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Abstract

The uniqueness of Fibonacci sequence is been discussed with particular emphasis on its application to random
number generation. The Lehmer’s algorithm was employed using fibonacci prime. For multiplier a=912, initial seed
Xg =415, modulus m=28657and multiplier a=518, initial seed x, =211, modulus m=514229, we generate random
numbers with full period (m-1). This suggest that higher values of Fibonacci primes with appropriate choice of a full
multiplier a, modulus m (fibonacci prime) and a starting seed x, will produce a full period with finite countable
many random numbers. A run test also indicates that the random numbers generated using modulus m as fibonacci
prime are truly random
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1. Introduction

The design of nature has been discovered to have underlying mathematical formulation and numerical
representations. One such numerical representation found in nature is Fibonacci numbers (Adam, 2006). The
Fibonacci numbers are sequence of numbers generated by summing the first two numbers in the sequence to get the
next. It is a deceptively simple series of numbers but it ramifications and applications are nearly limitless (Livio,
2002; Conway and Guy, 1996). The Fibonacci sequence is of interest to non-mathematicians primarily because of the
possibility of using them to investigate a wide variety of problems. These numbers are researched in the area of
number theory, games theory and sequence and it has continued to attract interest among mathematicians to the
extent that a quarterly journal is dedicated to Fibonacci series (Hilton & Pedersen, 1994; Matthew & Fink, 2004).

A random number is a number generated by a process which outcome is unpredictable and which cannot be
subsequently reliably reproduced. This definition works fine provided that one has some kind of black box, such a
black box is usually called random number generator that fulfil the required task. (von Neumann, 1951)
Consequently, a random number can also be defined as a number chosen by chance from some specified distribution
such that selection of a large set of these numbers produces the underlying statistical distribution. Almost always
such numbers are also required to be independent, so that there are no correlations between successive members. The
output can be converted to random variate via mathematical transformations

Historically there are two types of random numbers generators: computer generators (also called True random
number generator (TRNG) and algorithmic generators (also called Pseudo-random numbers generator (PRNG)).
Pseudo random number generators are algorithm that uses mathematical formulae or simply pre-calculated table to
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produce sequence of number that appear random. A good deal of research has gone into pseudo random number
theory and modern algorithms for generating pseudo random number and it makes it so good that the number look
exactly like they were really random (Knuth, 1997). A good example of pseudo random number generators is the
linear congruential method. A linear congruential generator is a method of generating a sequence of numbers that are
not actually random but share many properties with complete random numbers. (Neave, 1973 ;Ferguson, 1960).

Pseudo-random numbers generators are widely accepted because they meet the following criteria: randomness: It
produces output passes all reasonable statistical tests of randomness; controllability: able to reproduce random
stream of output, if desired; portability: able to produce the same output on a wide variety of computer systems
efficiency: fast, minimal computer resource requirements and documentation: theoretically analysed and
extensively tested. When used without qualification the word random usually means random with a uniform
distribution, other distribution are of course possible. For example the box-miller transformation allows pairs of
uniform random numbers to be transformed to the corresponding random numbers having a two dimensional
distribution. It is impossible to produce an arbitrary long string of digits and prove that it is random. When generating
random numbers over some specified boundary, it is often necessary to normalize the distribution so that all
differential areas are equally computed (Bassein, 1996).

True random number generators (TRNG) extract randomness from physical phenomenon and introduce it into the
computer. The physical phenomenon can be very simple like the little variations in the movement of a mouse or in
the amount of time between key strokes. Regardless of which physical phenomenon that is used, the process of
generating true random number involves identifying little unpredictable changes in the real life data.

2. An Overview of Lehmer’s Algorithms

Using the note of Leemis and Park, (2006) and Shorey and Stewart, (1981) we present some basic concepts on
Lehmer’s algorithm. Lehmer’s algorithm for random number generation is defined in terms of two fixed parameters:

modulus m, a fixed large prime integer and multiplier a, a fixed integer in X,

The integer sequence xg,x;, -+ is defined by the iterative equation x ;,; = g(x;)
with g(x; ) = ax; mod m

Xy € X,,, is called the initial seed

We have that 0 < g(x; ) < m because of the mod operator.

However, 0 must not occur since g(0) = 0

Since mis prime, g(x) # 0 if x € X,,.

If x,e X, then x;e X,,, forall i = 0.

Note: The quality of Pseudo-Random numbers generated depends on a good choice of a (multiplier) and m
(modulus). The following observations are important:

= a isafixed (constant) integer in X, also known as multiplier

= m isalarge fixed prime integer also known as the modulus

= x, isthe initial starting seed in X,,
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= The Mod function ensures a value less than m is always generated,
= m (Modulus) is chosen to be a prime number so that a non-zero remainder always exist, that is x; is never 0. If x;
becomes 0, then all subsequent x; will be zero

2.1 The Modulus and Multiplier Selection

Here we discuss how to select a suitable modulus and multiplier that can generate the desired random numbers.

When selecting a modulus or multiplier, the following outlined rules must be noted:

(i). The modulus m should be very large as possible (231 — 1 is a good value for modulus m).

(ii). The modulus must be a prime number in other to avoid the occurrence of zero which subsequently causes x; to be
zero.

(iii). The multiplier a should be chosen to guarantee a full period multiplier.

Theorem 1
If the sequence xg, X, X5, -+ is a produce by Lehmer’s generator with multiplier a and modulus m

then x; = a‘xymod m

Proof

We know that b moda = b — [b/a]a, then there exist a non-negative integer ¢; = [axi /m] such that

Xip1 = g(x;)) = ax;mod m = ax; — mc;
Therefore (by induction), we have that
X, = axy — mcg

X, = ax; —mc; = a’xy — m(acy + ¢;)

X3 = ax, —mc, = axy — m(a®cy + ac; + c3)

X; = axi_, —mc;_q = a'xg —m(a* "ty + a72c; + -+ cipq)

since x; € y,,, we have that x; = x;mod m

Therefore letting ¢ = a*~*cy + a*~%¢; + -+ + ¢;,1, We have that

x; = atx, — mc = (a'x, — mc)mod m = a‘xymod m

Hence x; = a‘xymod m

Note: We do not compute x; by first computing a!, this is a wrong approach.
The result of Theorem 1 has a significant theoretical value.

2.2 The Period of the Sequence

Consider sequence produced by x;., = a - x;mod m, once a value is repeated, all the sequence is then repeated. That
is the sequence: xo,x1,X,*, X, =+, Xj4p Where x; = x;,,,. p is the period, that is the number of elements before
the first repeat. Clearly we seethat p < m—1

It can be shown, that if we pick any initial seed X,, we are guaranteed this initial seed will reappear.
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Theorem 2

If  x, €x, and the sequence xg,x;,x;, - is produced by the Lehmer’s generator x;,, = a-x;modm
with multiplier a and (prime) modulus m, then there exist a positive integer p with p < m — 1 such that;

(1). xo,%y,x,—1 are all different and

(i)). xjyp =x;, Vi=0,1,2,-

Proof

We know from modulo arithmetic that

(by. b, ...b,)mod a = (b;. mod a)(b,.mod a) ... (b,,. mod a)

Therefore x; = a’ - x,mod m = (a‘mod m)x,mod m

From Fermat’s Little theorem, which states that if p is a prime which does not divides a, then

a’P 'modp =1 R (ot )

Then xp,_;=(@™ *mod m)xymodm =x, ... ... ... .. (*%

From (*.*), we have a more defined generalization, thus xi+p=(ai+pm0d p)x;mod m = x;

= x;4p= x; Hence the proof

Note:

1. Ideally, the generator cycles through all values in y,, to maximize the number of possible values that are
generated, and guarantee any number can be produced.
The sequence containing all possible numbers is called a full-period sequence (p = m —1).
Non-full period sequences effectively partition y,, into disjoint sets, each set has a particular period (not full
period).

2.3 Determining if a is a full period Multiplier

We present the following Algorithm for finding if p is a full period.

p=1
X=a, /l assume, initial seed is x, = 1,thus x; = a
Do
x=(a * x)mod m {// cycle through numbers until repeat//}

p=p+1 {careful: overflow possible}
Until x = x,

If p=m-1
Writeln (a is a full period multiplier)
Else
Writeln (a is not a full period multiplier)
End if

3. Numerical Experiments

The following numerical experiments show how random numbers are generated using Lehmer’s algorithm of the
formula x;,,=a * x;mod m, considering the multiplier a, the modulus m and the initial seed x,. In each
experiment we generate values for x,, x;,x,,**, x;, x;+, after making a choice of fibonacci prime as our values for

m
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Experiment 1 (m = 28657,a = 912,x, = 415) — Five digit fibonacci prime (m)

Experiment 2 (m = 514229,a = 518,x, = 211) - Six digit fibonacci prime (m)

The two numerical experiment above produce a full period sequence since p = 28657 (first experiment) and
p = 514229 (second experiment) therefore a = 912 and a = 518 are full period multiplier respectively.

3.1 Tests for Randomness

We apply the run test to test the null hypothesis that randomness does not exist in the number generated. Consider a
sequence of numbers made up of two set, cand d, where ¢ represent the corresponding random numbers generated
when it is less than the average and d represent the corresponding random numbers generated when it is greater
than the average.

Suppose we form all possible sequences consisting of N;c's and N,d's, for N; + N, = N and V is the total
number of runs, then by using the formula

_ 2NNy
v VRURUUR ¢}
52 = ZaNa(2NyNy ~Ny=Np) e @

(N1+N2)2(Ny+Nz—1)

When N is relatively large (>20) the distribution of V' is approximately normal and thus

Z="* < N0, 1) P <)

v

We can test the null hypothesis at the appropriate level of significance using equation (3)

We have that for the first experiment

N; = 14329, N, = 14328, N = 28657, V = 14448.9

We have that u, =14329.5 and &, = 84.6404 and Z., = 141076, Zrape = 1.96, for a = 0.05 level of
significance.

Therefore we reject the null hypothesis and conclude that randomness exist in the random numbers generated since
Z a1 (Test statistics) < Zrgpie (Critical value)

Using the same approach above, for the second experiment we test for the null hypothesis and conclude that
randomness exist in the sets of random number generated.

4 Results and Discussion

From the result of this work, we have shown that a five and six digit fibonacci prime with appropriate choice of full
multiplier a, modulus m (fibonacci prime) and a starting seed x, will produce a full period. Table 1 shows the
first 600 random numbers generated from the 28, 657 that was generated and Table 2 shows the first 570 random
numbers generated from the 514, 229 that was generated. A full period guarantees randomness and a longer length
of random numbers sets. The longer the digit of the fibonacci prime, the better and more random the numbers
generated will be. Further research should be able to show clearly that not all fibonacci prime will generates a full
period no matter the choice of full multiplier a, and a starting seed x,.
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Tahle 1: Showing the first 600 random renbers fror the 28, 657 that was generated (n = 28657, 8 = 912,x, = 415)

TEES | 11488 18636

16126 | 26870 [ 1217 1%
3571 3705 3431 13186
4130 | Ie02l | e 1593
1614 SHET 6110 14042
oITE 3518 | 12EED 3009
1375 3857 | 13151 3l 21753
e 15105 | 13789 3872 13915
RIS 25800 | D048 14038
X 14075 | 2X5T 21634
634 671 14152
16551 11002 15797
20930 103 172 3878
P 49 | 20063 713 7106
19502 16031 | 14290 15802 410
13434 3314 9859
TOST 13819 | 16381 13753 533
00T 1437 | 10OET | IR806T | 17430 15843
I8 12612 “7 P43 | 16835 14248
4601 10687 1063 | 15673 13467
12150 Il 11293 1057 16708
Il 19868 13177 1380 08
26788 i3 10141 2083 5104
1384 IOES 21038 | 1IT6 TELY
17434 10138 | DOETE | 15118 | Qs22l 16189
11016 ] b 1033e 1013 15711
4141 1462 | 1311 THT | 15134 £205
19537 TET | 101736 | 14171 | 18302 it
97 613 5540 | 10026 TIEE
TE450 13566 pevik] 230 12445

Table 2: Showing the first 570 random rombers frorm the 514, 229 that was generated (e = 5142298 = 518x; = 2113

398318 101 | 119e79 | 475201 4830 | 9153 413629 13166 | 496088 | 261304 | 303384
Pl h 31515 | 186241 | 01027 115705 | 441293 171721 | 1019084 | 11842% 15808
11t 20153 175404 | 137718 IT6905 3OTS6] | 453490
436058 | 444 334068 | 317783 439929 | 481123 300878 715
917H | 0TIER 133471 63454 133185 | 337488 23735 | 20263
246 | 301359 44013 | 453463 ITII86 | 434753 TI4T46 | 444083
39037 £2131 43057 T78T60 | 1Tl 202674 | 174631
71385 | 166235 | 426000 | 34186 | 191679 413360 | 171174 EI416 | 488753
S1TIT | 133487 THIIS | 341454 43515 45016 | 133351 10481 | 113305
102451 | 340625 434103 102435 I8686% | 174000
104031 a8l 147281 1070346 439671 | 142961 | 147671 17403 210610
IM5IT | 405241 | 36TISE 155666 17208 4511 | 3854 | ITIS6] T5431
165170 | 121237 | 489043 14165 21006 | 440380 26133 | 443281 s
196046 HE1E | 375406 135264 ) hac JE064 | leee40 | ITE4D 40916 | 261605
136019 E1744 141921 13516 1326048 111085
13589 498331 316311 415451 455563 | 451066
139266 JO6TI9 21917 138717 | 303352
28019 118831 431303 431993 | 304033
34145 161306 401250 3168 161986 | 135020
TTIR 108052 | 48TE1T 153139 FE954 352019 93192 3206
301189 471904 | 101767 121087 365041 30ETTE 430138 | 130743
453437 152677 306337 365195 10749 36628 | 3IMOSTS
39142 46160 129376 454051 | I0TEES | 357186 | 463400 155248 | 163113
419730 308144 166958 133473 | 2121 30748 | 411022 311870
4155302 108633 114452 96133 | 103031 EITES | 17730 20T 3091
54 S6304 170321 | 316363 358 | 453746 3217 178003 153539
197616 14165 133768 | 130908 43426 168903 | 200E31 | 144307
140335 455100 3981 390363 343168 | 187811
157738 1731 g 116037 411361 | 101587
£9381 455463 | J0%4%9 436600 1584182
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Conclusion

The uniqueness of Fibonacci sequence is been discussed with particular emphasis on its application to random
number generation. The Lehmer’s algorithm was employed using Fibonacci prime on a 32 bit machine. Two set of
numerical experiments were carried out using a five and six digits fibonacci prime. Both experiments produce large
sets of random numbers with full periods. Higher digits fibonacci primes could be studies for randomness and
implementation. We suggest that further research be made to devise algorithms that help in finding the appropriate
choice of full multiplier a, modulus m (fibonacci prime) and a starting seed x, that will produce a full period.
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