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Abstract. 

The main objective of this paper was the application of maximum likelihood ratio tests in lognormal 

diffusions with polynomial exogenous factors. The model described an innovation diffusion process considering 

at the same time disturbances coming from the environment of the system. Finally, the model was applied to 

energy consumption data in Ghana from 1999 to 2010.  

Maximum likelihood estimators (MLEs) were obtained for the drift and diffusion coefficients characterizing 

lognormal diffusion models involving exogenous factors affecting the drift term. The present paper provides the 

distribution of these MLEs, the Fisher information matrix, and the solution to some likelihood ratio tests of 

interest for hypotheses on the parameters weighting the relative effect of the exogenous factors. 

The results show that the total consumption of primary energy presents structural characteristics. The 

endogenous consumption pattern in Ghana, in absolute terms, also presents a clear upward trend. 

Key works: lognormal diffusions model, maximum likelihood estimators, endogenous actors, energy 

consumption  
 

. 

 1 Introduction 

The use of diffusion processes with exogenous factors and their trend is common in many fields. The 

reason of its application is the usual presence of deviations of the observed data with respect to the trend of some 

known homogenous diffusion process, in some time intervals. These factors are time dependent functions that 

allow, on one hand, a best fit to the data and, on the other hand, an external control to the process behaviour. The 

factors must be totally or partially known, that is, their functional form or some aspects about their time 

evolution must be available. The problem of estimating the parameters of the drift coefficient in these models 

has received considerable attention recently, especially in situations in which the process is observed 

continuously. The statistical inference is usually based on approximating maximum likelihood methodology. An 

extensive review of this theory an be found in Prakasa(1999),  and related new work has been done by Kloeden 

et al. (1999),  

The usefulness of diffusion random fields in describing, for example, economic or environmental 

phenomena, has led to significant developments, particularly regarding inferential aspects. In that respect, from 

the contribution to theoretical foundations for diffusions given in Nualart (1983) and Ricciardi (1976), the 

lognormal diffusions involving exogenous factors affecting the drift term is considered. The maximum 

likelihood estimators (MLEs) for the drift and diffusion coefficients is obtained, which characterize these 

diffusions under certain conditions. Using these MLEs, techniques for estimation, prediction and conditional 

simulation of   lognormal diffusions are developed.  

The study of variables that model dynamical systems has undergone a great development over the last 

decades, and a variety of statistical and probabilistic techniques has been worked out for this purpose. Among 

these, stochastic processes, and in particular diffusion processes, have been systematically employed. 

  

2. Lognormal Diffusion Process Model (LNDP) 

The lognormal diffusion process with exogenous factors is defined as 0:X t t TT  with infinitesimal 

moments 1 ,A x t xh txh t  and 
2 2

1 ,A x t x2 2x2 22 2
, where 00  and h is continuous function in 0 ,t T  

containing the external information sources. So it is usual to take h as a linear combination of continuous 

functions. A class of two-parameter random fields which are diffusions on each coordinate and satisfy a 

particular Markov property related to partial ordering in 
2R  are considered  by Nualart(1983). Using this 

theory, Skiadas(2007) introduced a 2D lognormal diffusion random field as follows.  
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Let 
2: , 0, 0, RX z z s t I S T 2, 0, 0, RI S T, 0, 0,, , , be a positive-valued Markov random field, 

defined on a probability space , ,A P, ,A P,, , where X(0,0) is assumed to be constant or a lognormal random 

variable with 0In 0,0E XIn 0,0Inn 0 and 
2

0In 0,0Var X 2In 0,0InIn 2

0 . The distribution of the random field is 

determined by the following transition probabilities: 

1 2, , | , , ,P B s h t k x x x z1 2, | , , ,1 21 2 z, | , , ,, | , , ,1 21 21 2 1, | , ,P X s h t k B X s t k x X z1, | , ,1h t k B X s t k x X z, | , ,, | , ,1  

where , , , 0z s t I h k, , , 0s t I h k, , ,, , , , 
2

1 2, , Rx x x 2R  and B is a Borel subset. It is assumed that the transition 

densities exist and are given by  

1 2( , ( , ) | , , , )g y s h t k x x x z1 21 2, ) | ,, ) ,1 21 21 2  

                 
1 2

2

; ,

2
; ,; ,

In1 1
exp

22

yx

z h kx x

z h kz h k

m

y 2

; ,z h k; ,; ,

2222

1 mI yxIn yx

1
exp

2 2
exp

1 mIn yx

; ,z h k; ,; ,z h k; ,; ,z h k; ,; ,z h k111 z h kz h kz h kmz h kmIn
1 2x x1 21 21 2x x1 21 2

In
x x

In
1 2x x1 21 2 ; ,1 2

2222222 z h kz h k; ,; ,z h k; ,; ,z h kz h k

 

for 
2Ry 2R , with 

; , ,
s k t k

z h k
s t

m a d dd
s t

a
s k ts k t ks k t

s t

s k t

da , d, , 
2

; , ,
s k t k

z h k
s t

B d dd2

; ,z h k; ,; ,
s t

s k t

s t
B

s k ts k t ks k t k

B
s k t

s t

s k t

d d,B d,B  

and aa , BB  being continuous functions on I. Under these conditions we can assert that :X z z II is a 

lognormal diffusion random field. The one parameter drift and diffusion coefficients associated are given by: 

1 1 1

1
:

2
a z x a z B z x

11
1 1 11 1 11 1 1:1 1 11 1 1

1
B

1

2
1 1 1

2
B1 1 11 1 1B

222
1 1 1a1 1 11 1 1a B1 1 1B z1 1 11 1 1B z xxxx

1
B

11111
1 1 1

2
1 1 11 1 1B1 1 11 1 1B

2
1 1 1

2
1 1 11 1 1a z1 1 11 1 1a z ,  

2 2

1 1:B z x B z x1 11 11 1

2 2B2 2

1 11 1:2 22 2

1 11 1

2 22 2

1 1B z x2 22 2

1 11 1  

2 2 2

1
:

2
a z x a z B z x

11
2 2 22 2 22 2 2:2 2 22 2 2

1
B

1
a

2
2 2 2

2
B2 2 22 2 2B

222
2 2 2a2 2 22 2 2a B2 2 2B z2 2 22 2 2B z xxxx

1
B

11111
2 2 2

2
2 2 22 2 2B2 2 2B

2
2 2 2

2
2 2 22 2 2a z2 2 22 2 2a z , 

2 2

2 2:B z x B z x2 22 22 2

2 2B2 2

2 22 2:2 22 2

2 22 2

2 22 2

2 2B z x2 22 2

2 22 2  

where 

1
0

, ,
t

a s t a s r dr
00

1 ,a s t1 ,, r dr
0

,
t

a s,, ,  1
0

,
t

B s t Brdt
00

1 ,B s t1 , t
0

t

Brdt  

2
0

, ,
t

a s t a t d
00

2 ,a s t2 ,, ,t d,
0

t

a ,, , 1
0

, ,
t

B s t B t dt
00

1 ,B s t1 ,, , t dt,
0

t

B  

for all , , Rz s t I x, , Rs, , . 

The random field :Y z z II defined as InXY z zzInX is then a Gaussian diffusion random 

field with aa  and BB being, respectively, the drift and diffusion coefficients, and 1a1a , 2a2a , 1B1B and 2B2B  being the 

corresponding one parameter drift and diffusion coefficients. Furthermore, if  

, , , , ,z z I z s t z s tz , , , ,I z s t z s t, , , , , then 

0
0 0

: ,
s t

Ym z E Y z a d drdr: E: Y z 000
0 00 00 0

s t

a
0 00 00 00 0

d, d d,a  

2 2

0
0 0

: ,
s t

Y z Var Y z B d drdr2 2:Y z2 22 2:2 22 22 2:2 22 2::2 22 22 22 22 2

00

2 22 22 22 2

0
0 00 00 0

s t

B d, d,B  

2, : ,Y Yc z z Cov Y z Y z z zY Y:::Y Y: ,Cov Y z Y z::Y YY Y: ,: 2

Y Y z z2

Y Y  

It is also assumed that the conditions usually considered for estimation of the drift and diffusion coefficients in 

the one-parameter case hold, that is, 0InX 0,0 1P InX 0,0 0 10  and 
2

Y z Bst2

Y z BBstB , ,z s t I,s t I, . 
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3. Inference in the Lognormal Diffusion Process Model (LNDP)  

Let :X z z II be a lognormal diffusion random field. Data 1X= ,...,
t

nX z X z  are 

assumed to be observed at known spatial locations 1 1 1,z s t1 1 11 1 11 1 1s t1 1 11 1 11 1 11 1 1 , 2 2 2,z s t2 2 22 2 22 2 2s t2 2 22 2 22 2 22 2 2 , …, ,n n nz s t In n n,s t I,n n nn n n, . Let 

1 2x , ,...,
t

nx x x1 2, ,..1 21 2, ,....1 21 21 2  be a sample. Let us consider the log-transformed n-dimensional random vector, 

1 2Y , ,...,
t

nY z Y z Y z1 2,1 21 2,,1 21 21 2 1In ,..., In In X
t

nX z X z1In ,..., In In X1

t

n,..., In ,..., n 1 , and the log-transformed sample  

1 2, ,..., In x
t

ny y y y1 2 ... In x
t

ny y y1 21 2, ,...,...1 21 21 2 . We denote 1 2m , ,...,
t

Y Y Y Y nm z m z m zY Y Y1 21 21 21 2  and 

2

, 1,...,
Y Y i j

i j n
z z

i j n, 1,...,, 1,
Y Y i

i j n, 1,, 1,

2

Y Y i jz zY Y i jY Y i j
, 1,i j n, 1,, 1,

 

In order to estimate the MLEs for the drift and diffusion coefficient using exogenous factors, it is 

supposed that the drift coefficient aa  of Y is a linear combination of several known functions, 

1 ,..., :ph z h z z II , with real coefficients 1,..., p1,..., p :  

1

,
p

a z h z z II
p

1

z
p

h z z,h z z,a z
p

 

Defining for ,z s t II , 

0 1f z 1 , 
0

,
s t

o
f z h r d drf z drdr

0 o
h

0 o
h r dr d,

s t

h
0 o

h , 1,..., pp1,..., p  

the mean of Y is given by 

0 0
0

1 0

, ,
p ps t

Y
o

m s t h r d dr f z0 00 00 0

p pp pp p

1 01 0

0 0

p p

0 00 0

p p

dr f zdr f z
p pp p

0
1 0

0 o
1 01 0

0 o0

p ps tp pp p

h r dh r d,
00 o

 

Thus, denoting 0 1F= f ,f ,..., f p , with 1 2f = , ,...,
t

nf z f z f z1 2f = nf z f z f z1 21 2, ,...,.1 21 21 2  for 0,1,..., p, p0,1,... , and 

0 ,...,
t

p

t

p0 ,...,  the following is obtained: 

0 0 1 1= f f ... f FY p pm f0 0 10 0 1Y p p0 0 10 0 10 0 1f ... f F0 0 1 10 0 1 1Y p p0 0 1 1 ... f... f0 0 1 10 0 1 1  

Let us write 

1 1 1 2 1 2 1 1

1 2 1 2 2 2 2 2

1 1 2 2

...

...
M : = 

... ... ... ...

...

n n

n n

Y

n n n n n n

s t s s t t s s t t

s s t t s t s s t t
B B

s s t t s s t t s t

1 1 1s1 1 11 1 11 1 1 2 1 2 1 1n n1 11 1s t t s s t t1 1 1 2 1 2 1 11 1 1 2 1 2 1 1n nn n1 11 11 1s ts t1 1 11 1 11 1 1s1 1 11 1 1

1 2 1 2 2 2 2 2n n2 22 2t s t s s t t1 2 1 2 2 2 2 21 2 1 2 2 2 2 2n nn n2 22 22 2
M : Y BM : =

1 2 11 2 11 2 11 2 1

......

n n ns tn n nn n n1 1 21 1 2s1 1 2s n n n n n n1 1 2 21 1 2 ...t s s t t1 1 2 21 1 2 2 ...n n nn n n1 1 2 21 1 21 1 2 2 ...1 1 2n n n1 1 21 1 21 1 21 1 21 1 2s t1 1 21 1 21 1 21 1 21 1 2s t

B=
s s t

BM : =
1 2 1s1 2 1s1 2 1s t1 2 11 2 1s t1 2 11 2 11 2 11 2 1

 

With this notation, the MLEs for the drift and diffusion coefficients are, respectively: 
1

* * * * 1 1

0 1= , ,..., F M F F M In x
t

t t

p

* * * * 1 1

0 1= , ,...,* * * * 1 1* * *

0 10 1

t
* 1 1* 1 1

p

* 1 1F F M In x* 1 1* 1 1* 1 1F* 1 1* 1 1
1

* 1 1
1

F M* 1 1* 1 1* 1 1* 1 1
1

FF* 1 1* 1 1* 1 1* 1 1M F* 1 1* 1 1M* 1 1* 1 1* 1 1F* 1 1* 1 1* 1 1* 1 1* 1 1* 1 1* 1 1F* 1 1F* 1 1* 1 1
                     (1) 

and 

 
* * 1 *1

In x M In x-m
2

t

Y YB m In x* * 1M* * 1* * 1

2

t
* * 1* * 1

Y YMMmn xn x* * 1* * 1* * 1* * 1M* * 1* * 11
B* * 1

2

* * 11* * 1* * 1* * 1* * 1* * 1In * * 1* * 1
                                                 (2) 

where 
* *FYm* *F* ** ** *

(Gutierrez, et. al., 2005) 

The expected value of the MLE 
**

 is  

1 1
* t -1 t -1 t -1 t -1F M F F M E In X F M F F ME E YY* t -1 t - EF F M E In X F M F F M* t -1 t -* t -1 t -

1 1
1 t -1 t -1 t -1

1 11 1

E1 t -1F M E In X F M F F M1 t -1 t -1 t -1 t -1 t -1 t -* t -* t -* t -* t -* t -* t -M* t -* t -* t -* t -F M* t -* t -
 

                  
1

t -1 t -1F M F F M F =F =
1

t -1
1

F Mt -1t -1t -1F M Ft -1t -1
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and then, 
**

 is unbiased. Taking into account that Y  N ,BMM N ,BBM , it is clear that the distribution of the 

estimators are given by  

1
* t -1N , F M FB* t -

1

F* t -1F M F* t -1* t -1* t -N ,* t -* t -* t -* t -* t -* t -* t -
                                                                    (3) 

and  
*

1n  n-p+1, B W B*  n-p+1, * B n-p+1, *

1 n p1 n-p n-1
                                                                         (4) 

The last estimator is biased. Therefore, the following transformation is considered: 

** * 1 *1
In X - F M In X - F

1 1

tn
B

n p n p

** * 1 *M In X - F** * 1 *** * 1 *
t

1 *In X1 *1 *

n

** *1** *** *In** *** *n** *** *In X - 
1p n p11

In
1 1p 1

** *B** *n** *** *
      (5) 

Which is unbiased estimator of BB . In addition, 
*B*B and 

**
are independent and 

2
** * *1 2

1 1 1

n B
Var B Var B Var nB

n p n p n p 1n p 1nnn n p1 11111p 1p 11p 1 n pn p

2
** * 2B2

B** * 11** * B* 2*Var B Var nB** *** * ****** *B V** *** * 1n 1** *n** *** *** *** *** *** *n** *** *

1
Var nBB V

1
VV

1
BB

11

2B2B
 

Therefore, the covariance matrix of 
**

 and 
**B**B  is  

2

1
t -1

*

2
1

F M F 0

0t B
n p

B
B

0
1

22B
n p

2
1

B
n p

00t

FFt -1t -1M Ft -1t -1M FM F
*B

BB

t

t -1F Mt -1t -1B F MF MB
                                                                 (6) 

with 

1

0 0,...0

p

t 0,...0

p 1

0 0 . The point estimation of the kk function(maximum-likelihood and minimum variance 

unbiased estimation) was developed in Gutierrez et. al.(2001) for h =2 . The mean and mode functions and their 

conditional versions can be written in the form  
2exp , ,k kt s t sk k,,t s,,, 2 ,k k t s2 ,2

with mean, conditional mean, 

mode and conditional mode as in Table 1 being the problem of building confidence bands for them solved in 

Gutierrez et al.( 2003). 

 

4.   Fisher Information Matrix 

The Fisher information is a way of measuring the amount of information that an observable random 

variable X carries about an unknown parameter  upon which the probability of X depends. The probability 

function for X, which is also the likelihood function for , is a function f(X; ); it is the probability 

mass (or probability density) of the random variable X conditional on the value of . The partial derivative with 

respect to  of the natural logarithm of the likelihood function is called the score. 

The Fisher information matrix is determined by first calculating the following: 

1 1In L
In X - F M F

t
B F M F1 1- F1 11 11 1F M F1 11 1t1 11 11 11 1In L
BBBB X 1 1X -1 11 1In XB 1 1In X1 11 1BBBBB  

2
1 1

2

In L
F M FtB F

2In L
BBBB

2
BB M F1 1M F1 11 1F MBB 1 1F M1 11 11 11 1FF1 11 1B  

2
2 1In L

In X - F M F
t

B
B

F M F2 1- F2 12 12 1F M F2 12 1t2 12 12 12 1
2In L

BB
B

X 2 1X -2 12 1In XB 2 1In X2 12 1L
BBBB

B
BB IBB 2 1I2 12 1B  

1

2

In L 1
In X - F M F In X - F

2 2

tn

B B
F M F In X - F

t 1M F In1In L 1
I X

nn

22
X - F

B2 2

1
In X

2

n

B2
 

2
1

2 2 3

In L
In X - F M F In X - F

2

tn n

B B B
F M F In X - F

t 1F In1
2In L

I X
n n

B
X - F

B B

In L
2 2 3

In X 
n n

B B2 2 32 2 32 2 3B B2 2 322 2 32 2 32 2 3B2 2 322 2 32 2 3
 

and 
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2
1 1

2

In L
F M FtE B F

22In LIn L
B

In L
BBBB

22
M F1 1M F1 11 1M1 1M1 11 1B 1 11 11 11 11 11 11 1F MBB F MBB 1 1F M1 11 1FF1 11 1F MBB , 

2In L
0E

B

22In L
0

In L

BB

L
0

L
0000

BB
0  

2

2 2 2 2

2 1In L 2 2 2

2 2 2

n pn n p
E

B B B B

2 2222 2 1 212 2In L 2 2 22 2 22 22 21 22122I

BB B B2 22

2In L
2 2 2 22 2 22 2 2 B2 222 2 22 2 22 2 2

2n p2 22 2n22pIn L n

22222 2 22 2 22 2 2222 2 22 2 22 2 2B 22 2 2B2 2 222 2 22 2 22 2 22 2 222 2 22 2 2
 

Therefore, the Fisher information matrix is 

 

2

1 t -1

2 2 2

2

F M F 0
I = 

0t n p

B

B F 0BBB
2 2 2

2

t n p2 2 22 2 2

B

2 2 2t n p2 2 22 2 200t n p0t n p
2B

t n p

F1 t -1F1 t -11 t -1B 1 t -1 t -1 t -F M F1 t -11 t -1B 1 t -F M1 t -1 t -F M FB
 (7) 

5. Hypotheses Testing 

In order to test the hypothesis, the vector 
0 1, ,...,

t

p..,
t

p0 1,.0 10 1
is split as follows (Skiadas, 2007; 

Anderson, 2003): 

1

2

111

22

 

where 11  is 1 1p 1  and 22 is 2 1p 1, with 1 2 1p p p1 2 1p p1 21 2 . The hypothesis of interest is 

0 1 1:H0 1 10 1 1  

1 1 1:H1 1 11 1 1  

where 11  is 1 1p 1  fixed vector. The total region and the region associated with the null hypothesis are, 

respectively, 

2, : 0 R pB B R p, 20 R:::  

2 1

1 1, : : 0 R pB B 2R p

1 1, : : 0 1

1 1 : 01 1 ::1 11 1: 1 1:: 1 11 11 11 1  

Under these hypotheses, 

122 2* 1

1

max x; , 2 | M| exp
2

nn
n

i

i

n
L B B x; ,; ,,ax xx

n

2222i 1

* 1 exp* 1

i

* 1* 1* 1 exp* 1

i

n

2222

1* 1* 11* 1* 1* 11

M|M| 2* 1* 1* 11
22 2 * 12 2 * 1

n

22 2 * 1* 1* 1* 1M* 1* 1* 1* 12* 1* 1* 12
n

|* 1* 1* 12

|||
n

* 1* 1
n

* 1
 

122 2* 1

1

max x; , 2 | M| exp
2

nn
n

i

i

n
L B B xax xxx ,,,

n

2222

n

i 1

* 1 exp* 1
n

i

* 1* 1* 1* 1
n

* 1* 1 exp* 1

i

n

2222
M|* 1* 1* 1M|* 1* 12 2 * 12 2 * 1

n

22 2 * 1||* 1* 1* 1M* 1* 1* 1* 12* 1* 1* 12
n

|* 1* 1* 12

|
1* 1* 11* 1* 11

| 2* 1* 11
2

nn
* 1* 1

n
* 1

 

and the likelihood ratio statistic for testing 0H  is 

2 2* *

* *

max

max

n n

L B B

L B BL

Bmax

max

L

L

L

L

BBB

BBBB

2 2* *2 22 2
n n

* *2 2
n n
2 2* *2 22 2

B
2 22 2* *2 22 2* *2 22 2* *2 22 2

B B
2 22 2

B BB
2 2

B B

B BB B* *B B* ** ** *B B

B B
 

For obtaining the distridution of this statistic, let us denote 
1A=F M Ft 1M F1

 and 
1C=F M In Xt 1M In X1

and 

consider the following partitions: 
1 1

11 21 11 1 1 1 2

1 2 1 1
21 22 2 2 1 2 2

A A F F M F F M F
A= M F | F

A A F F M F F M F

t t t

t t t

11
1 1F1 1t t tF M 1 11 11 1t t t1 11 1M 1 11 11 1t t tFt t tFFt t tA A F1 1F MF M 1 11 1M 1 11 11 1FFF F MF M 1 11 1M 1 11 11 1FFF M1 11 1F MF MM F F M1 11 1M F FM F F1 11 11 1FFF11 21A A11 211 2

=
11 21 1 2F1 21 2FM1 21 2MF M F F M1 1 1 1 21 1 1 1 2M F F M1 1 11 1 111 1 11F1 1 11 1 1 1 21 21 21 1 1 1 21 1 1 1 21 1 1 1 21 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 111 1 111 1 11F1 1 11 1 1F1 1 11 1 11 1 11 1 11 1 1=
11 21 1 1 11 1 11 1 1=
11 21 1 21 21 1 1 1 21 1 11 1 11 1 11 1 11 1 11 1 111 1 11 1 11 1 1 1 2| FF |1 1 1 1 2| F1 1 11 1 1F |1 1 11 1 1MMM1 1 1M1 1 11MM1 1 11 1 1

221 22A21 221 221 22

=
A A21 221 2

== MMMMMM
2 22 22 22 2F2 22 2F1 1F1 11 1

2 2 1 2 22 2 1 2 22 2 1 2 22 2 1 2 2F M F F M2 2 1 2 22 2 1 2 2M F F MF MM F F M1 1M1 11 11 11 1F MM F F MF Mt t t1 21 21 2
F M

1 21 21 2 1 1M F F M1 11 1t t t1 11 1M F FM F F1 11 11 1t t t1 21 21 2 1 1t t t1 11 11 2F | F1 21 2t t t1 2F1 21 2F |
1 1t t t1 11 1

2 2 12 2 12 2 1F2 2 1FFFFF2 2 12 2 12 2 12 2 1

MMM
2 2 12 2 12 2 12 2 12 2 1

MM  

* * *
11 21* 1 1 11 1 12 2

1 2 * * *
21 22 2 2 12 1 22 2

A A C A A
C=A C | C =

A A C A A

*A *

* * *A A* * ** * *

2 2

* * *C* * ** * ** * *A* * ** * ** * ** * ** * ** * *C* * ** * ** * ** * *C* * *A A C ACCC
1 2| C =1 21 21 2C |1 21 2C

1 A A1 1 11 1 12 2A A1 1 11 1 11 1 11 1 1
A A CC AACCCCCC11 21A A11 211 2 1 1 1C1 1 11 1 11 1 1A1 1 11 1 11 1 11 1 11 1 11 1 1C1 1 11 1 1C1 1 11 1 11 1 1C1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 111 21 1 1 11 1 11 1 111 21 1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1

* * *

2 2 12 1 22 2A A2 2 12 1 22 2 12 1 2

* * *A A* * ** * *A A2 2 12 2 12 2 1A2 2 12 2 1A* * *A* * *A* * *
221 22A21 221 221 22A A21 221 2A AA A

2 2 12 2 12 2 1

* * ** * ** * *

2 2 12 2 1C2 2 12 2 1C* * *C* * ** * *C* * *

2 2 12 2 12 2 12 2 12 2 12 2 1

* * ** * ** * *

2 2 12 2 12 2 12 2 1C2 2 12 2 1CCC* * ** * *C* * ** * ** * ** * *

2 2 12 2 12 2 12 2 12 2 1C2 2 12 2 1CCC* * *C* * ** * *C* * ** * ** * ** * *

2 2 12 2 12 2 1

* * ** * ** * *
 

where 11A  is 1 1p p1 1p1 11 1  and 1C  is 1 1p 1 . Using the last two expression, the following is obtained: 

* 1 1 * 1 *

2 22 2 22 21 1 22 2 11 1A C A A A C A* 1 1

2 222 22

* 1 1 * 1 *A* 1 1* 1 1* 1 1 * 1 *A C A A A C A* 1 1 * 1 ** 1 1 * 1 *

2 22 2 22 21 1 22 2 11 1A C A A A C A2 22 2 22 21 1 22 22 22 2 22 21 1 22 2A C A A A C A  

Subtracting 
*

2 2 2F w

*

2 2 2w2 2 22 2 22 2 2  in both sides of this equation, taking into account that  
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* *

2 2 2 1 1 2 2 2 2 2In x - F  - F  = In x - F  - F  - Fw w

* *

2 2 2F  - F * *

2 2 2w w2 2 22 2 22 2 22 2 2

* *

2 2 2 2= In x - F - F - F* ** *

2 2 2 1 1 2 2 2 22 2 2 1 1 2 2 2 2w w2 2 2 1 1 2 2 2 22 2 22 2 2 1 1 2 2 2 22 2 2 1 1 2 2 2 2  

                                                           
*

1 1 1 2= In x - F  - F w

*

1 1 1 2- F1 1 11 1 1 w  

we obtain 
* * 1 *

1 1 2 2 1 2 22 21 1 1In x - F  - F In x-F F F A Aw

* * 1

1 1 2 2 1 2- F * * 1

1 1 2 2 1 21 1 2 w2 1 22 1 22 1 22 1 2

* * 1 *

2 1 2In x-F F F A* * 1* * 1

2 1 22 1 2

* * 1A A* * 1* * 1

2 1 2 22 21 1 1F F A A2 1 2 22 22 1 2 22 2A A  

Since 
* 1

1 2 In x - F M F 0
t

w

* 1

1 2 M F* 1* 1

1 2

t
* 1* 1

w F* 1M F* 1* 1 0 , it is clear that 

* 1 1

1 2 2 22 21 In x - F M F - F A A 0
t

w

* 1 1

1 2 2M F* 1 1* 1 1

1 2 21 2 2

t
* 1 1* 1 1

w1 2 21 2 21 2 21 2 2

* 1 1F - F A A* 1 1* 1 1* 1 1M F* 1 1* 1 1 00  

Using the previous notation,  

1 1 1 1

1 2 22 21 1 2 22 21 12 22 21 11,2 F F A A M  F - F A A A A A A
t

1 2 22 21 1 2 22 21 12 22 21 11,2F A A M F - F A A A A A A1 2 22 21 1 2 22 21 12 22 211 2 22 21 1 2 22 21 12 22 21

1 1 1 1A A M F - F A A A A A A1 1 1 11 1 1 1
t

1 1 11 1 1
 

It can be established that 

* * 1 *

1 1 2 2 1 1 2 2nB = In x - F  - F M In x - F  - F  
t

w w w

* * 1 ** * 1

1 1 2 2 1 1 2 2 - F M In x - F  - F  * * 1 ** * 1

1 1 2 2 1 1 2 21 1 2 2 1 1 2 2

t
* * 1* * 1

w w w1 1 2 2 1 1 2 22 1 1

* * 1M In x* * 1* * 1* * 1B = In x -* * 1* * 1

w w w  

                                             
* * *

1 1 11,2 1 1=nB A
t

* * ** * *A* * ** * *
t

* * ** * *

1 1 11,2 1 1A1 1 11 1 1

* * *nB* * *B* * ** * ** * ** * *

1 1 11 1 1  

The likelihood ratio statistics can now be written as 

1 2
* * * *

1 1 11,2 1 1nB nB A

n

t

n
1

n

2
*A

t
11

A
222

BnB 1 1 11,2 1 1A1 1 11 1 1AnBnB* * ** * ** * ** * ** * *B* * ** * *nB nB* * ** * *B nB 1 1 11 1 1nBB nBnBB nB  

where 
* * *

1 1 11,2 1 1nB A
t

* * ** * *A* * ** * *
t

* * ** * *

1 1 11,2 1 1A1 1 11 1 1

* * *B* * *B* * ** * ** * ** * *

1 1 11 1 1 is 1 1,W p BB and distributes independently of 
*nB*B  (Anderson, 

2003). This means that the distribution of 
2

n
2

n  is the same as 
1

U U VV
1
 where U and V are independent 

random variables with distribution given by 1 1,W n p B1p B1, B  and 2 1 ,W p BB  respectively. 

 

6. Simulation Studies 

The stochastic differential equation dx t X t dt X t dw tX t dt X t dw t , where W(t ) 

represents the Wiener process with independent increments W(t ) - W(s) distributed according to 0,N t ss  

for t > 0,  has a single continuous solution in the interval [t0 , T]. This corresponds to the parameter of the 

lognormal diffusion process, the explicit expression of which can be obtained by means of Itô’s formula, applied 

to the transform In X , t , and which has the following form 

2

0 0 0X  = + exp
2

t x t t W t W t0 0 00 0 0= += + 0 0 0

22

0 0 00 0 00 0 00 0 0exp0 0 00 0 0

22

W t W t
2

tt ttt0 0 00 0 0W t W t0 0 00 0 0W t W tW t W tt tt ttt0 0 00 0 0t t0 0 00 0 0t tt t0 0 00 0 0t0 0 0tt0 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0
2222

0 0 0
2

0 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0  

From this explicit solution, the simulated trajectories of the process can be obtained by discretizing the 

time interval [t0, T], with the initial condition W(t0) = 0. The Wiener process is obtained as the sum of the 

distributions N(0, h), where h = ti 1i ih t ti it ti ii i 1i i . 

From this simulated process sample, the parameters can be estimated by ML, first using the Newton–

Raphson (NR) nonlinear approach to approximate the value of . Secondly, the problems that occur in 

estimating the parameters of the lognormal diffusion process are discussed. The SA optimization to the 

estimation of the parameters is used in order to perform a compression of the range of values over which the 

conditioned log-likelihood function must be maximized to find . The parameters of the process are estimated 

by applying the method to the simulated data set described previously, which enable the effectiveness of the 

method to be tested.  

Table 2 shows the values used in the simulation and the results obtained by estimating the parameters, 

using the methods described above, implemented using the mathematical packages by considering h = 1, n = 30 

and an initial value xo = 1.12149. These results clearly show that the SA algorithm was a good estimation method 

and that it enabled the elimination of many of the difficulties encountered with ML estimation. 
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7. Empirical Results 

The LNDP is applied to the data of total natural-petroleum products consumption in Ghana from 1999 

to 2010. These data were provided by the Ministry of Economic Planning.  Data of the above time series were 

used to estimate the parameters of the process using the methods described in Section 3. Gutierrez et al. (1999; 

2005; 2006) proposed a methodology for building a theoretical model of lognormal diffusion process with 

exogenous factors that fit the data, that is, a method for searching for the h function.  

The goodness-of-fit to the data was one criterion to compare various models for petroleum consumption 

in Ghana. The statistical results from the models such as R
2
, MSE, MAPE, MAD and d values were calculated. 

The performance of the SGIDP for the forecasting period using the trend and conditional trend function is 

illustrated in Figure 1. Finally, in order to evaluate the results obtained using the SGIDP in studying the data 

series, the model was compared with two alternative models; the first being the stochastic logistic innovation 

process and the second is the stochastic lognormal innovation process (Skiadas and Giovani, 1997). A Matlab 

program was implemented to carry out the calculations required for this study. A Matlab program was 

implemented to carry out the calculations required for this study. The methodology is summarised as follows: 

i. Use the first 50 data set in the series of observations to estimate the parameters of the model, using 

expressions (5) and (6). Then, determine the corresponding confidence intervals using equations (7) 

and (8). 

ii. For the years 2000, 2001 and 2002, predict the corresponding values for electricity consumption in 

Morocco using the estimated trend function (ETF) and the estimated conditional trend function 

(ECTF), obtained by replacing the parameters with their estimators in expressions (3) and (4), and 

compare the results with the corresponding observed data for the same years. 

The data from 1999 to 2010 are used to make forecasts of the future values of the process, with the 

trend and conditional trend functions given by expressions (2) and (3) and the confidence interval (given a 95%) 

in the expressions (6) and (7). The results are summarized in Table 3. Comparing the parameter estimation 

results for the demand for oil in Ghana, it can be  seen that the maximum energy consumption level (F) of the 

process resulting from the stochastic model is larger than that resulting from the deterministic model. The 

estimators of the stochastic model seem more reasonable since the forecasting values of the deterministic model 

underestimate the real values. The approximate distribution function and cumulative distribution function for a 

random point are also provided. These distribution functions are not symmetric due to the nonlinearity of the 

stochastic model and are in accordance with the assumption of a multiplicative noise. As it is shown, the model 

behaves well since in both cases the real data are included in the lower and upper limits. 

In the actual situation, it is suppose that they are not additional information but only values 1,..., nx x of 

the endogenous variable in times 1,..., nt t . Suppose 1 1 1P X t x1 1X t1 11 1 1x1 11 1 , it is known that 

11

In
t

t

E X t
h s ds H t

x

E X tE X t
H t

E X t

1x1x
s ds H

t

hh
t

sshh sh
1t11t1t

 and the values 

1

In i
i

x
f

x
In ixixi

11x1xx
, 1,...,i n1,...,n1,...,  are considered as 

approximation to iH t . So, with these values we fit 1k 1 - degree polynomial 
1k

i ii
P t a ti ii ii i ti i

k

i ii
a

k

i i

1
a

1
 and 

we can approach the lognormal diffusion process 0:X t t t Tt T  by the lognormal diffusion process with 

polynomial exogenous factors 0:kX t t t Tt T with infinitesimal moments as  

1

0

,
k

k k k

j j

j

B x t x P tk k kxk k kk k kk k kk k kk k k

jj
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k k k

k
k k kk k kP tj jj j

k k kP tk k kk k k

j j

k k kk k kk k kk k k
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j j

0

j jj j tj jj jj jj jj jj jj j  and 
2 2

2 ,k

kB x t x2 2

k x2 22 2

k  

taking, in this case, 
'

1 1 1k

j jP t a t1j ja 1j j1 '1 1j j t1 1j j11 , 1,...,j kk1,...,  and  0 1kP t 1 . It is assumed that 

0

k
k k

j j

j

P t
k

j

k k

j jP tk kk k

j jj j

0

j j  has more than one factors, because it is possible that after a posterior study and analysis. Some 

values of  
k

jP  may not be relevant. 
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Considering, for example, the function f(t) =t
−4

, the values of the corresponding estimators are: 

ˆ 0.0209ˆ 090.020 , ˆ 0.0279h 0.0279  and ˆ 0.2109B 0.2109 , with confidence intervals (0.015215;0.098076) and 

(1.011172;3.812135).10−4. Table 4 summarises the prediction results, that is, the observed data, the values 

predicted by ETF and ECTF and the lower and upper limits of these functions,  

 

7.  Conclusions 

The main objective of this paper was the application of maximum likelihood ratio tests in lognormal 

diffusions model. The model described an innovation diffusion process considering at the same time 

disturbances coming from the environment of the system. Finally, the model was applied to energy consumption 

data in Ghana and showed sufficiently good results. 

Considering a lognormal diffusion model, in this paper we have calculated the distribution of the MLEs 

of the drift and diffusion coefficients, the Fisher information matrix, and solved some likelihood ratio tests for 

hypotheses on the parameters weighting the relative effect of exogenous factors affecting the drift. The results 

obtained are important for real applications; in particular, for prediction and conditional simulation.  

The endogenous consumption pattern in Ghana, in absolute terms, presents a clear upward trend. 

Between 1973 and 2010, the consumption rose from 763 to 12292 barrels (thousand metric tons of oil 

equivalent), while between 1990 and 2010, from 4531 to 12292 metric tons (an increase of 171.3%). With 

respect to the total consumption of primary energy derived from natural gas, the increase between 1990 and 2010 

was even greater, at 204.46%. Finally, the separation, within total demand for petroleum products (final energy), 

of domestic-commercial use from industrial use (including electricity generation and cogeneration), reveals 

values of 18% and 82%, respectively. 

The energy market in Ghana has been characterized in recent decades by very important quantitative 

and structural changes, especially concerning natural petroleum products as a source of energy. Moreover, this 

has taken place in a context of an expanding phase of the economic cycle and significant social changes. The 

energy market in Ghana has been characterized in recent decades by very important quantitative and structural 

changes, especially concerning petroleum as a source of energy. Moreover, this has taken place in a context of an 

expanding phase of the economic cycle and significant social changes. 
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Table 1: Gutierrez point estimation of the kk function 

   Mean  Conditional Mean  Mode  Conditional Mode 
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Table 2: Simulation and Estimation of the Parameters 

 

   

Simulation 1 0.32 0.00024 

Estimation NR 2.00005 0.400009 0.00013 

Estimation SA 2.00475 0.432842 0.00086 

 

 

Table 3: Forecasting based on ETF and ECTF 

 Times Data EET LL-ETF UL-ETF ECTF LL- ECTF UL- ECTF 

2010 15.275 15.478 14.776 16.578 14.274 14.377 15.985 

2011 17.446 17.847 17.346 16.248 15.762 16.978 17.934 

2012 18.274 18.845 18.274 17.679 18.978 18.367 18.709 

 

 

 Table 4: Confidence intervals  for parameter estimates 

 

Forecasting period  

 

1 2 3 4 5 

80% Lower Limit 13.34 13.55 14.83 15.17 15.54 

Real Values 24.65 25.37 26.37 29.39 29.99 

80% Upper Limit 325.50 44.46 45.23 46.75 46.90 
 

 
Figure 1: Fits and predictions made using the ETF and the ECTF 
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