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Abstract 

Missing observations in time series data is a common problem that occurs due to many reasons. In order to 

estimate missing observation accurately, it is necessary to select an appropriate model depending on the type and 

nature of the data being handled so as to obtain the best possible estimates of missing observations.  The 

objective of the study was to examine and compare the appropriateness of Box Jenkins models and direct linear 

regression in imputing missing observation in non stationary seasonal time series data. The study examined Box 

Jenkins techniques SARIMA and ARIMA models in imputing non stationary seasonal time series specifically in 

situations where missing observation are encountered towards the end of the series. Besides that,  direct linear 

regression have also been proposed in  imputing missing observations when seasonality has been relaxed by 

rearranging the time series data in periods and grouping observations which corresponds to each other from each 

period  together and then analyze each as a single series. From the study it was observed that it is easy to impute 

missing observations using direct linear regression in non-stationary time series data when seasonality has been 

relaxed by rearranging the data in periods compared to traditional Box Jenkins models SARIMA and ARIMA 

models. Also direct linear regression proved, more accurate and reliable compared to Box-Jenkins techniques. So 

Based on the finding, the proposed direct linear regression approach can be used in imputing missing 

observations for non stationary series with seasonality by first rearranging the data in periods. 

KEYWORDS: Imputation, SARIMA, ARIMA models and Direct Linear regression (L.REG). 

Introduction 

Missing values in time series data is one of the problems commonly encountered. Missing values may occur due 

to lack of records, item non response, machine failure to record observation during experiment, lost records 

among others. Several techniques may be used in computing missing values. They may be simple or complex 

depending on the nature of time series data being handled. The most common techniques used in imputing 

missing values in non stationary seasonal series as suggested in literature review mainly involve the use Box- 

Jenkins models.  

 

Box-Jenkins’ procedures mainly entails the model identification that is selection of appropriate model, 

determination of appropriate values for the parameter in the model for known data patterns, model checking and 

lastly forecasting future values or Back-forecasting. An Autoregressive Integrated Moving Average (ARIMA) 

model is one of the box-Jenkins techniques that can be fitted to non stationary series as proposed by Box-Jenkins’ 

(1976) for non stationary series which has seasonal component, then the seasonal component can be removed by 

seasonal differencing and the resulting model is known as seasonal ARIMA model or SARIMA model. 

 

This paper examines the appropriateness of Box-Jenkins approaches (SARIMA and ARIMA models) in handling 

non-stationary seasonal time series with missing observations. Besides that, the paper also discusses direct linear 

regression approach in imputing missing observation when seasonality has been relaxed by rearranging the series 

in periods and the treating each period as a single series. 

Box-Jenkins Models 

If the observed time series process is linear and non stationary process with seasonality then we will confine 

ourselves to the following Box-Jenkins models as discussed by Box and Jenkins (1976)  

i. Autoregressive (AR) models 

A model of the form  

      tptptttt eyyyyy ++++= −−−− φφφφ ⋯⋯332211                    (1) 

  

where pφφφ ⋯21,  is a set of finite weight parameters is called an autoregressive process of order p  that is
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)( pAR . For first order and second order we have ttt eyy += −11φ  and tttt eyyy ++= −− 2211 φφ
 

Equation (1) can also be represented in the form 

 

               tt
p

p eyBBB =−−−− )...1( 2
21 φφφ                  or                 tt eyB =)(φ

                                           
(2) 

   

where p
p BBBB φφφφ −−−−= ....1)( 21  .From equation 2.10 we get tttt eBeBe

B
y )()(

)(

1 1 ψφ
φ

=== −

 

which 

implies that ).()(1 BB ψφ =−

 

                       

ii. Moving Average (MA) models 

This is the second type of Box-Jenkins’ models. The general equation for MA process is given by   

                  qtqtttt eeeey −−− −−−−= θθθ ⋯2211                         (3) 

where qθθθ ⋯⋯21,  are the parameters of order q and qttt eee −− ,, 1 ⋯⋯ are error terms. 

If we define moving operator of order q by  

                            
),(...1 2

21 BBBB q
q θθθθ =−−−−  

then the equation (3) above can be represented as  

                                
.)( tt eBy θ=                                (4) 

iii. Autoregressive Moving Average Models (ARMA models)  

This is a combination both AR and MA of order p and q . The general equation for ARMA process is given by 

the  

).()( 1111 qtqtpptttt eyyyey −−−− ++−+++= φθφφ ⋯⋯
        

(5) 

This can be simplified by backward shift operator B to obtain    

                                tt eByB )()( θφ =                                                      (6) 

such that jtjt
j yyB −− = ,   

P
PBBB φφφ −−−= ⋯11)( ,  and .1)( 1

P
qBBB θθθ −−−= ⋯

 

 

 

iv. Autoregressive Integrated Moving Average (ARIMA) Models 

For time series with polynomial trend of degree d, the trend can be eliminated by considering a process  t
d
Y∆  

obtained by differencing. The process t
d

t YX ∆=  is an ARMA (p q) satisfying stationary process. The original 

process )( tY is said to be autoregressive integrated moving average of order qdp ,, process denoted by 

ARIMA( qdp ,, ). If )( ty   follows an ARIMA model then we have 

 

                 
( )( ) ( ) tqt

d
p eByBBB θθφϕ +=−= 01)(

                                   
(7) 

where p
pp BBB φφφ −−−= ...1)( 1  is an AR operator, q

qq BBBB θθθθ −−−−= ...1)( 21  is an MA operator, pφ

and qθ  are polynomials of order p and q respectively with all roots of polynomial equations outside the unit 

circle. Considering the general ARIMA model outline in (7) above, it can be expressed in three explicit forms as 

described by Box and Jenkins (1976) as follows: 

(a) Difference equation form of the model 

Suppose we have tyyy ,..., 21 as realization of time series data, where ty the current is value and 121 ,..., −tyyy  
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are the previous values, then we can express the current value ty  of the process in terms of previous values 

121 ,..., −tyyy  and previous values of random shock se′ .If  

( ) ( )( ) dp
dp

d
BBBBBB

+
+−−−−=−= ϕϕϕφϕ ...11 2

21 then the general model    (5), with 00 =θ , can be 

expressed as 

.......1 111 tqtqtdptdptt eeeyyy +−−−++−= −−−−+ θθϕϕ
    

                              (8) 

(b) General expression for the ψ weight 

Consider  ( ) tt eBy ψ=  If we perform operation on both sides with the generalized AR operator )(Bϕ we obtain 

.)()()( tt eBByB ψϕϕ = However, since   tt aByB )()( θϕ =   it follows that  

                              
).()()( BBB θψϕ =                                                                                                                   (9)  

Therefore, the ψ  weights may be obtained by equating coefficients of B in the expansion 

               
)...1(...)1)(...1( 1

2
211

q
q

dp
dp BBBBBB θθψψϕϕ −−−=+++−−− +

+
        

(10) 

so the jψ weights of the ARIMA process can be obtained recursively through the equations 

                         jdpjdpjjj θψϕψϕψϕψ −+++= −−+−− ...2211 0>j  

with 10 =ψ , 0=jψ  for 0<j , and 0=jθ for qj > . 

(c) General Expression for the π weights 

By first considering the model in terms previous sy′  and current shocks se′ , the model tt eBy )(ψ=   may 

also be written in the inverted form as  

  tt eyB =− )(1ψ     or  .)1()(

1

tt

j

j
jt eyByB =−= ∑

∞

=

ππ                               (11) 

                            so   tttt ayyy +++= −− ...2211 ππ  

and the )(Bπ must converge on or within the unit circle since (11) is invertible. For the general ARIMA model, 

we can obtain π  weights by substituting (11) in 

                                   tt eByB )()( θϕ =   

so as to obtain    

                                 
.)()()( tt yBByB πθϕ =
 

Equating coefficients of B in  

                                   
).()()( BBB πθϕ =                                   (12)  

we can get the π weights  that is  

                           
...).1()...1()...1(

2
2111 −−−×−−=−−− +

+ BBBBBB
q

q
dp

dp ππθθϕϕ                                                      (13) 

Thus, the jπ weights of the ARIMA process can be determined recursively through 

                              jqjqjjj ϕπθπθπθπ ++++= −−− ...2211 0>j  

with 10 −=π , 0=jπ  for 0<j  and 0=jϕ  for dpj +> . 

5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Models 

For time series that contain seasonal periodic component which repeats itself after every s observations  

where (s = 12 for monthly observations). Box-Jenkins (1976) have generalize ARIMA model to deal with  

seasonality and define a general multiplicative Seasonal ARIMA model (SARIMA) as 
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( ) ( ) ( ) ( ) t

S
Qqt

S
pp eBBwBB Θ=Φ θφ                             (14) 

where tw  is the differenced stationary series, ,,, qPp θφ Φ and QΘ are polynomials of order QqPp ,,,   

respectively,
 te  is the random process and  

                                  t
Dd

t yw ∇∇= .                                      (15) 

For 1=P the term ( ) sS
p BtconsB ×==Φ tan1 m which imply that tw depends on stw − since stt

s wwB −=  

where tw are formed from the original series ty by simple differencing and also by seasonal differencing s∇ to 

remove seasonality for instance if 1== Dd  and 12=s , then 

                           1121212 −∇−∇=∇∇= tttt yyyw  

                             )()( 13112 −−− −−−= tttt yyyy  

So equation (12) is said to be SARIMA model where d and D  need not to exceed one. 

1. Methodology 

By first identifying the order, parameter estimation and model checking as described by Box-Jenkins (1976) we 

preceded to forecast using SARIMA model as follows:  

1. Forecasting using SARIMA model 

Consider the time series function tY  where nt .....2,1=  from with four components: trend, cyclic, seasonal and 

random respectively with realization mntnn yyyyyy +++ ,...,,,..., 2121 . Suppose we have the missing observations 

( mnn yy ++ ,...1 ) within the data set, we  fit SARIMA model to the observed values ( nyyy ......, 21 )  by first 

Identifying the order, Estimation of Parameters, model checking, and lastly Forecasting or Back-Forecasting 

based on the three approaches for forecasting  as describe by Box and Jenkins (1976)  as follows: 

a. Difference equation form 

Assuming we have an SARIMA (1, 0, 0) (0, 1, 1) s model and (s=12) then from equation (2.7) we have                  

                                  tt eBWB )1()1( 12θα +=−      

where  tt yW 12∇=  then 

                          12112112 )( −−−−− ++−+= tttttt eeyyyy θφ     

then we find  111211 )()1,(ˆ −−− +−+= nnnn eyyyny θφ  and  101110 )])1,(ˆ[)2,(ˆ −−− +−+= nnn eynyxny θφ
  

Chatfield 

(2003).  Forecast for future values will be calculated recursively in the same way.   

Example   

Considering U.S Birth data which has SARIMA (0, 1, 1) × (0, 1, 1) s model, one-step ahead can be obtained as 

follows: From the model we have  

                          tt eBBBeBB )1()1)(1( 131212 Θ+−Θ−=−− θθθθ  

                          1312113121 −−−−−− Θ+Θ−−+−+= tttttttt eeeyyyy θθ
 

where 62.0−=θ
   

and 801.0−=Θ  are parameters estimates 

                       1312113121 49.0801.062.0 −−−−−− ++++−+= tttttttt eeeeyyyy  

Taking t as the origin, one step ahead forecast can be obtained as:-  

                      
.49.0801.062.0 1211112111 −−+−−+ ++++−+= tttttttt eeeeyyyy
   

b. Using ψ weights 

The weights ψ in the equation ( ) tt eBY ψ= is calculated and then used in computing forecast errors. Since 

.....++= +++ knknkn eey ψ it is clear that jn

j

jk ekny −

∞

=

+∑=

0

),(ˆ ψ  .The −k steps ahead forecast error is given by  
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11..... +−++ +++ nkknkn eee ψψ  and the variance −k steps a head error is   ( .)1
222

eσψψ ++
 

c. Using π weights 

In this case the weights π as defined in the equation ( ) tt eYB =π and since  

                     knnkknkn eYYY +−++ ++++= ........1 ππ    

and 
              

........)2,(ˆ)1,(ˆ),(ˆ
1121 +++−+−= −+ nknk yYknyknykny ππππ

    
 

The forecast can be computed recursively replacing future values with predicted values. 

Using the above procedure, we adopted one step ahead forecast in order to estimate each missing values at a time 

and this implies that if we have k missing values then we will also have k re-estimation of parameters. The 

SARIMA forecasting Steps are as follows: 

i. Forecast the first missing value 1+my using the non missing observations before  .1+my   

ii. Forecast the second missing observation 2+my using the non missing observations before 2+my with the 

already forecasted 1+my value included as non missing observation.  

iii. Forecast the third missing observation 3+my using the non missing observations before 3+my with the 

already forecasted 21, ++ mm yy value included as non missing observation. 

iv. The same procedure  is repeated for the remaining missing observations (values) .,..., 54 nmmm yyy +++  

v. Suppose we have very few observations before the first missing observation, we back-forecast following 

steps (i) to (iv) above. 

2. Rearranging the series 

Before imputing missing values using Box- Jenkins ARIMA model and direct linear regression, we first 

rearrange the original time series data in periods nP  mainly to eliminate the seasonal component. The length of 

the period may be obtained by first plotting the series to examine cyclic pattern of the series. We then 

approximate the time gap between two successive troughs or crest of the cyclic component which we later use as 

the length of the period to be used in rearrangement of the series. Generally rearrangement of the series may be 

done as follows: Consider time series data with N observations, we may have ),..,,,( 321 nPPPPP =  periods 

where                       

                               ),...,,,,( 143211 mm yyyyyyP −=  

                               
),,...,,( 212212 mmmm yyyyP −++=  

                              
),,...,,( 31322123 mmmm yyyyP −++=

 

                                         
⋮

 
                            ),,...,,( 12})1{(1})1{( mnmnmnmnn yyyyP −+×−+×−=   

in this case, n  represent the number of periods within the original time series while m  
represent the number of 

observations in each period. The whole idea appears as shown in the array below on rearranging.  

 

Yt X1 X2 ... Xm-1 Xm 

y1 x1 x2 ... xm-1 xm 

y2 xm+1 xm+1 ... x2m-1 x2m 

y3 .   . . 

y4 .   . . 

y5 .   . . 

y6 x{(n-2)m}+1 x{(n-2)m}+2 ... x{(n-2)m}-1 x(n-2)m 

y7 x{(n-1)m}+1 x{(n-1)m}+2 ... xnm-1 xnm 

y8      

y9      

.      

.      
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.      

yN-1      

yN      

 

From the array of the rearranged series above tY  represent the original time series data while 121 ,...,, −mXXX and 

mX are formed by rearranging the data by seasons. Since we are interested in imputing missing values in time 

series data with both seasonal and non seasonal component, this arrangement removes the short circles of the 

data and assumes that the model of the non-seasonal component of the data remains unchanged even if the 

seasonal component has been removed by rearranging the data that is, suppose the original series has the model 

SARIMA(p, d, q) (P,D,Q) then after rearranging, the seasonal part disappear while the non seasonal part remains 

unchanged. So the model reduces to ARIMA (p, d, q) for the series 121 ,...,, −mXXX and mX  .This assumption 

is only applicable if the formed re-arranged series by seasons are too short for the normal fitting of ARIMA 

model procedures. On the other hand if the data formed from the rearrangement of the original series is long 

enough, then we fit ARIMA model to each series 121 ,...,, −mXXX and mX as described by Box-Jenkins 

procedures which involve: model identification, parameter estimation and diagnostic checking as already been 

illustrated in the previous sections. 

 

3 Forecasting using ARIMA model 

Starting with 1X series, we proceed to estimate missing values ,...,, 321 +++ mmm yyy using Box-Jenkins 

approaches as follows: Consider Minimum mean Square error forecast for )(ˆ kyt of kty +  which is given by 

conditional expectation )(ˆ kyt = ,...),|( 1−+ ttkt yyyE , the actual forecast can be calculated directly in either 

three different ways as follows: 

a. Forecast from Difference equation  

From difference equation form as already been discussed in the previous sections, Suppose 

)...1()1)(()( 2
21

dp
dp

d BBBBBB +
+−−−−=−= ϕϕϕφϕ , then the general ARIMA model in (7) can be written 

using difference equation form as follows 

             t
q

qt
dp

dp eBByBBB )....1()...1( 1
2

21 θθϕϕϕ −−−=−−−− +
+                 

(16) 

Which if we take the conditional expectation at time t , we obtain 

                                                                                                                                  

][][...][][...][)(ˆ 1111 ktqktqktdpktdpktt eeeyyky +−+−+−−++−+ +−−−++= θθϕϕ
           

(17) 

b. Forecast in terms of ψ weights 

Using the conditional expectation in equation  we obtain 

                 
...][][][...][][)(ˆ

1111111 ++++++= −++−−++ tkttkltktt eeeeeky ψψψψ
               

(18)  
 

Alternatively,  

                  )(][...][][)(ˆ
1111 hltceeely hkhkththtt −+++++= +−−+−++ ψψ  

                       ).(][...][][ 1111 kceee ttlktkt ++++= +−−++ ψψ                                                                  (19)  

 

c. Forecast in terms of π weights 

Finally taking the conditional expectation in equation of ARIMAmodel we get  

                          .][][)(ˆ

1

( ∑
∞

=

+−+ +=

j

ktjktjt eyky π

                                                                                  

(20) 

From the above forecast procedures we can obtain the missing values as illustrated in the following steps: 
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i.    Forecast the first missing value 1+mx using the non missing observations before  .1+mx   

ii.    Forecast the second missing observation 2+mx using the non missing observations before 2+mx with 

the already forecasted 1+mx value included as non missing observation.  

iii.    Forecast the third missing observation 3+mx using the non missing observations before 3+mx with the 

already forecasted 21, ++ mm xx value included as non missing observation. 

iv.    Repeat the same procedure for the remaining missing observations nmmm xxx +++ ,..., 54  

v.    Suppose we have very few observations before the first missing observation, we back-forecast 

following steps (i) to (iv) above. 

Again the same steps (i) up to (iv) above will be repeated for the remaining series mm XXXX ,,...,, 132 − .  

 

4. Imputing missing observation using direct linear regression 

Considering the newly formed series mm XXXXX ,,...,,, 1321 −  resulting from the rearranged original data, we 

first check whether there exists autocorrelation between mm XXXX ,,..,, 121 − and proceed by Regressing 1X on

2X , 2X on 3X , 3X on 4X
4X on 5X ,...., 1−mX on mX   which will yield to the following  equations 

                                 11211 ebXaX ++= ,   

                                 22322 ebXaX ++=
 

                                                ⋮  

                                 22122 −−−−− ++= mmmmm ebXaX    

                                 1111 −−−− ++= mmmim ebXaX .  

where eba ,,  are constants. Finally we can use the above   regression equations to impute missing observations. 

For instance suppose we have time series data )( tY  with N=28 observations, period ( 4=s ) and 

mmmmmmm yyyyyyy 2019181715108 ,,,,,,  as missing observations at random, then on rearranging tY we have the array as 

shown in table below.  

.,,,,,,,,,,,,,,,,,,,,,,,,,, 28272625242322212019181716151413121110987654321 yyyyyyyyyyyyyyyyyyyyyyyyyyyyY mmmmmm
t =  

 

Table 1 Array of rearranged series from original series Yt 

 

 

 

 

 

 

 

 

 

where 1X , 2X , 3X , 4X  are new series formed from the original series  tY  now if we regress
1X on

2X , 
2X on

3X , 3X on
4X  and we obtain the following equations 

                        
11211 ebXaX ++= ,               (i) 

                        22322 ebXaX ++=
              (ii) 

1X  2X  3X  4X  

1y  2y  

3y  4y  

5y  6y  

7y  

m
y8  

9y  

m
y
10  11y  12y  

13y  14y  

m
y
15  

16y  

m
y
11  

m
y
18  19y  

m
y20  

21y  22y  23y  24y  

25y  26y  27y  28y  
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                         33433 ebXaX ++= ,            (iii) 

Using equation (i) and (iii) we have 

1

119
10

a

eby
y

m −−
=  and

2

337
8

a

eby
y

m −−
= . Again using equation (ii) we 

have 2219218 ebyaym ++= . Similarly the rest of the missing observation will be imputed using the same logic 

while applying the regression equations above. Note this imputation procedure only works if not all the 

observations in the entire row of mm XXXX ,,..,, 121 −  
are missing. Finally the imputed missing values in 

121 ,...,, −mXXX  and mX are then replaced back in the original time series data tY  

 

2. Data Analysis and Discussions 

We begin by setting missing values at various positions at random within each data set with missing percentages 

say 5%, 7%, 10%, 12% and 15%  and treat each of the percentage of missing values as a sample size . Since four 

non stationary data sets were used in the analysis, the total number of samples were twenty. The rationale was 

mainly to find out which method of imputation performs better as the percentage number of missing values 

keeps on increasing within the data set. The data set that were used in the analysis were as follows: 

• Airline data (N=144): international airline passengers: monthly totals in thousands. Jan49-Dec60. 

Source: time series data Library or Box-Jenkins (1976). 

• The U.S Births data (N=157): Monthly U.S Births in thousands Jan 1960-Feb 1973 Source time series 

Library. 

• Tourist data (N=228): monthly totals in thousands of world tourist visiting Kenya. Source: Kihoro 

(2006)   

• U.K Coal consumption (N=108): quarterly totals in millions 1960-1992. Source Harvey, A. C. (2001). 

Considering the following desirable properties of imputation method as suggested by Kihoro (2006) 

i. Predictive accuracy: The imputed values should be very close to the actual values in order to minimize 

biasness. 

ii. Ranking accuracy: The ordering relationship between imputed values should be the same as those of 

true values 

iii. Distribution accuracy: This implies that, the marginal and higher order distributions of the imputed 

values should be essentially the same as the corresponding distributions of the true values. 

iv. Estimation Accuracy: this imply that the imputation method chosen should lead to unbiased and 

efficient  inferences for parameters of the distribution of the true values 

v. Imputation plausibility: the findings of the imputation method should be values which are plausible.  

the following the statistical proximity measures were used determine the similarities and dissimilarities between 

the imputed values and the original values for each sample size.  

 

a. Product Moment Correlation Coefficient (PMCC) commonly used as a measure of similarity pattern 

expressed as    

 

                             
)ˆvar()var(

)ˆ,cov(
ˆ ˆ

yy

yy
yy =ρ                                    (21)                 

b. Mean Relative Euclidean Distance (MRED) which is a distance measure commonly used to measure 

dissimilarity (wei,(1989) and is given by 

                                

2

1

ˆ

ˆ
1

1ˆ ∑
=









−=

n

n i

i
yy

y

y

n
d                             (22)  

c. Root Mean Square Error (RMSE) is also another distance measure commonly used. In this case If 0ˆ =yyd  

then the imputed values are very accurate. It is expressed as  

                                

( )∑
=

−=
n

i

iiyy yy
n

d

1

2
ˆ ˆ

1
                               (23)  

d. Mean scaled Euclidean Distance (MSED) given as 
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                    ∑∑
==















+
−=

+

−
=

n

i ii

ii

n

i ii

ii
yy

yy

yy

nyy

yy

n
d

1
22

1
22ˆ

ˆ

ˆ2
1

2

1

ˆ

ˆ1
                  (24) 

    Kihoro (2006).  For perfect match we expect MSED values to be zero. 

e. Proximity measure (PROX): This is a combination of MSED and PMCC  denoted by yyp ˆ  and  takes the 

form  

                                
3

2ˆ ˆˆ +−
=

yyyy

yy

d
p

ρ
                                      (25) 

    where yyd ˆ and yyˆρ̂ are MSED and PMCC values obtained from equation 4.1 and 4.4 respectively.  

    The values 1=yyp implies a perfect match of imputed values and the true values while 0=yyp   

    implies that the imputed values and true values do not match at all Kihoro (2006).  

 

1. SARIMA forecasting results 

For each of the three data set mentioned above, seasonal ARIMA model was fitted after following box-Jenkins 

four steps in modeling time series and the appropriate model was obtained by choosing the model which yielded 

minimum AIC, and BIC. Using Box-Ljung test statistic and all the models passed the residual normality test and 

the finding are summarized in Table below: 

Table 2.  SARIMA models used in forecasting 

Data Number of 

observation 

Transforma

tion 

Model 

U.S Births 157 Logarithm ARIMA(0,1,1)(0,1,1) 

Tourist 

series 

228 Logarithm ARIMA(0,1,1)(0,1,1) 

Airline 

series 

144 Logarithm ARIMA(0,1,1)(0,1,1) 

U.K Coal 

consumpti

on series 

108 Logarithm ARIMA(1,1,1)(0,1,1) 

In our case, if there are K - missing observations and no two or more consecutive missing observation, then we 

performed K -re-estimation of model parameters. For instances where we have two or more consecutive 

missing observation, we estimate the model parameter only ones before we forecast or back-forecast the missing 

observations. The sample forecast for Airline data with 5% missing observation are displayed in Table 3. 

 

2.  ARIMA forecasting Results 

For the case of ARIMA models the forecasting steps were the same as those of SARIMA model only that 

ARIMA models were fitted to each of the newly formed series after rearranging the data as described earlier. The 

newly formed series and the generated results from ARIMA forecast for sample equivalent to 5% missing 

observations are displayed in Table 4 

3. Direct linear Regression Results (L.REG) 

For the newly formed series which resulted from each of the data sets after rearranging, correlation between the 

newly formed series was examined before regressing the newly formed variables on each other after rearranging 

the series. Missing observation were then imputed as already been illustrated previously and the findings are also 

given in Table 3 
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  Table 3. Sample 1 with 5% missing observations (Airline data) 

 

 

 

 

 

 

 

 

 

 

 

Empirical comparisons SARIMA, ARIMA and Linear Regression (L.REG)  

Comparing the performance of the three methods of imputing missing values using statistical measures already 

discussed before, Table 4 shows that, for sample size equivalent to 5% in missing observation airline passenger 

data, the use of MRED and RMSE indicates that (L.REG) performed better in terms of distance followed by 

SARIMA and ARIMA was the poorest among the three methods. In terms of preservation of data pattern (L.REG) 

was Again the best while ARIMA was the worst. 

 

Table 4. Comparison Statistics for Airline imputed values sample size 5% 

 

 

 

 

 

 

 

In Table 5, the results shows that when the sample size missing observation was increased from 5% to 7% again 

(L.REG) was superior in terms of distance measures as can be observed by the values of RMSE, MRED and 

MSED.  

 

Table 5. Comparison Statistics for Airline imputed values sample size 7% 

 

 ARIMA SARIMA L.REG 

PMCC 0.9992 0.9991 0.9998 

RMSE 7.9958 12.772 1.8278 

MRED 0.0330 0.0511 0.0077 

MSED 0.0104 0.0111 0.0052 

PROX 0.9963 0.9960 0.9982 

 

Likewise the values of PMCC and PROX show that linear regression was the best in preserving data pattern. On 

the other hand SARIMA was the poorest   in both distance as well pattern measure. 

 

Performing similar analysis as the one indicated in table 5 and 6 for the rest of sample sizes 10%, 12%, 15% for 

the all data sets then by aggregating the PMCC, RMSE, MRED, MSED and PROX values, a table of ranks based 

on the performance of each the three method was generated and the results are indicated in table 6:  

Position airline ARIMA SARIMA L.REG 

17 125 118.8800 132.6900 134.2100 

75 267 269.1400 277.9700 264.0800 

76 269 260.9400 270.0100 246.0000 

95 271 251.3600 275.1500 270.7339 

98 301 276.1500 308.1400 299.0350 

102 422 415.2100 408.4600 407.1300 

122 342 326.4000 335.3100 339.0400 

129 463 437.4400 460.9500 468.0050 

140 606 605.4300 628.0200 625.5500 

 ARIMA SARIMA L.REG 

PMCC 0.9995 0.9998 0.9997 

RMSE 7.3723 2.7893 1.0180 

MRED 0.0175 0.0123 0.0025 

MSED 0.0070 0.0045 0.0057 

PROX 0.9975 0.9984 0.9980 
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Now considering the overall ranking in Table 7 generated from Table 6, it is clear  that in terms of preservation 

of both distance and pattern of the of the original data L.REG. outperformed both SARIMA  

Table 6  Ranks performance based on statistical measures for the three data sets 

DATA METHOD PMCC Rank RMSE Rank MRED Rank MSED Rank PROX Rank 

 

Airline 

data 

1 ARIMA 0.9844 3 9.2912 3 0.2088 3 0.0311 2 0.9811 3 

2 SARIMA 0.9873 2 2.7113 2 0.0598 2 0.0367 3 0.9835 2 

3 L-REG 0.9942 1 1.7161 1 0.0558 1 0.0226 1 0.9905 1 

 

U.S 

Births 

data 

1 ARIMA 0.9983 2 13.938 3 0.0392 3 0.0112 2 0.9957 2 

2 SARIMA 0.9979 3 5.1030 2 0.0308 2 0.0124 3 0.9952 3 

3 L-REG 0.9989 1 4.0335 1 0.0119 1 0.0080 1 0.9970 1 

 

Tourist 

data 

1 ARIMA 0.9514 3 1.3997 3 0.0533 3 0.0150 3 0.9788 3 

2 SARIMA 0.9808 1 0.2220 2 0.0108 1 0.0087 1 0.9907 1 

3 L-REG 0.9515 2 0.4463 1 0.0153 2 0.0144 2 0.9790 2 

 

and ARIMA  and this suggest that Linear regression can be applied in imputing missing observation for non 

stationary seasonal series. 

                 Table 7 Overall ranks performance for the three methods 

 PMCC Rank RMSE Rank MRED Rank MSED Rank PROX Rank 

ARIMA 0.97803 3 8.209633 3 0.10043 3 0.01910 2 0.98520 3 

SARIMA 0.98867 1 2.678767 2 0.03380 2 0.01927 3 0.98980 1 

LREG 0.98153 2 2.065300 1 0.02767 1 0.01500 1 0.98883 2 

 

4. Conclusion 

Based on our objective we can conclude that direct linear Regression proved to be more efficient and effective if 

it is applied to series which has been rearranged compared to box Jenkins ARIMA and SARIMA model however 

it may not be applicable to all types of series thus making it inappropriate in such situations.  Even though 

ARIMA model did not perform much compared with the other two models it can still be applied in imputing 

missing values where seasonality has been relaxed by rearranging data in periods. Besides that we also conclude 

that seasonality can also be removed by arranging the data into periods as opposed traditional method of 

eliminating seasonality by differencing.  

 

5. Recommended areas for future research 

Throughout our study, we majorly concentrated on non-stationary with seasonality; we propose the same study 

can be extended further for stationary series with seasonal component. We also recommend an improvement to 

ARIMA model specifically where newly formed series is too short for ARIMA model to be fitted instead of 

assuming that the model of the non-stationary part remains unchanged. Lastly we propose further study in 

instances where the correlation of the newly formed series is very low thus making it difficult to apply direct 

linear regression in imputing missing values. 
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