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Abstract 

This paper considers the problem of estimating the population mean in two-stage sampling with unequal first 

stage unit (fsu) for ratio, product and regression estimators when the population mean of the auxiliary variable is 

not known in advance. The ratio, product and regression estimators are suggested and studied their properties. It 

is shown that under certain conditions the suggested estimators are more efficient than than Sukhatme et al 

(1984) estimators. Numerical illustration is given in support of present study.  
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1.  Introduction 

In survey sampling, the use of auxiliary information can increase the precision of an estimator when study 

variable y is highly correlated with the auxiliary variable x. but in several practical situations, instead of 

existence of auxiliary variables there exists some auxiliary attributes, which are highly correlated with study 

variable y, such as (i) Amount of milk produced and a particular breed of cow. (ii) Yield of wheat crop and a 

particular variety of wheat etc. In such situations, taking the advantage of point bi-serial correlation between the 

study variable and the auxiliary attribute, the estimators of parameters of interest can be constructed by using 

prior knowledge of the parameters of auxiliary attribute. 

 

The problem of the estimation of population parameters like mean, variance, and ratio of two population means 

are common in agriculture, economics, medicine, and population studies. The use of auxiliary information has 

been applied for improving the efficiencies of the estimators of population parameter(s) irrespective of sampling 

design. Ratio, product and regression methods of estimation are good examples in this context. Cochran (1940) 

used auxiliary information at the estimation stage and proposed a ratio estimator for the population mean. A ratio 

estimator is preferred when the correlation coefficient between the study variate and the auxiliary variate is 

positive. Robson (1957) defined a product estimator that was revisited by Murthy (1964). The product estimator 

is used when the correlation between the study variate and the auxiliary is negative. 

 

The use of auxiliary information has to a fairly large extent proved to be effective approach in increasing the 

precision of estimates in survey sampling. Many estimators of the finite population parameter have been 

constructed using auxiliary information. Information on variables correlated with the main variable under study 

is popularly known as auxiliary information which may be fruitfully utilized either at planning stage or design 

stage or at the estimation stage to arrive at an improved estimate compared to those not utilizing it. The use of 

auxiliary information dates back to 1820 with a comprehensive theory provided by Cochran (1977). Recently, 

several authors like Samiuddin and Hanif (2007), Kadilar and Cingi (2004, 2005), Pradhan (2005), Sahoo and 

Panda (1997, 1999) and Upadhyaya and Singh (1999) have worked on the use off auxiliary information in 

survey sampling. 

 

In some cases information on auxiliary variables may be readily available on all units in the population; 

however, this is not always the case in certain practical situations. Hence, we rely on taking a fairly large sample 

from the N  unit in the population in order to estimate the population mean of the auxiliary variable(s).  

 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.13, 2013 

 

49 

Since it is assumed that the population mean X , of the auxiliary variable, is unknown, we first select a 

preliminary large sample of size n¢  from N  units in the population by simple random sampling without 

replacement in order to provide an estimate of X . Let U  be a finite population partitioned into n¢  First Stage 

Units (FSU) denoted by nI UUUU ¢,...,...,, 21  such that the number of Second Stage Units (SSU) in iU  is 

iM . Let y  and x
 
be the variable under study and auxiliary variable taking the values ijy  and ijx  

respectively, for the 
thj  SSU on the unit iU  ( )iMjni ,...,2,1;,...,2,1 =¢= . 
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Assume that a sample s  of n  FSU’s is drawn from U  and then a sample is  of im  SSU’s from the 
thi  

selected FSU from iU  using simple random sampling without replacement.  
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When X  is known, the classical two-stage ratio, product and regression estimators of Y  with unequal FSU and 

their corresponding approximate Mean Square Error (MSE) has been given by Sukhatme et al (1984) and are as 

presented below:  

Ratio estimator:      
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1PS  and 
2

2PiS  are the variance among FSU means and variance among subunits for the 
thi  FSU while PQS1  

and PQiS 2  are their corresponding co-variances. 

Sahoo and Panda (1997, 1999) described class of estimators in two stage sampling with varying probabilities and 

later examined family of estimators using auxiliary information in two-stage sampling. Scott and Smith (1967) 

and Chaudhuri and Stenger (1992) described the prediction criterion for two-stage sampling while Hossain and 

Ahmed (2001) examined the class of predictive estimators in two-stage sampling using auxiliary information.  
2. Suggested Estimators 

RATIO ESTIMATOR 

Under the assumptions above, the estimator 1y  will take the form  

             x
x

y
y ¢=

*

*
*

1                                    (4) 

If we express (4) in terms of d ’s  
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Expanding the right hand side of (5) neglecting terms involving power of this greater than two, we have  
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Squaring both sides of (6) and neglecting terms involving powers greater than two, we have  
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By taking expectations of both sides by (7) and simplifying we get the MSE of as  
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PRODUCT ESTIMATOR is defined as 
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Following the procedure of section 2 it is easy to verify that the MSE of 
*
2y  is  
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The large sample approximation to the MSE of 
*

3y  is given by  
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If the values of the variance and covariance terms defined in section 2 are correspondingly substituted into (11), 
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Remark 1: it will be observed that the MSEs of the estimators 
**
21 , yy  and 

*

3y  each consist of four components. 

The first two components on the right hand sides of (8), (9) and (12) represents the additional contribution to the 

variance arising due to the fact that the values determined from the large sample of size n’ are subject to error 

while the last two components represent the variance of the estimates if n’ where equal to N. The estimators 

under consideration require the advance knowledge of some population parameters which are usually unknown. 

However in practice, the results from previous experience (survey) or the sample estimators of their population 

parameters may be substituted for this purpose. Although, the estimation may turn out to be biased the bias 

would be negligible in large samples and the approximate MSEs to order one will be the equivalent to those 

derived and for large samples, the difference would be minimal. 

 

3. Efficiency Comparison  

In this section, we considered the theoretical comparison of the performances of the suggested estimators with 

respect to Sukhatme et al (1984) estimators. It is easily seen that when we subtract (1), (2) and (3) from (8), (9) 

and (12) respectively we get: 
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Thus, we see that the estimators 
**
21 , yy  and 

*

3y  will be more efficient than 21, yy  and 3y  respectively, since 

1l  and 2l  will always be negative. 

 

4.  Numerical Illustration     

The preceding theoretical results shall now be illustrated with reference to the data given by Okafor (2002) pp 

223-224. Taking N=92, n’=26 and replacing the population values of (1), (2), (3), (8), (9) and (12) by their 

estimate obtained from the sample, the MSE for the different estimators are presented in table 1.  

 

Table 1: MSE for the different estimators 

 

 

Estimator 

              Ratio              Product           Regression 

1y  *

1y  2y  *

2y  3y  *

3y  

   MSE 92.64 84.55 102.63 93.00 40.13 40.11 

5. Conclusion  

Table 1 clearly indicates that )( *

1yMSE is smaller than )( 1yMSE , )( *

2yMSE  is smaller than )( 2yMSE . 

Hence, 
*

1y  and 
*

2y  is certainly to be preferred in practice. Also we see that the  )( *

3yMSE  is smaller than 

)( 3yMSE  although the difference is not appreciable. This is an expected result since the conditions given in 
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section 3 is satisfied. Note that 21.1ˆ =R  is substantially different from 1.0ˆ =b  the regression coefficient, 

this means that the regression line does not pass through the origin; and this goes further to explain why the 

regression estimators are better than the ratio and product estimators. It is therefore concluded that, for this data 

set the suggested estimators are more efficient than Sukhatme et al (1984) estimators. 
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