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Abstract 

An explicit iterative algorithm to solve both linear and nonlinear problems of ordinary differential equations with 

initial conditions is formulated with main focus given on its comparison with some non-standard finite difference 

schemes. Two first order linear initial value problems (IVPs) with periodic behavior are used to analyze the 

performance of the proposed algorithm with respect to maximum absolute error and computational effort where 

proposed algorithm performs better in both cases. The proposed algorithm efficiently follows the oscillatory 

behavior of models like Lotka-Volterra predator-prey and mass-spring system (damped case) in comparison to 

the nonstandard schemes. All necessary computations have been carried out through MATLAB version 8.1 

(R2013a) in double precision arithmetic. Numerical results obtained by the proposed algorithm are found to be 

computationally reliable and practical in comparison with two nonstandard finite difference schemes discussed 

in literature.  

Keywords: Iterative algorithm, nonstandard finite difference scheme, Initial conditions, Maximum 

absolute error. 

1. Introduction 

To solve models based on ordinary or partial differential equations is one of the major and challenging tasks 

being faced by researchers belonging to various fields of science and engineering. It is seldom possible to 

explicitly solve such models (especially nonlinear) in terms of elementary mathematical functions (Burden and 

Faires, 2010; Ibijola and Ogunrinde, 2010; Soomro et al., 2013) and this is where computer simulation and 

approximate methods play their dynamic role. Numerical techniques to solve Initial Value Problems (IVPs) 

modelled by ordinary differential equations (ODEs) help us to analyze and investigate various features of 

dynamical systems (Yin et al., 2013). A few of such dynamical and/or nonlinear systems based on a set of first 

order ordinary differential equations include Lorenz model (Lorenz, 1963), Lotka – Volterra predator – prey 

model (Lotka, 1910; Goel, 1971), Lane – Emden equation (Homer, 1870) and Van der Pol’s oscillator (Van der 

Pol, 1927). These systems find number of applications in many scientific fields like, Meteorology, Ecology, 

Biomathematics, oscillatory chemical reactions, chaos theory, seismology, and  astrophysics; just to mention a 

few, and are often considered to be model problems in order to test accuracy and efficacy of various newly 

developed algorithms for solving IVPs as commented in (Soomro et al., 2013) .      

In this paper, an attempt is made to improve an explicit numerical algorithm to solve a single ODE or a system 

of ODEs subject to initial conditions as shown below: 

                                                  ( ) ( ) }0, ;y f t y y t a= =( )( )y f t y( ), ;, ;)y f t yy f ( , ;, ;)                                          

( )1.1  
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 ( )1.2  

These models are said to be nonlinear if nonlinearity occurs in ( )y t . There is no existence of a unique algorithm 

to deal with every type of differential equation; therefore, these ODEs have been divided into classes with 

respect to their order, type, and linearity (Zill, 2011). Many scholars have resorted to either develop new iterative 

algorithms or improve the efficiency of existing ones in terms of their stability, convergence and number of 

function evaluations. (Fatunla, 1976; Ibijola, 1997; Wazwaz, 2000; Ramos, 2007; Yang and X, 2008; Sunday 

and Odekunle, 2012; Nik and Soleymani, 2013) are among many of those who have introduced nonstandard 

finite difference schemes to solve first order IVPs and (Wambecq, 1976; Chandio and Memon, 2010; Rabiei and 

Ismail, 2011; Anuar et al., 2011; Rabiei et al., 2012) are among those who have improved the efficiency of 

existing standard algorithms.         

The purpose of the coming section is to construct an improved iterative algorithm to solve problems of type 

( )1.1  and ( )1.2 . Various existing methods of past could not beat the introduced algorithm for one or the other 

reason as shown by number of examples chosen for comparison. Limitations of the algorithm are also discussed.    

2. Materials and Methods 

2.1. Problem Description 

Consider a well-posed
1
 initial value problem 

                                   

( ) ( )( )
( ) [ ]0 0

,

, ,

dy t
f t y t

dt

y t y t a b

ü
= ï

ý
ï= Î þ

                                                                                           

( )2.1  

Approximation iy  to the theoretical solution ( )iy t , in a discrete fashion, will be produced at values called 

nodes, in a closed interval [ ],a b ×  The nodes are equally spaced throughout the interval [ ],a b ×  Also 

( )1 0 1it t i t+ = + + D  for each 0,1,2, ,i n= ,i n, , where ( )1 /i it t t b a n+D = - = -  is called the fixed step size. 

2.2 Construction of an Explicit Iterative Algorithm 

Consider a continuously differentiable function ( )y f t=  shown in fig. 1. Suppose the red line  1PL  be the 

tangent to the curve ( )y f t=  at ( )0 0,P t y  and the green line 2QL  be the line through 
( )( )1

1 1,Q t y  having the 

slope 

( )( )1

1 1,f t y , where 
( ) ( )1

0 0 01 ,y y t f t y= +D . 

 

 

                                                 
1 One and only one solution exists to the problem. 
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Figure 1. Graphical representation of the proposed iterative algorithm. 

Now blue line 3QL  is the line passing through 
( )( )1

1 1,Q t y  with slope ( ) ( )( )( )1

0 0 1 1, , 2f t y f t y+  that is average 

of two slopes ( )0 0,f t y  and 
( )( )1

1 1,f t y . 

Coordinates of the point R with abscissa 0 / 2t t+D  and slope ( ) ( )( )( )1

0 0 1 1, , 2f t y f t y+  will be    
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Equation of the line (brown) PS  passing through ( )0 0,P t y  with slope at R will be 
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At 1t t= , we obtain 
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Finally, this arrangement results in a point S that will better approximate the exact point lying on the curve 

( )y f t= . 

Continuing in the same way, we will get the following proposed iterative algorithm: 

                  
( ) ( )( )1

1

, , ,
,

2 2 2

i i i i i i

i i i i

f t y f t y t f t yt t
y y t f t y

+
+

æ öæ ö+ + DD Dç ÷ç ÷= + D + +
ç ÷ç ÷

è øè ø

                                     ( )2.2  
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for 0,1,2, ,i n= 2, ,i n2, , . 

3. Numerical Examples and Discussion 

In this section, we proceed to implement the proposed algorithm ( )2.2  on variety of problems of the type ( )1.1  

and ( )1.2  taken from the literature. All the computations and graphical displays have been carried out using 

MATLAB version 8.1 (R2013a) in double precision arithmetic. Numerical results of proposed algorithm have 

been compared with respect to exact solution, absolute errors, CPU time, step size taken and numerical solutions 

obtained by existing iterative methods.   

Though, linear differential equations can be solved using analytical methods but some of them consume large 

amount of computer time and memory. For example, the following IVP:  

Problem: 01                                                  
( )

sin 5 0.4

0 5

y t y

y

= - üï
ý

= ïþ

sin 5y tsin 5sin 5y ty tsin 5sin 5sin 5
 

possesses an exact solution in explicit form 

( ) 2 /51
3270 125cos5 10sin5

629

ty t e t t-é ù= - +ë û  

But it takes the CPU time of about 7.5432 seconds or if solved by hand involves complicated integration. On the 

other hand, the CPU time elapsed is approximately 0.001611 seconds when solved using the proposed algorithm 

showing advantage of implementing numerical algorithms. Further, integration steps (IS) taken by Euler and 

proposed algorithm are 40 and 20 respectively; even though, the former could not beat the latter as depicted in 

figure 2. 
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Figure 2. Comparison of Euler (IS = 40) and proposed algorithm (IS = 20) with respect to exact solution on the 

interval [0 6]. 

Another initial value problem of considerable attention is the one given below: 

Problem: 02           
( )

( )
cos

0 1

y y t

y

¢ ü= ï
ý

= ïþ
 

Being a linear first order IVP, its analytical solution, ( ) ( )sin t
y t e= , is a periodic function with period 2p  in t. 

For the purpose of comparison, a nonstandard second order and A – stable method by Ramos (2007) is selected, 

with the iterative algorithm given as: 
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where ( ),i i t yf t y f f f¢ = + at ( ),i it y ×  
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Figure 3. Comparison of proposed method with a method of Ramos with respect to exact solution for step size 

0.2. 

It is observed from fig. 3 that the method of Ramos shows notable fluctuations at ridges of the solution curve 

whereas proposed algorithm follows the periodic behavior of the solution curve even at considerably large step 

size ( )0.2tD = . It should also be mentioned that Ramos method gives second order accuracy and maintains A – 

stability specifically for singular, non-singular and singularly-perturbed problems. It must be admitted at this 

stage that the methods like Heun’s and Ralston’s beat the proposed algorithm when it comes to periodicity. 

Though, the proposed algorithm does not require very small step sizes in order that the error does not propagate 

dramatically, for certain problems it will be necessary to take small step sizes and this occurs with problems 

having solutions of oscillatory behavior. In the regions where curvature is considerably larger, the proposed 

algorithm needs smaller step sizes to follow the solution as shown by figure 4 for the IVP given in problem 02. 

Nevertheless, there are better options to solve such problems. For further details, see (Fang, 2009) and (Yang & 

X., 2008). 
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Figure 4. Proposed method follows the oscillatory behavior with reducing step size. 
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Computation of errors and CPU time of different algorithms with various integration steps are given in table 1. It 

can be observed that maximum absolute error produced by Ramos method is considerably higher than the one 

produced by proposed algorithm with the same integration steps and so is the case with the CPU time noted for 

both the methods.  

Table 1. Comparison of Proposed Algorithm with Ramo's Method for ( ) ( )cos ; 0 1y y t y¢ = =  with respect to 

errors and Computer time. 

Method 
Integration 

Steps 
Error at ( )10t =  Maximum Absolute Error 

CPU Time 

(seconds) 

Ramos 

25 0.141939963560321 0.872205397973849 0.002321 

50 0.096591768133376 0.366086264684939 0.002841 

100 0.045508916402834 0.239923661433473 0.004234 

200 0.003532000426836 0.015513069156405 0.007780 

400 0.020619199968314 0.100016509934113 0.018664 

Proposed 

Algorithm 

25 0.035530962934161 0.059822450713906 0.000709 

50 0.005305961565138 0.008011144164723 0.001571 

100 0.000849565979959 0.002314692012949 0.005447 

200 0.000152269593188 6.192312521497989e-04   

 

0.010940 

400 0.000030552080064 1.599858792880049e-04 0.012100 

 

Another feature depicted by figure 5 is continuous oscillations in error plot of Ramos method with increasing 

integration steps whereas error plot of proposed algorithm does not exhibit such behavior. 
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Figure 5. Error plots obtained by Ramos and Proposed Algorithm 

The dynamical equations of a rationalized biological model of two challenging populations (shown by figure 6); 

called Lotka – Volterra predator – prey system, are given by two coupled nonlinear first order ordinary 

differential equations:  

Problem: 03        
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2

2 2 1 2

y y t y t y t

y y t y t y t

a b

g d

ü= - ï
ý

= - + ïþ

(1 1 1(y y1 1 1a b(y y t yy y (1 1 11 1 11 1 1(y yy y1 1 11 1 1y y t yy y (1 1 11 1 11 1 1(
2 2 1y y2 2 1g d2 2 12 2 12 2 1y yy y2 2 12 2 1y yy y2 2 12 2 12 2 1
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where ( )1y t  and ( )2y t  are number of prey (for example, rabbit) and predators (for example, fox) respectively 

at any given time t, 1y1y  and 2y2y  represent growth rates of the two species respectively over time, and a , b , g , 

and d  are factors concerning the interaction of the two species.  

 

Figure 6. Predator – Prey interaction, source: www.personal.psu.ed 

The system cannot exactly be solved except for two equilibria at ( )0,0  and ( ),g d a b as detailed in Zill 

(2009). Nonetheless, the system is capable of being analyzed through numerical algorithms.  Figure 7 displays 

numerical solution and phase portrait of the system obtained by Euler’s, Wambecq’s
2
 and proposed algorithm 

using step size of 0.1 with initial conditions ( )1 0 2y =  and ( )2 0 1y =  taking the parameters’ values 

1.2, 0.6,a b= =  0.8, 0.3g d= =  from Chapra (2012).    
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Figure 7. Numerical solution of predator – prey system using Euler’s, Wambecq’s and Proposed algorithm with 

400 integration steps.  

Although, same step size has been used for all three algorithms but fig. 7a shows oscillations with increasing 

amplitudes and the same is apparent by the phase plane portrait (fig. 7b). This results in using much smaller step 

sizes required by the Euler’s method. Likewise, Wambecq’s method have sharp corners at peaks of the 

oscillations shown in fig. 7c and the same is confirmed by the phase portrait in fig. 7d. On the other hand, 

                                                 
2 ( )2

1 1 1 22i iy y t k k k+
é ù= + D -ê úë û

;  where ( ) ( )1 2 1, , 0.5 , 0.5i i i ik f t y k f t t y tk= = + D + D  
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proposed algorithm produced better results with the same step size. Over time, a cyclical behavior develops in 

fig. 7e; as expected. Also, the phase portrait (fig. 7f) reveals repetition of the process by a closed trajectory.  

Finally, second order linear (autonomous) ordinary differential equation called harmonic oscillator (mass-spring 

system) has been investigated through proposed algorithm and Wambecq’s method against its solution obtained 

by ode45 solver offered by MATLAB keeping relative error tolerance as small as 1e-06. For the sake of 

simplicity, we consider the case of damped harmonic oscillator ( )0b >  with mass of the object equals 1 

(Blanchard et al., 2012): 

Problem: 04        

( ) ( ) ( )

( ) ( )

0

subject to

0 , 0

y t by t ky t

y ya b

ü+ + =
ï
ý
ï= = þ

( ) ( ) (y t by t ky t( ) ( ) (by t ky tby t ky t( ) (

( )a b( )0(y ya ba b)0(
 

where ( )y t  and ( )y t( )y t(  are position and velocity of the spring respectively, ( )0k >  is called spring constant and 

b is known as damping constant.   

The system has been solved numerically through three iterative algorithms with same step size as shown in 

figure 8 choosing damping constant relatively small ( )0.17b =  and spring constant 1k =  with initial conditions: 

( ) ( )0 3.14, 0 0y y= =
g mp

( )0 0( )y y 0 00 0( ) . Solution to the system, as expected, goes up and down with decreasing amplitude and 

slowly comes to rest as time goes on; and proposed algorithm favorably agrees with that of ode45 but 

Wambecq’s shows amplitudes less than those obtained by rest of the two iterative algorithms; however, it also 

attains resting position with time. This type of behavior is confirmed by the phase plane portrait shown in figure 

9 where solutions are spiraling in to the point where mass is at rest and there is no velocity, called equilibrium 

point. It can be observed from figure 9 that Wambecq came across various disruptions while reaching to 

equilibrium point. 
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Figure 8. Behavior of solution of damped harmonic oscillator investigated by three different iterative algorithms. 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.13, 2013 

 

86 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

velocity

p
o
s
it
io
n

 

 

Wambecq

ode45

Proposed

 

Figure 9. Phase plane portrait of damped harmonic oscillator generated by three different iterative algorithms. 

4. Conclusion 

In this work, formulation and a comparative study of the proposed algorithm is carried out with two nonstandard 

finite difference schemes. Numerical results obtained support the efficiency of the proposed algorithm in 

comparison to nonstandard schemes even at larger step sizes. The algorithm is also found to have lower 

computational cost with greater accuracy in results both for linear and nonlinear problems considered.      

5. Future Work 

In future, much of work would be based upon standard error analysis of the algorithm proposed. Convergence of 

the proposed algorithm would be discussed in detail. Its stability region would also be drawn and a comparison 

with standard and few more non-standard methods would be under consideration.    
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