shows that most of the results concerning Dhage’s D-

metric spaces are invalid. Therefore, they introduced a improved version of the  generalized metric space 

structure, which are called G-metric spaces as generalization of metric space  to develop and to introduce a 

new fixed point theory for a variety of mappings in this new setting, also to extend known metric space theorems 

to a more general setting. 

For more details on G-metric  spaces, one can refer to the papers [6]-[9]. 

Now, we give preliminaries and basic definitions which are used throughout the paper. 

In 2004, Mustafa and Sims [7] introduced the concept of G-metric spaces as follows: 

 

Definition 1.1[7] Let  be a nonempty set, and let  be a function satisfying the 

following properties: 

(G1)  
(G2)  

(G3)  
(G4) . . ., (symmetry in all three variables); 

(G5) rectangl inequality ). 

Then the function G is called a generalized metric, or, more specifically a -metric on , and the pair  is 

called a -metric space. 

Definition 1.2. [7]  Let  be a -metric space, and let  be a sequence of points of .  point  is 

said to be the limit of the sequence  if  

       and one say that the sequence ( ) is G-convergent to  Thus, that if in 

a -metric space  then for any  there exists  such that , for all  

(we mean by  the Natural numbers). 

Proposition 1.3.[7]  Let  be -metric space. Then the following are equivalent. 

(1) ( ) is -convergent to  

(2)  G( ,  x) → 0, as n → ∞. 

(3)  G( , x, x) → 0, as n → ∞. 

(4)  G( , , x) → 0, as m, n → ∞. 

Definition 1.4.[7]   Let  be a -metric space, a sequence  is called -Cauchy if given , there is 

N ∈  such that   for all . That is 0  

Proposition 1.5. .[7]  In a -metric space, , the following are equivalent 

1. The sequence  is -Cauchy. 

2. For every  there exists  such that , for all  

Definition 1.6. [7]  A -metric space  is said to be -complete ( or complete  metric ) if every -Cauchy 

sequence in  is -convergent in  

Proposition 1.7. .[7] A -metric space  is -complete if and only if  is a complete metric space. 

Theorem 1.8 .[7]  Let  be a complete metric space, and  be a function mapping  into it self, satisfy the 

following condition, 

                      

where  are nonnegative numbers satisfying  Then,  has a unique fixed point (i.e., there 

exists ). 
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3. Main Results 

  In this section, we will present several fixed point results on a complete -metric space. 

 Let  be a complete -metric space, and let  be a mapping satisfies the 

following condition 

 
                                                                                       (2.1(i)) 

               for all , where the constants   satisfy      

                . 

Proof. Take an arbitrary and define a sequence   =  ,    … 

 Substituting        then we have 

 

 

 

 

Since  

We assume that   then 

 
Similarly we can show that 

. 

Processing n times 

. 

Next we show that  is Cauchy sequence. Without loss of generality assume that , 

Then 

 
                                   

                                   

                                                                

                                .+…….+ .   

                       +  + …….+ . 

                                    . 

Hence, limit  

 
i.e.  is Cauchy sequence. 

Since  is complete, so there exists  such that , which implies, 

. 

Next we will show that w is fixed point of . we take  and 𝑖𝑛  

(2.1(i)) then 

 

 
As  we have 

 
Which is contradiction, so   i.e.  w is fixed point of . 

Uniqueness: 

Let  and  are two more fixed points of , different from , i.e.   

We take  in (2.1(i)) then 

 
                                                

                          

Which is contradiction, so , i.e. w is unique fixed point of   

This complete the proof of theorem . 

 Let  be a complete -metric space, and let  be a mapping satisfies the 

following condition 
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                                     ……… … …………………….. (2.2(i)) 

for all , where . 

Proof. Take an arbitrary and define a sequence   =  ,    … 

 Substituting        in (2.2(i)) then we have 

      

                                                                   

       

                                                              

        ……(2.2(ii))        

If we take 

        

Then from (2.2(ii)) 

   

And if we take 

 
Then  

              

Which is contradiction, so that 

             

Similarly we can show that 

           . 

Next we show that  is Cauchy sequence. Without loss of generality assume that , 

Then 

     

                             

                                   .+…….+ . 

                                  +  + …….+ . 

                                  . 

Hence, limit  

 
i.e.  is Cauchy sequence. 

Since  is complete G – metric space which gives   such that , as   

Next we will show that w is fixed point of . for this we take  and 𝑖𝑛  then 

   

   

As  we have 

 
Which is contradiction, so   i.e.  w is fixed point of . 

Uniqueness: 

Let  and  are two more fixed points of , different from , i.e.   

We take  in  then 

 

 
Which is contradiction, so , i.e. w is unique fixed point of .  

This complete the proof of theorem . 

 Let  be a complete -metric space, and let  be a mapping satisfies the 

following condition 

  ……… …(2.3(i)) 

for all , where . 

Proof. Take an arbitrary and define a sequence   =  ,    … 

 Substituting        in(2.3(i))then we have 
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    ……(2.3(ii)) 

Case I: If we take 

 
Then from (2.3(ii)) 

   

   

Case II: 

if we take 

 

 
Then from (2.3(ii)) 

   

 

Then      

Which is contradiction, so that 

 

Case III: 

if we take 

 
 

Then from (2.3(ii)) 

   

 

    where  
Case IV: 

if we take 

 
Then from (2.3(ii)) 

   

   

From case I, II, III and IV , we have 

   

By induction we have 

   

Similarly we can show that 

  . 

Next we show that  is Cauchy sequence. Without loss of generality assume that , 

Then 

 

 
.+…….+ . 

+  + …….+ . 

. 
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Hence, limit  

 
i.e.  is Cauchy sequence. 

Since  is complete G – metric space which gives   such that ,  

as .  

Next we will show that  is fixed point of . for this we take  and  

 𝑖𝑛  then 

   

   

As  we have 

 
Which is contradiction, so   i.e.  w is fixed point of . 

Uniqueness: 

Let  and  are two more fixed points of , different from , i.e.   

We take  in  then 

 

 
Which is contradiction, so , i.e. w is unique fixed point of .  

This complete the proof of theorem. 
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