Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST

Sans Signature Buffer Overflow Blocker

G. Prisilla Jayanthi
Holy Mary Institute Of Technology & Science
Bogaram ,Keesara ,RRDist

Mobile :9393316810 Emaiprisillajayanthi@yahoo.co.in

Ambika Prasad Mohanty
Senior Consultant, Infotech Enterprises,
Panjagutta, Hyderabad -500082

AmbikaPrasad.Mohanty@infotech-enterprises.com

Abstract

The objective of Sans Signature buffer overflowcllr mainly is to intercept communications betwaen
server and client, analyse the contents for thegoree of executable code and prevent the codeimgach
the server. In this project, Sans Signature igaadure free approach, which can identify and bloek
and unknown buffer overflow attacks. The systemintercept the data coming via various channels
before the server receives the packets. Typicdilb/data exchanged with a standard applicatidmeisiata
related to the transaction. Therefore, the presefiegecutable code along with data is something
unwarranted. This system will analyze the incomahthe data, check is it contains any executabtke ctf
the executable code is found, the packet is dropp#tke data packet is found to be safe, it isva#id to
pass through. The payload or data is analyzedeaapplication layer called Proxy based Sans Sigeatu
The system has been designed to identify certanigable pattern that is considered harmful. sib &las a
thresh hold limit beyond which, the packet will tensidered to be discarded. Given the intelligesidbe
algorithm, it prevents most of the buffer overflattacks. The system can handle the packet anatyais
transparent manner, thus making it suitable fotaepent at Firewall/Application Gateway level. Henc
it is quite powerful and efficient with very low gieyment and maintenance cost.

Keywords: buffer overflow attacks, code-injection attacksfédese-side obfuscation

1. Introduction

In computer system, buffer overflow is one of thestrserious vulnerabilities. It is the root causerfiost
of the cyber attacks such as server breaking-imspzombies and botnets. A buffer overflow occurs
during program execution when a fixed-size buffes had too much of data copied into it. This catlses
data to overwrite into adjacent memory locatiomsl depending on what is stored there, the beha¥ior
the program itself might be affected. A buffer diex attack may corrupt control flow or data withou
injecting code such as return-to-libc attacks aaté-gbointer modification.

1.1Existing System

STILL , a real-time, out-of-the-box, signature-free, regrexploit binary code injection attack blocker to
protect web servers. STILL is motivated by an int@or observation that the request messages to web
servers are exclusively data and not binary exéteitzode. Since remote exploits are typically binar
executable code, this observation indicates thaeitan precisely distinguish (service requesting)
messages that contain binary code from those thabticontain any binary code, we can protect web
servers as well as other Internet services (whickeat data only) from binary code-injection attalbits
blocking the messages that contain binary codeapgplication layer proxy-based STILL is deployed
between the web server and the corresponding fitéavarotect web servers. STILL (including statiéint

6

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST

analysis and initialization analysis) detect ndiyamobfuscated exploit code, traditional polymdmpénd
metamorphic exploit code, but also self-modifyimgl éndirect jump obfuscation code that could easily
defeat previous static analysis approaches. Ind&BdLL is robust to almost all anti-signature, asttatic-
analysis and anti-emulation obfuscation. STILLignature free, thus it can block new and unknown
remote code injection attacks such as zero-day#xqade.

The new techniques used previously to detect sellifying and indirect jump exploit code are called
static taint analysis and initialization analysie observe that self-modifying and indirect jumplex
code first need acquire the absolute address ddadyAccordingly, we first try to find the piecé ade
which acquires the absolute address of pay-loadrdiime from an instruction sequence. The variable
which holds the absolute address will be markauedi Then, we use the static taint analysis ajgproa
track the tainted values and detect whether taidéd are used in the ways that could indicatethsence
of self-modifying and indirect jump exploit code téinted variable is propagated to a new taintekbe
by data transfer instructions that move data (pugsh, pop, move) and data operation instructioats
perform arithmetic or bit-logic operations on déay., add, sub, xor). For data transfer instroctiche
destination operand will be tainted if and onlyhié source operand is tainted. For data operation
instructions, the destination operand will be téhif and only if either source or destination @oet is
tainted.

Address Space Layout Randomization (ASLR}s a main component of PaX . Address-space
randomization, can detect exploitation of all meynamrors. Instruction set randomization can deaéict
code injection attacks. Nevertheless, when thepeoaphes detect an attack, the victim procesgisdify
terminated. “Repeated attacks will require repeatatiexpensive application restarts, effectivehdeging
the service unavailable.”

Detection of Data Flow Anomalies There are statidynamic methods to detect data flow anomalies in
the software reliability and testing field. Statieethods are not suitable in our case due to i® sjzeed;
dynamic methods are not suitable either due tonéeel for real execution of a program with some tsipu

2. Proposed System

Sans Signature is generic approach which does not require any pre-known petelhen, it uses the
found patterns and a data flow analysis technigliea program slicing to analyze the packet’s paglto
see if the packet really contains code .

Besides, they used a special rule to detect polymorexploit code which contains a loop. Althougley
mentioned that the above rules are initial setsraag require updating with time, it is always pbsesifor
attackers to bypass those pre-known rules. Moreaovere rules mean more overhead and longer lat@ency
filtering packets. In contrast, Sans Signature @xpla different data flow analysis technique, \khis
much harder for exploit code to evade.

2.1 Performance Evaluation

2.1.1 Proxy —Based Sans Signature

To evaluate the performance impact of Signature foeveb servers, we implemented a proxy- based
Sans Signature prototypieig. shows the architecture of Sans Signature.

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST

(Requests with Pure Data)

Pasq
Proxy BasedSans Signature
HITP | URI ASCI| - _ . 7
— [Decoder [* Filter > —» Instruction
Requests Sequences
l Analyzer
Pass (Requests are printable ASCII)
Block
(Requests contains executable codes)
Figure 2.1.1 : The architecture of Sans Signature
3.Res
ult

1SC: 0100 mov ax.100
310103 mov bx,200

oC:0106 add ax.bx

1SC:0108 ret

oC:0109 int 2h

(C: 0108

1SC:0100 BSONO1
5C:0103 |)2

5C:0106 0108

I5C:0108 C3

15C:0109 CDO2

SC:0108 0000)
SC:010D 0000)
1SC:010F 0000]
oC:0111 0000 1 A
SC:0113 0000 SI).A
ISC:0115 0000 3%+ST)
1SC:0117 0000]
oC:0119 0000]
C:0118 0034 |

1500110 004817 (BP+DI+17].CL

Figure 1. To create the opcode values, the machine ict&bns are entered at debug.exe.
Few machine instructions entered to generate thre wpcode values using machine instructions

8

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST

File Edit Search Run Compile Debug Project Options -+

Figure2 : The screen shows the opcode values generatest@ned in the buffer, and are compared with
the input data that enter the system.

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST
Turbo C++ 3.0 IDE =10] X]

the program to test the buffer overflow attack

= File Edit Compile Debug Project Options
SANS4 .C

[+]—————————————— TNP2.DAT

the following input matches the opcodes

Search Run

Window Help
8

uspicious code

M ke (A (D b= (D ==

M =<

1:1
F1 Help Al1t-F8 Next Msg Alt-F? Prev Msg Alt-F9 Compile F9 Make F10 Menu

Figure3: The screen shows the main page where the inputsiataered to check whether any of the data
matches with the opcode values

10

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST

2 File Edit Search Run Compile Debug Project Options
SANSE .C
INP2 .DAT
[\ |———— OUT.DAT

The non matching characters which are safe to enter

[l R |

I O =) (D ke — 3

F1 Help Al1t-F8 Mext Msg Alt-F7 Prev Hsg Alt-F9 Compile F9 Hake F18 Menu

Figure4: Screen shows matched characters with the opa@diess which are harmful data (mixed with
executable code).

3.1 Performance Analysis

The proposed paper is implemented in C Language Pentium-IIl PC with 20 GB hard-disk and 256 MB
RAM with apache web server. The propose paper'semis shows efficient results and has been
efficiently tested on different messages.

4. Conclusions

The proposed Sans Signature, an online signataecefnt-of -the- box blocker that can filter codgation
buffer overflow attack message, one of the mosbssrcyber security threats. Sans Signature does no
require any signatures, thus it can block new unknattacks. Sans Signature is immunized from most
attack-side code obfuscation methods and goodcfama@mical Internet wide deployment with little
maintenance cost, negligible throughput degradatiod low performance overhead and also enhances
the complex patterns for instruction.

5.References

11

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) Ly
Vol 2, No.1, 2012 ST

Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun‘ZBigfree: A Signature —Free Buffer Overflow
Attack Blocker” IEEE transactions on dependable sexlire computing, vol 7, no. 1, January — March
2010.

Zhaohui Liang, Bin Liang, Luping Li, Wei Chen, Qiigg Kang, Yingqgin Gu , “Against Code Injection
with System Call Randomisation” 2009 InternatioBahference on Networks Security , wireless

communications and trusted Computing.
John J. Donovan , “Systems Programming ", Tata MG Hill publishing company limited.

Kenneth J. Ayala , “The 8086 Microprocessor Programng and Interfacing the PC” , an International

Thompson Publishing company.

Yu-Chang Liu, Glenn A. Gibson., “Micro Computer 8m : The 8086/8088 family Architecture,

Programming and Design” .
Brain W. Kernighan, Dennis M. Ritchie,"The C progmaing Language” , Tata McGraw- Hill publishing.

Benjamin Schwarz Saumya Debray Gregory Andrewssad&sembly of Executable Code Revisited* *

,Department of Computer Science University of AnaTucson, AZ 85721

12

This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org

The 1ISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalITOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

m EB O INDEX (\@‘ COPERNICUS
I N T E RN A TTITIT ON AL

INFORMATION SERVICES
ULRICHSWES, JournalTOCs @

N A ;
. E'z B Elektronische
lBAS(E T— Q0@ Zeitschriftenbibliothek O

open
>)
OCLC v)

The world’s libraries. — U cDigitalLibrary —
Connected. WorldCat e

Ny

'- ¥
GEORGETOWN UNIVERSITY
LIBRARY

http://www.iiste.org/
http://www.iiste.org/Journals/

