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Abstract 

Our concern in this paper is to solve the pricing problem for American options in a Markov-modulated jump-

diffusion model, based on a cubic spline collocation method. In this respect, we solve a set of coupled partial 

integro-differential equations PIDEs with the free boundary feature by using the horizontal method of lines to 

discretize the temporal variable and the spatial variable by means of Crank-Nicolson scheme and a cubic spline 

collocation method, respectively. This method exhibits a second order of convergence in space, in time and also 

has an acceptable speed in comparison with some existing methods. We will compare our results with some 

recently proposed approaches.  

Keywords: American Option, Regime-Switching, Crank-Nicolson scheme, Spline collocation, Free Boundary 
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1. Introduction 

   Options form a very important and useful class of financial securities in the modern financial world. They play 

a very significant role in the investment, financing and risk management activities of the finance and insurance 

markets around the globe. In many major international financial centers, such as New York, London, Tokyo, 

Hong Kong, and others, options are traded very actively and it is not surprising to see that the trading volume of 

options often exceeds that of their underlying assets. A very important issue about options is how to determine 

their values. This is an important problem from both theoretical and practical perspectives 

   Recently, there has been a considerable interest in applications of regime switching models driven by a Markov 

chain to various financial problems. For an overview of Markov Chains 

   The Markovian regime-switching paradigm has become one of the prevailing models in mathematical finance. 

It is now widely known that under the regime-switching model, the market is incomplete and so the option 

valuation problem in this framework will be a challenging task of considerable importance for market 

practitioners and academia. In an incomplete market, the payoffs of options might not be replicated perfectly by 

portfolios of primitive assets. This makes the option valuation problem more difficult and challenging. Among 

the many researchers that have addressed the option pricing problem under the regime-switching model, we must 

mention the following: [4] develop a new numerical schemes for pricing American option with regime-switching. 

[20] provides a general framework for pricing of perpetual American and real options in regime-switching Levy 

models. [20] investigate the pricing of both European and American-style options when the price dynamics of 

the underlying risky assets are governed by a Markov-modulated constant elasticity of variance process. [17] 

develop a new tree method for pricing financial derivatives in a regimes-witching mean-reverting model. [22] 

develop a flexible model to value longevity bonds under stochastic interest rate and mortality with regime-

switching. 

   The paper is organized as follows. In Section 2, we describe briefly the problem for American options in a 

Markov-modulated jump-diffusion model. Then, we discuss time semi-discretization in Section 3. Section 4 is 

devoted to the spline collocation method for pricing American options under regime-switching jump-diffusion 

models using a cubic spline collocation method. Next, the error bound of the spline solution is analyzed. In order 

to validate the theoretical results presented in this paper, we present numerical tests on three known examples in 

Section 5. The obtained numerical results are compared to the ones given in [2]. Finally, a conclusion is given in 

Section 6. 
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2. Regime-switching Lévy processes 

   Markov chains are frequently used for capturing random shifts between different states. In this section, we 

review the most important definitions from continuous-time Markov chains, Lévy processes with regime-

switching (or Markov-modulated) parameters and also option pricing in this framework (see Chourdakis [11] for 

a comprehensive treatment). 

   Let ta  be a continuous-time Markov chain taking values among H  different states, where H  is the total 

number of states considered in the economy. Each state represents a particular regime and is labeled by an 

integer i  between 1  and H . Hence the state space of ta  is given by HM 1,...,= . Let matrix HHijqQ ´)(=  

denote the generator of ta . From Markov chain theory (see for example, Yin and Zhang [9]), the entries ijq  in 

Q  satisfy: (I) 0³ijq  if ji ¹ ; (II) 0£iiq  and ijijii qq å ¹
-=  for each .1,...,= Hi  

   Let tW  be a standard Brownian motion defined on a risk-neutral probability space ),,( PôW  and assume that 

this process is independent of the Markov chain ta . We consider the following regime-switching exponential 

Lévy model for describing the underlying asset price dynamics: 

.= 0
t
X

t eSS
 

The log-price process tX  will be constructed in the following manner: Consider a collection of independent 

Lévy processes 
H

i

i

tY 1=}{  indexed by i . The increments of the log-price process will switch between these H  

different Lévy processes, depending on the state at ta :  

.= t
tt dYdX
a

 

Each Lévy process 
i

tY  assumed to have a Lévy-Itô decomposition of the form   

, 2,..., 1,=    ),,(= HidtdzzNdWdtdY i

t

i

t

i

t

i

t ò++
R

sm  

in which 
im  is the drift and 

is  is the diffusion coefficient of the i - th  Lévy process. In this equation, )(.,tN i
 

is a Poisson random measure defined on Borel subsets of R  with (.)in  as its associated Lévy measure, 

describing the discontinuities. 

   We now consider the pricing of an American put option written on the underlying asset 0}{ ³ttS  with strike 

price K  and maturity dateT . To obtain an equation with constant coefficients for the price of this option in 

each regime, we switch to log-prices and let )./(log= 0SSx t  Then the transformed option price ),( txVi  at 

time Tt ££0  and regime at it =a  will satisfy the following equation, due to the risk-neutral pricing 

principle (see for example Karatzas and Shreve [10]):  

[ ].= ,=|)( sup=),( )( ixXeKetxV tt

Xtr

Tt
i att

t

+--

££
-E  

In the above equation, t  is a stopping time satisfying Tt ££t  and E  is the expectation operator with 

respect to equivalent martingale measure P . This is the optimal stopping formulation of the American option 

pricing problem. We must note here that in writing these equations and all subsequent ones, the parameters 
im  

and 
is  in (2.1) are taken regime-independent and constant and also the fixed interest rate r  is absorbed into the 

constant m  term to simplify the presentation of the material. One can now show that ),( txVi  for 

Hi 1,2,...,=  satisfy the following system of free boundary value problems [4]: 
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in which )(tix  for Hi 1,...,=  denote the optimal exercise boundaries and 
i

L  is the infinitesimal generator of 

the i-th Lévy process of the form  

),(),()()
2

1
(

2

1
= 22 dzzxVVrVrVV i

ii

i

ix

i

ixxi

i ntlxlss +-++¶---¶- òRL

 
with  

 
),(1)(=

,i stateat intensity  jump for the stands  

zdFez

i

-òRx
l

 

for the function F  which is the distribution of jumps sizes. This is a set of coupled partial integro-differential 

equations with H  free boundaries due to the regime-switching feature introduced in the underlying asset model. 

The analytical solution of the above system of PIDEs is not available at hand and so the need for efficient 

numerical approaches seems a necessity. In the sequel, we introduce our approach to solve this set of equations. 

Remark: One should notice that if we set 0=l  and 1=H ; (1) will become original Black-Scholes PDE. 

 

3. Time and Spatial discretization 

   Our aim in this section is to use a cubic spline collocation method to find an approximate solution for the set of 

Eqs. (1). By using the change of variables t-Tt =  and applying the Crank-Nicolson scheme in time, we can 

use the collocation method in each time step to find a continuous approximation in the whole interval. It is 

obvious that ),( txVi  for Hi 1,...,=  satisfy the following set of coupled PIDEs in operator form: 

,1,...,=      0,=
1=

HiVqV
t

V
jij

H

j

i
i å-+

¶
¶

L

 
which is valid in the space-time domain ][0,],[ T´+¥-¥ . In order to numerically approximate the solution, let 

us truncate the x -domain into the sub domain ],[= maxminx xxW . 

Taking
T

HVVVV ],...,,[= 21  and ],,0[ Tx ´W=W  
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where  
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with GQ-  is a continuous, bounded, symmetric matrix function and each function of the matrix QG -  is 

0>
~
g³  on W  and ,0)(max xeK -  is sufficiently smooth function. 

Here we assume that the problem satisfies sufficient regularity and compatibility conditions which guarantee that 

the problem has a unique solution )()( 2,1 WÇWÎ CCV  satisfying (see, [13, 1, and 14]):  

               

4,030;
),(

£+£££W£
¶¶

¶ +

jiandjonk
tx

txV
ji

ji

                                                 (3) 

where k  is a constant in .HR  
 

3.1. Time discretization and description of the Crank-Nicolson scheme 

   Discretize the time variable by setting tmtm D=  for ,0,1,...,= Mm  in which 
M

T
t =D  and then define 

),,(=)( mm txVxV
 

.0,1,...,= Mm
 

Now by applying the Crank-Nicolson scheme on (2), we arrive at the following equation 
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VIVIVV
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++-
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One way is to replace 
1+mV  with 

mV  in the linear terms. This leads to the following modified system: 

).(
2

=
2

)( 11 mmmmm VtIVV
t

V
t

xV D++
DD

- ++
LL                                 (4) 

For .0,1,...,= Mm
 
The final price of the American option at time level m  will be of the form:  
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Where, for any 0³m  and for any xx WÎ , we have  
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1+mV  is solution of (5), at the 1)( +m  th-time level. 

The following theorem proves the order of convergence of the solution 
mV  to .),( txV    

Theorem 3.1 Problem (5) is second order convergent .i.e. 

 

 .)(),( 2tCVtxV
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m

m D£-  

Proof: We introduce the notation 
m

mm VtxVe -),(=  the error at step m  and  
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By Taylor series expansion of ,V  we have 
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By using these expansions, we get  
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and by Taylor series expansion of 
t

V

¶
¶

, we have 

,).)((),(
8

)(
),(

2
),(=),( 3

2

13

32

2

12

2

2

11 H
mmm

m ItOtx
t

Vt
tx

t

Vt
tx

t

V
tx

t

V
D+

¶
¶D

+
¶
¶D

+
¶
¶

¶
¶

+++
+

 

.).)((),(
8

)(
),(

2
),(=),( 3

2

13

32

2

12

2

2

1 H
mmm

m ItOtx
t

Vt
tx

t

Vt
tx

t

V
tx

t

V
D+

¶
¶D

+
¶
¶D

-
¶
¶

¶
¶

+++
 

By using these expansions, and HIc
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 on W  (see relation (3)), we have  
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By using this relation in (6) we get  
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by (4). Then, we obtain  
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We may bound the term ))(( 3tO D  by 
3)( tc D  for some 0,>c  and this upper bound is valid uniformly 

throughout ][0,T . Therefore, it follows from the triangle inequality that  
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We use the cross-correlation function (see [3]) defined by  
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Since we are ultimately interested in letting 0®Dt , there is no harm in assuming that 2<.htD , with 
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We now claim that  
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   The proof is by induction on m . When 0=m  we need to prove that 00 £
H

e  and hence that 0=0e . This 

is certainly true, since at 0=0t  the numerical solution matches the initial condition and the error is zero. 

For general 0³m , we assume that (8) is true up to m  and use (7) to argue that  
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This advances the inductive argument from m  to 1+m  and proves that (8) is true. Since 2,<.<0 htD  it is 

true that  
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Consequently, relation (8) yields  
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This bound is true for every nonnegative integer m  such that Ttm <D . Therefore  
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We deduce that  
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In other words, problem (5) is second order convergent.  

For any 0³m , problem (5) has a unique solution and can be written on the following form:  
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In the sequel of this paper, we will focus on the solution of problem (9). 

 

3.2. Spatial discretization and cubic spline collocation method 

   Let Ä  denotes the notation of Kronecker product, .  the Euclidean norm on 
Hn ++1

R  and 
)(kS  the 

thk  

derivative of a function S . 

In this section we construct a cubic spline which approximates the solution V  of problem (9), in the 

interval RÌWx . 

   Let }====<<<<===={= 321110123 maxnnnnnmin xxxxxxxxxxxx +++----Q L  be a 

subdivision of the interval xW . Without loss of generality, we put ihaxi += , where ni ££0  
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   Consider the local linear operator 3Q  which maps the function V  onto a cubic spline space ),(4 QWxS  and 

which has an optimal approximation order. This operator is the discrete 
2C  cubic quasi-interpolant (see [15]) 
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3Q  on the space of cubic polynomial functions .)(3 xWP  Precisely, these coefficients are defined as follows:  
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It is well known (see e.g. [16], chapter 5) that there exist constants kC , 0,1,2,3,=k  such that, for any 

function )(4

xCV WÎ ,  

 0,1,2,3,=    ,)(44)(

3

)( kVhCVQV
H

kk

k
H

kk --£-  (10) 

By using the boundary conditions of problem (9), we obtain Hminmin IxVxVQV .=)(=)(=)( 33 ym-  

and .0.=)(=)(=)( 31 Hmaxmaxn IxVxVQV-m
 
Hence  
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From equation: (10), we can easily see that the spline S  satisfies the following equation  

 njIhOxgxLSxRSxPS Hjjjj 0,...,=  ,).()(=)()()( 2(0)(1)(2) +++  (11) 

with  

 .0,...,=  ,))()()(()(
~

=)( (0)

1

(1)

1

(2)

1 njxLzxRzxPzxfxg H

jjjjj RÎ++-  

The goal of this section is to compute a cubic spline collocation jij

n

ji BcSp ,

1

3=

~
=

~

å -

-
, Hi 1,...,=  which 

satisfies the equation (9) at the points jt , 20,...,= +nj  with 00 = xt , 
2

=
1 jj

j

xx +-t , nj ,1,= L , 

11 = -+ nn xt  and nn x=2+t . 

Then, it is easy to see that  
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and the coefficients ijc ,

~
, 22,...,= -- nj  and Hi 1,...,=  satisfy the following collocation conditions:  
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and using equations (11) and (12), we get:  

 ( ) EFCALARAP hhh +Ä+Ä+Ä =)()()( (0)(1)(2)
 (13) 

and  
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It is well known that kk

k

h A
h

A
1

=)(
 for 0,1,2=k  where matrices 0A , 1A  and 2A  are independent of h , with 

the matrix 2A  is invertible [8]. 

Then, relations (13) and (14) can be written in the following form  
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with  
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In order to determine the bounded of ¥- ||
~

|| CC , we need the following Lemma.  
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Lemma 3.1 If 
4

<2 t
h

D
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Proof: From the relation (17), we have  
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For h  sufficiently small, we conclude  
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From the relation (18) and 1|||| 0 £¥A , we have  
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 So, ,1<|||||||| |||| VUVU +£+  and therefore VUI ++  is invertible.    

Proposition 3.1 If 
r4

2 t
h

D
£ , then there exists a constant cte  which depends only on the functions ,p  q , l  

and g  such that  
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On the other hand, from (19) and (20), we get .1<|||| ¥+VU  Thus  
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Finally, we deduce that  
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Now, we are in position to prove the main theorem of our work. 

Proposition 3.2 The spline approximation 
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Sp  converges quadratically to the exact solution V  of problem (2), 
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Since ,||
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)(|| 333 HHH SpVQVQVSpVQ -+-£-  we deduce the stated result.   

 

4. Numerical examples 

   In this section we verify experimentally theoretical results obtained in the previous section. If the exact 

solution is known, then at time Tt £  the maximum error 
maxE  can be calculated as:  
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Otherwise it can be estimated by the following double mesh principle:  
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where ),(, txS NM

i  is the numerical solution on the 1+M  grids in space and 1+N  grids in time, and 

),(,22 txS NM

i  is the numerical solution on the 12 +M  grids in space and 12 +N  grids in time, for 

Hi ££1 .  

   We need to estimate the integral dzzxV im

i n)( +òR  and for this purpose we use a Gaussian quadrature 

formula in a bounded interval of the form ],[ maxmin zz  to arrive at  
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          (22) 

for Hi 1,..,=  in which the kw ’s are the Gaussian quadrature coefficients; cf. [21, 6] for details. 

   We present two examples to better illustrate the use of the switching Lévy approach and the proposed pricing 

methodology in concrete situations. These examples are concerned with American put options in three and five 

world states respectively. In the first example, we assume that the stock price follows a Merton jump-diffusion 

process with an intensity parameter governed by a three-state hidden Markov chain. In the second one, we 

consider the Kou jump diffusion model with jump intensities having a discrete five-state Markov dynamics.  

4.1. Example 1 
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   In this example, we assume a three-regime economy in which the dynamics of the underlying stock price in the 

i-th regime obeys a Merton jump-diffusion process with the Lévy measure 
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where the intensity vector is given by: ,.7][0.3,0.5,0= Tl  

the generator matrix is defined by 

 

 

and the a priori state probabilities are given to be ..5][0.2,0.3,0= Tp  

Other useful data are provided in the following table:  

Table 1. Data used to value American options under regime-switching jump-diffusion models.  

Parameter  values  

S  100  

K  100  

T  1  

s  0.15  

r  0.05  

js  0.45  

jm  0.5-  

For this problem, we use a uniform distribution of points in the interval 6,6][=],[ maxmin -xx  for the 

collocation process and truncate the integration domain in (22) according to 

,/2))2(log2(= 2

max jjjz mpess +-
 

,= maxmin zz -  

with .10= 12-ee  We must note here that using these two bounds forces the total truncation error to be 

uniformly bounded by e  and the derivation of them is described in full detail in [12] and [19]. 

   The comparison of the maximum error values between the method developed in this paper with the one 

developed in [2] will be taken at five different values of the number of space steps 

2048, 1024, 512, 256,=N  and time steps 1024, 512, 256, 128,=M . 

   We conduct experiments on different values of N , M  ands . Table 2 show values of the maximum error 

(max_error) obtained in our numerical experiments and the one obtained in [2]. We see that the values of 

maximum error obtained by our method improve the ones in [2]. 

Table 2. Numerical results for three world states   

N  M  Our max_error max_error in [2] 

256  128  
3100.83 -´  

3102.86 -´  

512  256  
3100.20 -´  

3101.78 -´  

1024  512  
4100.52 -´  

3100.88 -´  

2048  1024  
4100.13 -´  

3100.36 -´  

4.2. Example 2 

   In this example, we assume that the stock price process follows the Kou jump-diffusion model where the 

jumps arrive at Poisson times and are distributed according to the law 
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We assume that our five-state Markov chain has a generator of the form: 
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and that the economy switches between different jump intensities described by the vector  

.].5,0.7,0.9[0.1,0.3,0= Tl  

   In this case, we suppose that the market could be in any of the five regimes with equal probability. Other 

corresponding information is given in the following table:  

Table 3. Data used to value American options under regime-switching jump-diffusion models.  

Parameter  values  

S  100  

K  100  

T  0.25  

s  0.5  

r  0.05  

p  0.5  

1h  3  

2h  2  

 

   We use a uniform distribution of points in the interval 6,6][=],[ maxmin -xx  as collocation points and use the 

following bounds for the truncation process in (22): 

),)/(1/(log= 1max he -pz  

)))/(1/(1(log= 2min he --- pz
, 

where we use the value of 
1210= -ee . We refer the reader to [19] to see a full derivation of these bounds in 

order to obtain uniform truncation error bounds. Table 3 contains the option prices corresponding to each 

intensity regime reported for different values of N  andM . 

   The comparison of the maximum error values between the method developed in this paper with the one 

developed in [2] will be taken at five different values of the number of space steps 8198 1024, 512,=N  and 

time steps 512 512, 256,=M  for ,0.1=1l ,0.3=2l ,0.5=3l  0.7=4l  and 0.9=5l . 

   We conduct experiments on different values of ,N M and .l  Table 4 show values of the maximum error 

(max_error) obtained in our numerical experiments and the one obtained in [2]. We see that the values of 

maximum error obtained by our method improve the ones in [2]. 

 

5. Conclusion 

   In this paper, a cubic spline collocation approach is introduced to price American options in a regime-switching 

Lévy context. After a brief review of the process of deriving the set of coupled PIDEs describing the prices in 

different regimes, we present the details of our methodology which consists of first discretizing in time (by 

Crank-Nicolson scheme) and then collocating in space (by a cubic spline  ollocation method). Then, we have 

shown provided an error estimate of order )( 2hO  with respect to the maximum norm .
H

 In our paper we 

consider a cubic spline space defined by multiple knots in the boundary and we propose a simple and efficient 

new collocation method by considering as collocation points the mid-points of the knots of the cubic spline space. 

It is observed that the collocation method developed in this paper, when applied to some examples, can improve 

the results obtained by the collocation methods given in the literature. The two test problems which are studied 
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in this paper demonstrate that this approach has an efficient alternative to the one proposed in [2]. 

 

 

 

Table 4. Numerical results for different intensity regimes and discretization parameters.  

N  M  Our max_error max_error in [2] 

For 0.1=1l  

512  256  0.00150  0.0356  

1024  512  0.00037  0.0132  

8198  512  0.00030  0.0060  

For 0.3=2l  

512  256  0.00146  0.0348  

1024  512  0.00036  0.0136  

8198  512  0.00029  0.0066  

For 0.5=3l  

512  256  0.00143  0.0341  

1024  512  0.00035  0.0138  

8198  512  0.00028  0.0070  

For 0.7=4l  

512  256  0.00139  0.0339  

1024  512  0.00034  0.0140  

8198  512  0.00027  0.0071  

For 0.9=5l  

512  256  0.00133  0.0338  

1024  512  0.00033  0.0142  

8198  512  0.00026  0.0072  
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