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Abstract 

In this paper, we present a new class of distributions called New Generalized Lindley 

Distribution(NGLD). This class of distributions contains several distributions such as gamma, exponential 

and Lindley as special cases. The hazard function, reverse hazard function, moments and moment 

generating function and inequality measures are are obtained. Moreover, we discuss the maximum 

likelihood estimation of this distribution. The usefulness of the new model is illustrated by means of two 

real data sets. We hope that the new distribution proposed here will serve as an alternative model to other 

models available in the literature for modelling positive real data in many areas. 
Keywords: Generalized Lindley Distribution; Gamma distribution, Maximum likelihood estimation; 

Moment generating function.  

 

1 Introduction and Motivation 

In many applied sciences such as medicine, engineering and finance, amongst others, modeling and 

analyzing lifetime data are crucial. Several lifetime distributions have been used to model such kinds of data. For 

instance, the exponential, Weibull, gamma, Rayleigh distributions and their generalizations ( see, e.g., Gupta and 

Kundu, [10]). Each distribution has its own characteristics due specifically to the shape of the failure rate 

function which may be only monotonically decreasing or increasing or constant in its behavior, as well as non-

monotone, being bathtub shaped or even unimodal. Here we consider the Lindley distribution which was 

introduced by Lindley [13]. Let the life time random variable X  has a Lindley distribution with parameter q , 

the probability density function (pdf) of X  is given by 
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It can be seen that this distribution is a mixture of exponential )(q  and gamma )(2,q  distributions. The 

corresponding cumulative distribution function (cdf) of LD  is obtained as 
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where q  is scale parameter. The Lindley distribution is important for studying stress–strength reliability 

modeling. Besides, some researchers have proposed new classes of distributions based on modifications of the 

Lindley distribution, including also their properties. The main idea is always directed by embedding former 

distributions to more flexible structures. Sankaran [16] introduced the discrete Poisson–Lindley distribution by 

combining the Poisson and Lindley distributions. Ghitany et al. [5] have discussed various properties of this 

distribution and showed that in many ways Equation (1) provides a better model for some applications than the 

exponential distribution. A discrete version of this distribution has been suggested by Deniz and Ojeda [3] having 

its applications in count data related to insurance. Ghitany et al. [7, 8] obtained size-biased and zero-truncated 

version of Poisson- Lindley distribution and discussed their various properties and applications. Ghitany and Al-

Mutairi [6] discussed as various estimation methods for the discrete Poisson- Lindley distribution. Bakouch et al. 

[1] obtained an extended Lindley distribution and discussed its various properties and applications. Mazucheli 

and Achcar [14] discussed the applications of Lindley distribution to competing risks lifetime data. Rama and 
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Mishra [15] studied quasi Lindley distribution. Ghitany et al. [9] developed a two-parameter weighted Lindley 

distribution and discussed its applications to survival data. Zakerzadah and Dolati [18] obtained a generalized 

Lindley distribution and discussed its various properties and applications. 

This paper offers new distribution with three parameter called generalizes the Lindley distribution, this 

distribution includes as special cases the ordinary exponential and gamma distributions. The procedure used here 

is based on certain mixtures of the gamma distributions. The study examines various properties of the new model. 

The rest of the paper is organized as follows: Various statistical properties includes moment, generating function 

and inequality measures of the NGL distribution are explored in Section 2. The distribution of the order statistics 

is expressed in Section 3. We provide the regression based method of least squares and weighted least squares 

estimators in Section 4. Maximum likelihood estimates of the parameters index to the distribution are discussed 

in Section 5. Section 6 provides applications to real data sets. Section 7 ends with some conclusions 

2 Statistical Properties and Reliability Measures 

In this section, we investigate the basic statistical properties, in particular, thr  moment, moment 

generating function and inequality measures for the NGL  distribution. 

 

2.1 Density. survival and failure rate functions 

The new generalized Lindley distribution is denoted as ),,( qbaNGLD . This generalized model is 

obtained from a mixture of the gamma ),( qa  and gamma ),( qb  distributions as follows: 
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The corresponding cumulative distribution function (cdf) of generalized Lindley is given by 
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is called lower incomplete gamma. Also the upper incomplete gamma is given by 

 dxext x

t
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 For more details about the definition of incomplete gamma, see Wall [20]. Figures 0 and 1 illustrates some of 

the possible shapes of the pdf and cdf of the NGL distribution for selected values of the parameters aq ,  and 

,b  respectively.  

 

The survival function associated with (4) is given by 
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From (3), (4) and (5), the failure (or hazard) rate  function (hf) and reverse hazard functions (rhf) of generalized 

Lindley distribution are given by 
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and 

 

 
Figure 1: The pdf’s of various NGL distributions for values of parameters: 

5,4,2.5;0.5,2,3,3.=6,7;1.5,3,4,5,= aq  with color shapes purple, blue, plum, green, red, black and 

darkcyan, respectively. 
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Figure  2: The cdf’s of various NGL distributions for values of parameters: 61,2,3,4,5,=6;1,2,3,4,5,= aq  

with color shapes red, green,plum,darcyan, black and purple, respectively. 
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respectively. 

Figure 3 illustrates some of the possible shapes of the hazard function of the NGL distribution for 

selected values of the parameters aq ,  and ,b  respectively.  



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.13, 2013 

 

34 

 
  

Figure  3: The hazard’s of various NGL distributions for values of 

parameters: 5,4,2.5;0.5,2,3,3.=6,7;1.5,3,4,5,= aq  with color shapes purple, blue, plum, green, 

red,blackand darkcyan, respectively. 

  The following are special cases of the generalized Lindley distribution , ).,,( qbaGLD    

    1.  If 1=a  and 2=b , we get the Lindley distribution .  

    2.  For ,== lba  we get the Gamma distribution with parameter ).,( lq   

    3.  If 1== ba , we get the exponential distribution with parameter .q   

  

2.2 Moments 

 

Many of the interesting characteristics and features of a distribution can be studied through its moments. 

Moments are necessary and important in any statistical analysis, especially in applications. It can be used to 

study the most important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and 

kurtosis). 

Theorem 2.1. If X  has ),( xGL f  ),,(=, bqaf  then the thr  moment of X  is given by the 

following 
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Proof: 

Let X  be a random variable following the GL  distribution with parameters aq ,  and b . 

Expressions for mathematical expectation, 

variance and the thr  moment on the origin of X  can be obtained using the well-known formula 
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Which completes the proof .  

 Based on the first four moments of the GL  distribution, the measures of skewness )(jA  and kurtosis 

)(jk  of the GL  distribution can obtained as 
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2.3 Moment generating function 

 

In this subsection we derived the moment generating function of GL  distribution.  

 Theorem (2.2): If X  has GL  distribution, then the moment generating function )(tM X  has the 

following form 
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Proof.  

 

We start with the well known definition of the moment generating function given by 
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Which completes the proof. 

In the same way, the characteristic function of the GL distribution becomes )(=)( itMt X
X

j where 

1= -i  is the unit imaginary number. 
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2.4  Inequality Measures 

 

Lorenz and Bonferroni curves are the most widely used inequality measures in income and wealth 

distribution (Kleiber, 2004). Zenga curve was presented by Zenga [19]. In this section, we will derive Lorenz, 

Bonferroni and Zenga curves for the GL distribution. The Lorenz, Bonferroni and Zenga curves are defined by 
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respectively. 

The mean residual life (mrl) function computes the expected remaining survival time of a subject given 

survival up to time x . We have already defined the mrl as the expectation of the remaining survival 

time given survival up to time x(see Frank Guess and Frank Proschan [4]. 

 

3 Distribution of the order statistics 

 

In this section, we derive closed form expressions for the pdfs of the thr  order statistic of the GL  

distribution, also, the measures of skewness and kurtosis of the distribution of the thr  order statistic in a sample 
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of size n  for different choices of rn;  are presented in this section. Let nXXX ,...,, 21  be a simple random 

sample from GL  distribution with pdf and cdf given by (??) and (4), respectively. 

Let nXXX ,...,, 21  denote the order statistics obtained from this sample. We now give the probability 

density function of nrX : , say ),(: fxf nr  and the moments of nrX :  nr 1,2,...,=, . Therefore, the measures of 

skewness and kurtosis of the distribution of the nrX :  are presented. The probability density function of nrX :  is 

given by 
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where )),( fxf  and )),( fxF  are the pdf and cdf of the GL  distribution given by (3) and (4), respectively, 

and B  (.,.)  is the beta function, since 1<)),(<0 fxF , for 0>x , by using the binomial series expansion of 
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we have 
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substituting from (3) and (4) into (17), we can ex press the thk  ordinary moment of the thr  order statistics nrX :   

say )( :

k

nrXE  as a liner combination of the thk  moments of the GL  distribution with different shape parameters. 

Therefore, the measures of skewness and kurtosis of the distribution of nrX :  can be calculated. 

 

4 Least Squares and Weighted Least Squares Estimators 

 

In this section we provide the regression based method estimators of the unknown parameters of the 

GL  distribution, which was originally suggested by Swain, Venkatraman and Wilson [17] to estimate the 

parameters of beta distributions. It can be used some other cases also. Suppose nYY ,...,1  is a random sample of 

size n  from a distribution function (.)G  and suppose )(iY ; ni 1,2,...,=  denotes the ordered sample. The 

proposed method uses the distribution of )( )(iYG . For a sample of size n , we have 
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see Johnson, Kotz and Balakrishnan [11]. Using the expectations and the variances, two variants of the least 

squares methods can be used. 

Method 1 (Least Squares Estimators) . Obtain the estimators by minimizing 
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with respect to the unknown parameters. Therefore in case of GL  distribution the least squares estimators of 

,,qa and b  , say LSELSE qa ˆ  ,ˆ and LSEb̂  respectively, can be obtained by minimizing 
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with respect to ,a  ,q  and b .  

 

Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators can be obtained by 

minimizing 
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Therefore, in case of GL  distribution the weighted least squares estimators of ,a  ,q and b  , say 
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with respect to the unknown parameters only. 

 

5 Maximum Likelihood Estimators 

 

In this section we consider the maximum likelihood estimators (MLE’s) of GL  distribution. Let 

,),,(= TbqaF in order to estimate the parameters ,,qa and b  of GL  distribution, let ,...,1x  nx  be a 

random sample of size n  from ),,,( xGL bqa  then the likelihood function can be written as 
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By accumulation taking logarithm of equation (18) , and the log- likelihood function can be written as 
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Differentiating Llog with respect to each parameter ,,qa  and b  and setting the result equals to zero, we 

obtain maximum likelihood estimates. The partial derivatives of Llog  with respect to each parameter or the 

score function is given by 
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where (.)y  is the digamma function. By solving this nonlinear system of equations (20) - (21), these solutions 

will yield the ML estimators for 
·

a, 
·

q  and 
·
b . For the three parameters generalized Lindley 

distribution ),,,( xGL bqa  pdf all the second order derivatives exist. Thus we have the inverse dispersion 

matrix is given by 

 

 .

ˆˆˆ

ˆˆˆ

ˆˆˆ

,

ˆ

ˆ

ˆ

ú
ú
ú

û

ù

ê
ê
ê

ë

é

÷÷
÷
÷

ø

ö

çç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

bbbqba

qbqqqa

abaqaa

b
q
a

b
q
a

VVV

VVV

VVV

N:                                                            (22) 

 

 

ú
ú
ú

û

ù

ê
ê
ê

ë

é

--

bbbqba

qbqqqa

abaqaa

VVV

VVV

VVV

EV =1
                                                                           (23) 

where  

 ,=,=,=
2

2

2

2

2

2

bqa bbqqaa ¶
¶

¶
¶

¶
¶ L

V
L

V
L

V  

 
qbbaqa bqbaaq ¶¶

¶
¶¶

¶
¶¶

¶ L
V

L
V

L
V

222

=,=,=  

  

)()(=
1=

'

ii

n

i

BAnV ++- åayaa  

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) 111

21111112
lnlnln2ln

= --+

-+-+-+

G+G

G+G+G
bbaa

aaaaaa

qaqb
qbqqbqqb

ii

iiiii
i

xx

xxxxx
A  

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )2111

211111

111

121'

lnln
=

--+

--+-+

--+

--

G+G

GY+G+G

G+G

GY+G
+

bbaa

bbaaaa

bbaa

bbbb

qaqb

qaaqbqqb

qaqb

qaaqaay

ii

iiii
i

ii

ii

xx

xxxx
B

xx

xx

 

( ) ( )
( ) ( )( ) qqaqb

qb
bbaa

aa

aq 2111

11

1=

=
--+

-+

G+G

+G
å

ii

iii
n

i xx

DCx
V  



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.13, 2013 

 

40 

( ) ( ) ( ) ( ) ( ) 1111
lnln=

-+-- G+G+G aabbbb qbqqaqaaq iiii xxxC  

( ) ( ) ( ) ( ) ( ) 111
lnln=

--- G+G+G bbbbbb qaqaaqa iiiiii xxxxxD  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11111
lnln

----- GY-GY-G-G-G+ bbbbbbbbbb qaaaqaabqabqaqbqaay iiiiii xxxxxx

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 111

111 lnln
= --+

--+

G+G

G+G
å bbaa

bbaa

ab qaqb
qqaayqqbby

ii

iiii
n

i xx

xxxx
V  

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )2111

111111 lnln

--+

--+--+

G+G

G+GYGY+G
-å bbaa

bbaabbaa

qaqb

qqaqbbqaaqqb

ii

iiiiii
n

i xx

xxxxxx
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )qqaqb

qaqbqaaqbby
bbaa

bbbbaa

qb 111

1111

1=

ln1
= --+

---+

G+G

G+G++G
å

ii

iiii
n

i xx

xxxx
V  

 

( )( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) qqaqb

qqaqbbybqaabq
bbaa

bbaabbaa

2111

111111

1=

ln1

--+

--+--+

G+G

G+GG++G
-å

ii

iiiii
n

i xx

xxxxx
 

 

( )
( ) ( ) ( ) ( )

( ) ( )( )1112

11211211

1=
2

1
= --+

---+-+

G+G

G-G+G+G
+

+
å bbaa

bbbbaaaa

qq qaqbq
bqabqaaqbaqb

q ii

iiii
n

i xx

xxxxn
V  

( )( ) ( )( )
( ) ( )( )21112

2111

1=

1

--+

--+

G+G

G++G
-å bbaa

bbaa

qaqbq

bqaabq

ii

ii
n

i xx

xx
 

( ) ( ) ( )( ) ( )
( ) ( ) 111

11211'

1=

' )(= --+

-+-+

G+G

G+G
+- å bbaa

aaaa

bb qaqb
qbbyqbby

by
ii

ii
n

i xx

xx
nV  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) 111

12112

1=

lnlnln2ln
--+

---

G+G

G+G+G
+å bbaa

bbbbbb

qaqb
qaqqaqqa

ii

iiiii
n

i xx

xxxxx
 

( ) ( ) ( ) ( )( )
( ) ( )( )2111

2111

1=

ln

--+

--+

G+G

G+GY
-å bbaa

bbaa

qaqb

qqaqbb

ii

iii
n

i xx

xxx
 

 By solving this inverse dispersion matrix these solutions will yield asymptotic variance and covariances of these 

ML estimators for a,q   and .b Using (22), we approximate )%100(1 g-  confidence intervals for ,,ba and 

,q  are determined respectively as  

 bbgqqgaag bqa VzVzVz ˆˆ   and ˆˆ,ˆˆ

222

±±±  

where gz  is the upper theg100  percentile of the standard normal distribution. 

Using R we can easily compute the Hessian matrix and its inverse and hence the standard errors and 

asymptotic confidence intervals. 

We can compute the maximized unrestricted and restricted log-likelihood functions to construct the 

likelihood ratio (LR) test statistic for testing on some the new generalized Lindley sub-models. For example, we 

can use the LR test statistic to check whether the new generalized Lindley distribution for a given data set is 

statistically superior to the Lindley distribution. In any case, hypothesis tests of the type 00 =: jjH  versus 

00 : jj ¹H  can be performed using a LR test. In this case, the LR test statistic for testing 0H  versus 1H  is 
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));ˆ();ˆ(2(= 0 xx jjw ll - , where ĵ  and 0ĵ  are the MLEs under 1H  and 0H , respectively. The statistic w  

is asymptotically (as ¥®n ) distributed as 
2

kc , where k  is the length of the parameter vector j  of interest. 

The LR test rejects 0H  if 
2

;> gcw k , where 
2

;gck  denotes the upper %100g  quantile of the 
2

kc  distribution. 

 

6 Applications 

 

In this section, we use two real data sets to show that the beta Lindley distribution can be a better model 

than one based on the Lindley distribution. 

Data set 1: The data set given in Table 1 represents an uncensored data set corresponding to remission 

times (in months) of a random sample of 128 bladder cancer patients reported in Lee and Wang [12]: 

 

Table  1: The remission times (in months) of bladder cancer patients 

  

 0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 

0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 

0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 

0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 

0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 

0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 

0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 

0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36 

0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 

0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02 

0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07 

0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49  

 

   

  Data set 2: The following data represent the survival times (in days) of 72 guinea pigs infected with 

virulent tubercle bacilli, observed and reported by Bjerkedal [2]. The data are as follows: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 

1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1 .6, 1.63, 1.63, 

1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 

2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55 

 

Table  2: The ML estimates, standard error and Log-likelihood for data set 1  

  

 Model   ML Estimates Standard Error  -LL 

     Lindley 0.196=q̂  
0.012  419.529 

 

NGLD 
18.0ˆ =q  

0.035 412.750 

 4.679=â  1.308  

1.324=b̂  
0.171  

  

  The variance covariance matrix 
1)ˆ( -lI  of the MLEs under the new generalized Lindley distribution 

for data set 1 is computed as  

 

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

029.0140.0005.0

140.0711.1031.0

005.0031.0001.0

.  
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Thus, the variances of the MLE of aq ,  and b  is 1.711=)ˆ(0.001,=)ˆ( aq varvar  and 

0.0295.=)ˆ(bvar Therefore, 95%  confidence intervals for aq ,  and b  are 

43][2.115,7.252],[0.113,0.2  and 61][0.987,1.6  respectively. 

In order to compare the two distribution models, we consider criteria like l2- , AIC (Akaike 

information criterion), AICC (corrected Akaike information criterion), BIC(Bayesian information criterion) and 

K-S(Kolmogorov-Smirnov test) for the data set. The better distribution corresponds to smaller l2- , AIC and 

AICC values:‘  

 ,
1

1)(2
=,22=

--
+

+-
kn

kk
AICAICCkAIC l  

 

 |)()(|sup= and  2)(*= xFxFSKnlogkBIC n
x

--- l  

where x
i
x

n

i

n I
n

xF £å
1=

1
=)(  is empirical distribution function, )(xF  is comulative distribution function, k  is 

the number of parameters in the statistical model, n  the sample size and l  is the maximized value of the log-

likelihood function under the considered model. 

 

Table  3: The AIC, AICC, BIC and K-S of the models based on data set 1 

  

 Model -2LL AIC AICC BIC K-S 

Lindley 839.04 841.06  841.091 843.892 0.074 

NGLD 825.501 831.501 831.694 840.057 0.116 

  

The LR test statistic to test the hypotheses 1==:0 baH  versus 1=1=:1 /Ú/ baH  for data set 1 

is 
2

2;0.05=5.991>13.539= cw , so we reject the null hypothesis. 

 
Figure  4: Estimated densities of the models for data set 1. 
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Figure 5: Estimated cumulative densities of the models for data set 1. 

   

 

 

 
 

Figure 6: P-P plots for fitted Lindley and the NGLD for data set 1. 
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Table  4: The ML estimates, standard error and Log-likelihood for data set 2 

 

  

Model ML Estimates St. Error l-  

Lindley 
  0.868=q̂  

0.076  106.928 

NGLD 1.861=q̂  
      

    0.489 

94.182 

  

 3.585=â  1.238  

2.737=b̂  
0.554  

 

  The variance covariance matrix 
1)ˆ( -lI  of the MLEs under the beta Lindley distribution for data set  is 

computed as  

 

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

--

-

-

307.0154.0001.0

154.0532.1569.0

001.0569.0239.0

 

Thus, the variances of the MLE of aq ,  and b  is 0.239=)ˆ(0.239,=)ˆ( aq varvar  and 

0.307.=)ˆ(bvar  Therefore, 95%  confidence intervals for aq ,  and b  are 

11][1.158,6.019],[0.901,2.8  and 23][1.651,3.8  respectively. 

 

Table  5: The AIC, AICC, BIC and K-S of the models based on data set 2 

  

 Model l2-  AIC AICC BIC K-S 

Lindley. 213.857 215.857  215.942 218.133 0.232 

NGLD 188.364 194.364 194.722 201.194 0.075 

 

  The LR test statistic to test the hypotheses 1==:0 baH  versus 1=1=:1 /Ú/ baH  for data set 2 is 

2

2;0.05=5.991>25.493= cw , so we reject the null hypothesis. Tables 2 and 4 shows parameter MLEs to 

each one of the two fitted distributions for data set 1 and 2, Tables 3 and 5 shows the values of ),(log2 L-  AIC, 

AICC,  BIC and K-S values. The values in Tables 3 and 5, indicate that the new generalized Lindley distribution 

is a strong competitor to other distribution used here for fitting data set 1 and data set 2. A density plot compares 

the fitted densities of the models with the empirical histogram of the observed data (Fig. 3 and 5). The fitted 

density for the new generalized Lindley model is closer to the empirical histogram than the fits of the Lindley 

model. 
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Figure  7: Estimated densities of the models for data set 2. 

  

 
   

Figure  8: Estimated cumulative densities of the models for data set 2.  
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Figure 9: P-P plots for fitted Lindley and the NGLD for data set 2. 

  

 

7 Conclusion 

 Here, we propose a new model, the so-called the new generalized Lindley distribution which extends 

the Lindley distribution in the analysis of data with real support. An obvious reason for generalizing a standard 

distribution is because the generalized form provides larger flexibility in modelling real data. We derive 

expansions for the moments and for the moment generating function. The estimation of parameters is 

approached by the method of maximum likelihood, also the information matrix is derived. We consider the 

likelihood ratio statistic to compare the model with its baseline model. Two applications of the new generalized 

Lindley distribution to real data show that the new distribution can be used quite effectively to provide better fits 

than the Lindley distribution.  
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