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Abstract
The aim of this paper is to introduce a new class of sets called Jregular-open sets in topological spaces (X, 7)
with an operation ¥ on 7 together with its complement which is yregular-closed. Also to define a new space
called pextremally disconnected, and to obtain several characterizations of extremally disconnected spaces by
utilizing jregular-open sets and yregular-closed sets. Further plocally indiscrete and yhyperconnected spaces
have been defined.
Keywords: yregular-open set, yregular-closed set, yextremally disconnected space, }locally indiscrete space
and yhyperconnected space

1. Introduction

In 1979, Kasahara defined the concept of an operation on topological spaces and introduced a~closed graphs of
an operation. Ogata (1991) called the operation «&ras yoperation on 7and defined and investigated the concept of
operation-open sets, that is, }open sets. He defined the complement of a J2open subset of a space X as }closed.
In addition, he also proved that the union of any collection of }open sets in a topological space (X, 7) is }open,
but the intersection of any two Jopen sets in a space X need not be a yopen set. Further study by Krishnan and
Balachandran (2006a; 2006b) defined two types of sets called Jpreopen and )semiopen sets of a topological
space (X, 7), respectively. Kalaivani and Krishnan (2009) defined the notion of o-)open sets. Basu, Afsan and
Ghosh (2009) used the operation y to introduce yfS-open sets. Finally, Carpintero, Rajesh and Rosas (20124)
defined the notion of }b-open sets of a topological space (X, 7).

2. Preliminaries
Throughout this paper, (X, 7) (or simply X) will always denote topological spaces on which no separation axioms
are assumed unless explicitly stated. A subset R of X is said to be regular open and regular closed if R =
Int(CI(R)) and R = Cl(Int(R))), respectively (Steen & Seebach, 1978), where Int(R) and CI(R) denotes the interior
of R and the closure of R, respectively.
Now we recall some definitions and results which will be used in the sequel.

Definition 2.1 (Ogata, 1991): Let (X, 7) be a topological space. An operation ¥ on the topology zon X is a
mapping ¥: 7— P(X) such that U c U) for each U € 7, where P(X) is the power set of X and X U) denotes the
value of yat U.
Definition 2.2 (Ogata, 1991): A nonempty set R of X is said to be yopen if for each x € R, there exists an open
set U such that x € U and AU) c R. The complement of a jopen set is called a jclosed.
Definition 2.3: Let R be any subset of a topological space (X, 7) and ybe an operation on 7. Then

1) the 7,closure of R is defined as intersection of all J.closed sets containing R. That is,

7;CI(R)=n{F:RcF,X\Fe t,} (Ogata, 1991).
2) the zyinterior of R is defined as union of all }open sets contained in R. That is,
TyInt(R) = {U : Uis a jopen set and U R} (Krishnan & Balachandran, 2006).

Remark 2.4: For any subset R of a topological space (X, 7). Then:

1) Ris popenif and only if 7,In#(R) = R (Krishnan & Balachandran, 20065).

2) Ris pclosed if and only if 7-CI(R) = R (Ogata, 1991).
Definition 2.5: Let (X, 7) be a topological space and ybe an operation on 7. A subset R of X is said to be:

1) orpopenif R C 7,Int(7,CIl(7yInt(R))) (Kalaivani & Krishnan, 2009).

2) ypreopen if R © 7,-Int(7,CI(R)) (Krishnan & Balachandran, 2006a).

3) psemiopen if R c 7,,Cl(7-Int(R)) (Krishnan & Balachandran, 2006b).

4) pb-openif R c 7,Cl(7,Int(R)) U T,Int(7,CI(R)) (Carpintero et al, 2012a).

5) pp-openif R c t,Cl(z, Int(t,-CI(R))) (Basu et al, 2009).

6) 7clopen if it is both »open and jclosed.
Definition 2.6: The complement of a-jopen, }preopen, }semiopen, }#b-open and ) f-open set is said to be a-y
closed (Kalaivani & Krishnan, 2009), y#preclosed (Krishnan & Balachandran, 2006a), y#semiclosed (Krishnan &
Balachandran, 2006b), y#b-closed (Carpintero et al, 2012a) and }f-closed (Basu et al, 2009), respectively.

The intersection of all J~semiclosed sets of X containing a subset R of X is called the ysemi-closure of R

and it is denoted by 7,sCI(R).
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The family of all jopen, a-)open, }preopen, }¥semiopen, }b-open, }f-open, Jsemiclosed, yb-

closed, yB-closed and regular open subsets of a topological space (X, 7) is denoted by 7, 7., 7,PO(X), 7
SOX), 7-BO(X), 7,-f0(X), 7,SC(X), 7,,BC(X), 7-fC(X) and RO(X), respectively.
Definition 2.7 (Ogata, 1991): Let (X, 7) be any topological space. An operation ¥is said to be regular if for every
open neighborhood U and V of each x € X, there exists an open neighborhood W of x such that W) c HU) N
AW).
Definition 2.8 (Ogata, 1991): A topological space (X, 7) with an operation yon 7is said to be jregular if for
each x € X and for each open neighborhood V of x, there exists an open neighborhood U of x such that KU) c V.
Remark 2.9: If a topological space (X, 7) is pregular, then 7, = 7 (Ogata, 1991) and hence 7 Int(R) = Int(R)
(Krishnan, 2003)
Theorem 2.10 (Krishnan & Balachandran, 20065): Let R be any subset of a topological space (X, 7) and ybe a
regular operation on 7. Then 7,sCI(R) = R U 7,Int(7,CI(R)).
Lemma 2.11 (Krishnan & Balachandran, 2006a): For any subset R of a topological space (X, 7) and ybe an
operation on 7. The following statements are true.

1) 7 Int(X\R) = X\7,-CI(R) and 7,,CI(X\R) = X\t Int(R).

2) 7CI(R) = X\7-Int(X\R) and 7,-Int(R) = X\, CI(X\R).
Lemma 2.12: Let R and S be any subsets of a topological space (X, 7) and ybe an operation on 7. If R N S = ¢,
then 7,-Int(R) N 7,,CI(S) = ¢ and 7,-CI(R) N 7-InK(S) = .
Proof: Obvious.
Lemma 2.13 (Krishnan & Balachandran, 2006a): Let (X, 7) be a topological space and ¥ be a regular operation
on 7. Then for every jopen set U and every subset R of X, we have 7,,CI(R) " U € 7,,CI(R " V).
Definition 2.14 (Carpintero et al, 2012b): A subset D of a topological space (X, 7) is said to be:

1) pdenseif 7,CI(D) = X.

2) psemi-dense if 7,sCI(D) = X.

3. #Regular-Open Sets
In this section, we introduce a new class of sets called jregular-open sets. This class of sets lies strictly between
the classes of j~clopen and yopen sets.
Definition 3.1: A subset R of a topological space (X, 7) with an operation yon 7is said to be yregular-open if R
= 7yInt(7,CI(R)). The complement of a Jregular-open set is yregular-closed. Or equivalently, a subset R of a
space X is said to be pregular-closed if R = 7,,CI(7,Int(R)). The class of all yregular-open and yregular-closed
subsets of a topological space (X, 7) is denoted by 7,,RO(X, 7) or 7,RO(X) and 7,,RC(X, 7) or 7,RC(X),
respectively.
Remark 3.2: It is clear from the definition that every jregular-open set is open and every Jclopen set is both
yregular-open and Jregular-closed.
Converses of the above remark are not true. It can be seen from the following example.

Example 3.3: Let X = {a, b, c} and 7= {9, X, {a}, {b}, {a, b}}. Define an operation y: 7— P(X) by: XR) =R
for every R € 7. Then 7,= tand 7,ROX, 7) = {9, X, {a}, {b}}. Then the set {a, b} is yopen, but it is not }
regular-open. Also the sets {a} and {a, c} are pregular-open and j}regular-closed, respectively, but they are not
¥clopen.
Remark 3.4: Let R be any subset of a topological space (X, 7) and ybe an operation on 7. Then:

1) Ris pclopen if and only if it is yregular-open and yregular-closed.

2) R is pregular-open if and only if it is ypreopen and Jsemiclosed.

3) Ris pregular-closed if and only if it is #semiopen and ypreclosed.
Proof: Follows from their definitions.
Theorem 3.5: The concept of )regular-open set and regular open set are independent. It is showing by the
following example.
Example 3.6: Let X = {a, b, ¢} and 7= {9, X, {a}, {b}, {a, b}, {b, c}}. Let y: T— P(X) be an operation defined
as follows: For every R € 7 Then

R, ifR = {b)

HR) =
RU {a}, ifR# {b}
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Then 7,= {9, X, {a}, {b}, {a, b}}, TyROX, ©) = {¢, X, {a}, {b}} and RO(X, ©) = {¢, X, {a}, {b, c}}. Then the
set {b} is pregular-open, but it is not regular open. Also the set {b, c} is regular open, but it is not yregular-
open.
Theorem 3.7: If (X, 7) be a yregular space, then the concept of }regular-open set and regular open set coincide.
Proof: Follows from Remark 2.9.
Remark 3.8: The union and intersection of any two Jregular-open (respectively, yregular-closed) sets need not
be yregular-open (respectively, yregular-closed) set. It is shown by the following example.
Example 3.9: In Example 3.6, the sets {a} and {b} (respectively, {a, c} and {b, c}) are Jregular-open
(respectively, yregular-closed) sets, but {a} U {b} = {a, b} (respectively, {a, c} N {b, ¢} = {c}) is not yregular-
open (respectively, yregular-closed) set.
Theorem 3.10: Let (X, 7) be a topological space and ybe a regular operation on 7. Then:

1) The intersection of two Jregular-open sets is yregular-open.

2) The union of two Jregular-closed sets is Jregular-closed.
Proof: Straightforward from Corollary 3.28 and Corollary 3.29 and the fact that every jregular-open set is ¥
open and every }regular-closed set is jclosed.
Theorem 3.11: For any subset R of a topological space (X, 7), then R € 7,80(X) if and only if 7,CI(R) = 7,
Cl(tyInt(7,CI(R))).
Proof: Let R € 7,50(X), then R c 7,-Cl(tyInt(7-CI(R))). Then R c 7,,Cl(7,Int(7,CI(R))) implies that 7,-CI(R)
c 7yCl(tyInt(7,CI(R))) < 7,,CI(R). Therefore, 7,,CI(R) = 7,,Cl(t-Int(7,,CI(R))).
Conversely, suppose that 7,-CI(R) = 7,Cl(7,Int(7-CI(R))). This implies that 7,-CI(R) < 7,-Cl(7,Int(7,CI(R))).
Then R c 7,CI(R) < 7,Cl(7-Int(7,CI(R))). Hence R c 7,Cl(7,Int(7,CI(R))). Therefore, R € 7,,50(X).
Theorem 3.12: For any subset R of a topological space (X, 7), then R € 7,,SO(X) if and only if 7,-CI(R) = 7
Cl(tyInt(R)).
Proof: The proof is similar to Theorem 3.11.
Proposition 3.13: For any subset R of a topological space (X, 7). If R € 7,SO(X), then 7,,CI(R) € 7,RC(X).
Proof: The proof is immediate consequence of Theorem 3.12.
Corollary 3.14: For any subset R of a topological space (X, 7). Then

1) Re 7,SC(X)if and only if 7,Int(R) = 7,-Int(7,CI(R)).

2) if Re 7,SC(X), then 7,-Int(R) € 7,RO(X).
Theorem 3.15: Let R be any subset of a topological space (X, 7) and ybe an operation on 7. Then

1) Re 7,0(X) if and only if 7,CI(R) € 7,RC(X).

2) Re 7B0(X) if and only if 7,CI(R) € 7,SO(X).

3) Re 7,B0(X)if and only if 7,CI(R) € 7,BO(X).

4) Re 7,f0(X) if and only if 7,CI(R) € 7,BO(X).
Proof:
1) The proof is immediate consequence of Theorem 3.11.
2)Let R € 7,50(X), then by (1), 7,,CI(R) € 7,RC(X) c 7,SO(X). So 7,-CI(R) € 7,SO(X). On the other hand, let
7,Cl(R) € 7,SO(X). Then by Theorem 3.12, 7,Cl(7,CI(R)) = 7,,Cl(t,Int(7,Cl(7-CI(R)))) which implies that
7,-CI(R) = 7,,Cl(7Int(7,CI(R))) and hence by Theorem 3.11, R € 7,,50(X).
3)Let R € 7,50(X), then by (2), 7,-CI(R) € 7,SO(X) c 7-BO(X). So 7-CI(R) € 7,BO(X). On the other hand, let
7-CI(R) € 7,80(X), by (2), 7,Cl(tCI(R)) € 7,50(X). Since 7,Cl(t-CI(R)) = 7,CI(R). Then 7,CI(R) € 7,
SO(X) and hence by (2), R € 7,80(X).
4) Let R € 7,80(X), then by (2), 7-CI(R) € 7,SO(X) c 7,BO(X). So 7,CI(R) € 7,BO(X). On the other hand,
let 7,,CI(R) € 7,,BO(X) C 7,B0(X), then 7,,CI(R) € 7,,0(X) and hence by (3), R € 7,,50(X).

From Theorem 3.11 and Theorem 3.15, we have the following corollary.

Corollary 3.16: For any subset R of a topological space (X, 7). Then

1) Re 7,C(X) if and only if 7,Int#(R) = tyInt(7,Cl(tyInt(R))).

2) Re 7BCX) if and only if 7,Int(R) € 7,ROX).

3) Re 7,BCX) if and only if 7,Int(R) € 7,SC(X).

4) Re 7,BCX) if and only if 7,Int(R) € 7,BC(X).

5) Re 7BCX) if and only if 7-Int(R) € 7,BC(X).
Corollary 3.17: For any subset R of a topological space (X, 7). Then

1) IfRe 7,RO(X), then 7,-CI(R) € 7,RC(X) and 7,-Int(R) € 7,RO(X).

2) IfRe 7 RC(X), then 7,CI(R) € 7,RC(X) and 7,-Int(R) € 7,RO(X).
Lemma 3.18: For any subset R of a topological space (X, 7), then 7,,Cl(t, In{(7,Cl(T/Int(R)))) = 7,Cl(7,
Int(R)).
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Proof: Since 7,-Int(7,Cl(t-Int(R))) C 7,Cl(7,Int(R)). Then 7,,Cl( 7 Int(7,Cl(t-Int(R)))) < 7,,Cl(TInt(R)). On
the other hand, since 7,-Int(R) C 7,Cl(7,Int(R)) implies that 7-Int(R) C 7,Int(7,CIl(t,-Int(R))) and hence 7,
Cl(tyInt(R)) < t,Cl(7/Int(7,Cl(7,Int(R))). Therefore, 7, Cl(7,Int(7,Cl(7,,Int(R)))) = 7,,Cl(T,Int(R)).
Lemma 3.19: For any subset R of a topological space (X, 7), then 7,-Intf(7,Cl(t-Int(7,CI(R)))) = T,Int(7y
CI(R)).
Proof: The proof is similar to Lemma 3.18.
It is obvious from Lemma 3.18 and Lemma 3.19 that 7,-CI(7,-Int(R)) and 7,-Int(7,CI(R)) are yregular-

closed and pregular-open sets, respectively.
Lemma 3.20: Let R be any subset of a topological space (X, 7) and ybe a regular operation on 7. Then R € 7,
PO(X) if and only if 7,,sCI(R) = 7,-Int(7,CI(R)).
Proof: Let R € 7,PO(X), then R < 7,Int(7,-CI(R) implies that 7,,sCI(R) c 7,sCI(t/Int(7-CI(R))). Since 7,
Int(7,CI(R)) € 7,RO(X). But 7,RO(X) c 7,SC(X) in general, then z,Int(7,CI(R)) € 7,SC(X) and hence 7,
sCl(t,Int(7,,CI(R))) = 7,Int(7,CI(R)). So 7,sCI(R) c 7,-Int(7,CI(R)). On the other hand, by Theorem 2.10, we
have 7,,sCI(R) = R U t,Int(7,CI(R)). Then 7,Int(7,CI(R)) C 7sCI(R). Therefore, 7,,sCI(R) = 7,-Int(7-CI(R)).
Conversely, let 7,sCI(R) = 7,-Int(7,CI(R)), then 7,,sCI(R) < 7,-Int(7,CI(R)) and hence R c 7,sCI(R) C T Int(7,
CI(R)) which implies that R < 7,-Int(7,,CI(R)). Then R € 7,PO(X).
Proposition 3.21: Let P and R be subsets of a topological space (X, 7) and ybe an operation on 7. Then P is ¥
preopen if and only if there exists a jeregular open set R containing P such that 7,-CI(P) = 7,CI(R).
Proof: Let P be a jpreopen set, then P < 7,Int(7,CI(P)). Put R = 7,In(7,CI(P)) is a yregular open set
containing P. Since P is ypreopen, then P is }f-open. By Theorem 3.11, 7,,CI(P) = 7,Cl(t,Int(7,CI(P))) = 7
CI(R).
Conversely, suppose R be a yregular-open set and P be any subset such that P < R and 7,-CI(P) = 7,,CI(R). Then
P c tyInt(7CI(R)) and hence P c 7,Int(7,CI(P)). This means that P is ppreopen set. This completes the proof.
Proposition 3.22: If S is both ysemiopen and }semiclosed subset of a topological space (X, 7) with an operation
yon tand 7,CI(7,In(S))  7-Int(7CI(S)). Then S is both pregular-open and yregular-closed.
Proof: Clear.
Lemma 3.23: Let R be any subset of a topological space (X, 7) and ybe an operation on 7. Then the following
statements are equivalent:

1) Ris pregular-open.

2) Ris kopen and ysemiclosed.

3) Risa-yopen and ysemiclosed.

4) R is ypreopen and ysemiclosed.

5) Ris popen and }f-closed.

6) Ris a-yopen and }f-closed.
Proof:
(1) = (2) Let R be pregular-open set. Since every Jregular-open set is J2open and every Jregular open set is
semiclosed. Then R is yopen and }semiclosed.
(2) = (3) Let R be yopen and ysemiclosed set. Since every Jopen set is a-)open. Then R is a-)open and
semiclosed.
(3) = (4) Let R be a-)open and }semiclosed set. Since every a-jopen set is ypreopen. Then A is ppreopen
and ysemiclosed.
(4) = (5) Let R be ypreopen and jpsemiclosed set. Then R < 7 Int(7,CI(R)) and 7 Int(7,CI(R)) < R.
Therefore, we have R = 7,Int(7,CI(R)). Then R is jyregular-open set and hence it is Jopen. Since every ¥
semiclosed set is f-closed. Then R is open and }f-closed.
(5) = (6) It is obvious since every Jopen set is a-)open.
(6) = (1) Let R be a-open and }-f-closed set. Then R C 7,-Int(7,,Cl( 7,-Int(R))) and 7-Int(7,,Cl(7,-Int(R))) C R.
Then 7,-Int(R) = 7,,Int(7,CI(7,Int(R))) = R and hence 7,-Int(7,CI(R)) = 7,,Int(7,CIl(7,Int(R))) = R. Therefore, R
is pregular-open set.
Corollary 3.24: Let S be any subset of a topological space (X, 7) and ybe an operation on 7. Then the following
statements are equivalent:

1) Sis pregular-closed.

2) Sis pclosed and psemiopen.

3) Sisa-pclosed and y#semiopen.

4) Sis ppreclosed and psemiopen.

5) Sis jpclosed and }+f-open.

6) Sis a-jpclosed and }f-open.
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Proof: Similar to Lemma 3.23 taking R = X\S.
Lemma 3.25: Let R be any subset of a topological space (X, 7) and ybe an operation on = Then the following
statements are equivalent:
1) Ris pclopen.
2) R is pregular-open and Jregular-closed.
3) Ris popen and a-)closed.
4) Ris popen and ypreclosed.
5) Risa-yopen and Jpreclosed.
6) R is a-yopen and }closed.
7) R is y¥preopen and yclosed.
8) R is ppreopen and a-j-closed.
Proof:
(1) & (2) see Remark 3.4 (1).
The implications (2) = (3), (3) = (4), (4) = (5), (6) = (7) and (7) = (8) are obvious (see Figure 1).
(5) = (6) Let R be a-jopen and ypreclosed set. Then R < 7,-Int(7-Cl(7,Int(R))) and 7,-Cl(7-Int(R))) < R. This
implies that R = 7,-Int(7-Cl(7,In#(R))) and hence 7,,CI(R) = 7,,Cl(7,-Int(7,Cl(7,-Int(R)))). By Lemma 3.18, we
get 7,CI(R) = 7,,Cl(7/Int(R)). Since 7,-CI(7,,Int(R))) C R, then 7,CI(R) C R. But in general R c 7,,CI(R). Then
7,CI(R) = R. It is obvious that R is }-closed.
(8) = (1) Let R be ypreopen and a-pclosed. Then R < 7,-Int(7,CI(R)) and 7,-Cl(7-Int(7-CI(R))) < R.
Therefore, we have 7,CI(R) < 7,,Cl(7yInt(7,CI(R))) R and hence 7,-CI(R) < R. But in general R C 7,-CI(R).
Then 7,-CI(R) = R. It is obvious that R is jclosed. Since 7,-CI( 7 Int(7,CI(R))) < R implies that 7,-Int(7,CI( 7,
Int(7-CIl(R))))  t-Int(R). Then by Lemma 3.19, R  7,-Int(7,,CI(R)) C 7,Int(R) and hence R C 7-Int(R). But in
general 7,-Int(R) C R. Then 7,-Int(R) = R. It is obvious that R is popen. Therefore, R is }clopen.
Proposition 3.26: Let R and S be any two subsets of a topological space (X, 7) and ybe an operation on 7. Then:
Ty Int(7,Cl(R N S)) < t7-Int(7,CI(R)) N T, Int(T,-CI(S))
Proof: The proof is obvious and hence it is omitted.
The converse of the above proposition is true when the operation yis regular operation on 7and if one
of the set is J#open in X, as shown by the following proposition.
Proposition 3.27: Let (X, 7) be a topological space and ybe a regular operation on 7. If R is jopen subset of X
and S is any subset of X, then
Ty Int(7,Cl(R)) N T-Int(tCI(S)) = T-Int(7,CI(R N S))
Proof: It is enough to prove 7,In(7,CI(R)) N T Int(7,CIS)) < T Int(7,CI(R N §)) since the converse is
similar to Proposition 3.26. Since R is j2open subset of a space X and yis a regular operation on 7. Then by using
Lemma 2.13, we have
T Int(7,CI(R)) N T,Ini(7,CI(S)) < T-Int[ T-CI(R) N T,Int(7,,CI(S))]
c tInt(7,CI[R N 7,CI(S)]) < 7-Int(7,CI(R N S))
So 7-Int(7,CI(R)) N Ty-Int(7,-CI(S)) = T,-Int(7-CI(R N S)). This completes the proof.
From Proposition 3.27, we have the following corollary.
Corollary 3.28: If R and S are jopen subsets of a topological space (X, 7) and ybe a regular operation on 7, then
T-Int(7-CI(R)) N T-Int(7,-CI(S)) = T,-Int(7,CI(R N S))
Corollary 3.29: If E and F are j)closed subsets of a topological space (X, 7) and ybe a regular operation on 7,
then
7 Cl(7yInt(E)) O t-Cl(t-Int(F)) = 7,,Cl(T,Int(E U F))
Proof: the proof is similar to Corollary 3.28 taking R = X\F and S = X\F.

4. ¥Extremally Disconnected Spaces
In this section, we introduce a new space called pextremally disconnected, and to obtain several
characterizations of yextremally disconnected spaces by utilizing pregular-open sets and pregular-closed sets.
Definition 4.1: A topological space (X, 7) with an operation yon 7is said to be yextremally disconnected if the
7,closure of every jopen set of X is open in X. Or equivalently, a space X is yextremally disconnected if the
Tinterior of every jclosed set of X is }closed in X.

In the following theorem, a space X is yextremally disconnected is equivalent to every two disjoint ¥
open sets of X have disjoint 7,-closures.
Theorem 4.2: A space X is pextremally disconnected if and only if 7,-CI(R) N 7,CI(S) = ¢ for every jopen
subsets R and S of X with RN S = ¢.
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Proof: Suppose R and S are two Jopen subsets of a pextremally disconnected space X such that R © S = ¢.
Then by Lemma 2.12, 7,-CI(R) N S = ¢ which implies that 7,-Int(7,-CI(R)) N 7,,CI(S) = ¢ and hence 7,,CI(R) N
7,CI(S) = ¢.
Conversely, let O be any j<open subset of a space X, then X\O is }-closed set and hence 7,-Int#(X\O) is j-open set
such that O N 7,-Int(X\O) = ¢. Then by hypothesis, we have 7,,CI(O) N 7,CIl(7,,Int(X\O)) = ¢ which implies that
7,Cl(O) N 7,CI(X\7,,Cl(0)) = ¢ and hence 7,,CI(O) N X\, Int(7,,CI(O)) = ¢. This means that 7,-CI(O) C 7,
Int(7,Cl(0)). Since T,Int(7,Cl(0)) C 7CI(0) in general. Then 7,,CI(O) = 7 Int(7,CI(0)). So 7,CI(O) is }
open set in X. Therefore, X is pextremally disconnected space.
Theorem 4.3: Let (X, 7) be a topological space and ¥ be a regular operation on 7. Then the following are
equivalent:
1) Xis pextremally disconnected.
2) 7CI(R) N 7,CI(S) = 7,,CI(R N §) for every j~open subsets R and S of X.
3) 7,Cl(R) N 7,CI(S) = 7,CI(R N S) for every jregular-open subsets R and S of X.
4) T Int(E) U tInt(F) = t-Int(E U F) for every yregular-closed subsets E and F of X.
5) tInt(E) U T Int(F) = t-Int(E U F) for every J+closed subsets E and F of X.
Proof:
(1) = (2) Let R and S be any two Jopen subsets of a pextremally disconnected space X. Then by Corollary
3.28, 7,,CI(R) N 7,,CI(S) = 7, Int(T-CI(R)) N T, Int(T,CI(S)) = T-Int(7,CI(R N S)) = 7,CI(R N S).
(2) = (3) is clear since every jpregular-open set is jopen.
(3) & (4) Let E and F be two pregular-closed subsets of X. Then X\E and X\F' are )regular-open sets. By (3)
and Lemma 2.11, we have
T, CI(X\E) N 7,,CI(X\F) = 7, CI(X\E N X\F)
< X\t Int(E) N X\t Int(F) = 7,CI(X\(E U F))
< X\(7yInt(E) U Ty-Int(F)) = X\t Int(E U F)
& trInt(E) U t-Int(F) = t-Int(E U F).
(4) = (5) Let E and F be two jclosed subsets of X. Then 7,Cl(7,Int(E)) and 7,CI(7-Int(F)) are jregular-
closed sets. Then by (4) and Corollary 3.29, we get
T Int( 7, Cl(7,InK(E))) U T-Int(7,Cl(T,In(F))) = 7 Int[ T Cl(7,Int(E)) U 7,Cl(7,Int(F))] and hence 7,-Int(7,
Cl(tyInt(E))) U trint(T,Cl(tyInt(F))) = tyInt(7,Cl(T,-Int(E U F))).
Since E and F are jclosed subsets of X. Then by Lemma 3.19, we obtain
T,Int(t,CI(E)) U TInt(7,CI(F)) = T,Int(7,,CI(E U F)). This implies that 7,-Int(E) U 7,-Int(F) = tInt(E U F).
(5) & (2) the proof is similar to (3) & (4).
(2) = (1) let U be any popen subset of a space X, then X\U is j«closed set and hence 7,-In#(X\U) is popen set.
Then by (2), we 7,,CI(U) N 7-Cl(7-Int(X\U)) = 7,,Cl(U N 7,-Int(X\U)) which implies that 7,,CI(U) N 7CI(X\7,r
Cl(U)) = t7Cl(p) since U N ty-Int(X\U) = ¢. Hence 7,-CI(U) N X\7-Int(7,,CI(U)) = . This means that 7,,CI(U)
C tyInt(7-CI(U)). Since 7,-Int(7,Cl(U))  7,-CI(U) in general. Then 7,,CI(U) = 7,-Int(7,CI(U)). So 7-CI(U) is
yopen set in X. Therefore, a space X is yextremally disconnected.
Theorem 4.4: Let (X, 7) be a topological space and ¥ be a regular operation on 7. Then the following are
equivalent:
1) Xis pextremally disconnected.
2) 7CI(R) N 7,CI(S) = ¢ for every jopen subsets R and S of X with RN S = ¢.
3) 7-CI(R) N 7,CI(S) = ¢ for every yregular-open subsets R and S of X with R " S = ¢.
Proof:
(1) & (2) see Theorem 4.3.
(2) = (3) since every jpregular-open set is }open. Then the proof is clear.
(3) = (2) Let R and S be any two jopen subsets of a space X such that R M § = ¢. Then by Lemma 2.12, R N 7,
CI(S) = ¢ implies that 7,,CI(R) N 7,Int(7,-CI(S)) = ¢ and hence 7,-Int(7,CI(R)) N 7,Int(7,-CI(S)) = ¢. Since 7
Int(7,CI(R)) and 7,-Int(7,CI(S)) are two jregular-open sets. Then by (3), we obtain 7,-Cl(7,-Int(7,CI(R))) N 7
Cl(zyInt(7,-CI(S))) = ¢. Since 7,Int(7,CI(R)) and 7,Int(7,CI(S)) are two pregular-open sets, then 7,Int(7,
CI(R)) and 7,Int(7,CI(S)) are two )-f-open sets. So by Theorem 3.11, we get 7,,CI(R) N 7,CI(S) = ¢. This
completes the proof.
Theorem 4.5: A space X is pextremally disconnected if and only if 7,-CI(R) N 7,Cl(7,-Int(7,CI(S))) = ¢ for
every Jopen subset R and every subset S of X with RN S = ¢.
Proof: see Theorem 4.4, since R and 7,-Int(7,-CI(S)) are two yopen subsets of X such that R N 7-Int(7,CI(S)) =
.
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Theorem 4.6: Let (X, 7) be a topological space and ¥ be a regular operation on 7. Then X is yextremally
disconnected if and only if 7,-Int(7,CI(R)) U T,Int(7,CI(S)) = 7,Int(7,CI(R U §)) for every y-open subsets R
and S of X.
Proof: Let (X, 7) be a pextremally disconnected space and let R and S be any two jopen subsets of X. Then ;-
CI(R) and 7,-CI(S) are jclosed subsets of X. So by Theorem 4.3 (5), we have 7,-Int(7,CI(R)) U 7,Int(7-CI(S)) =
T Int(7-CI(R) U 7,CI(S)) = TInt(7,CI(R U S)).
Conversely, let E and F be two }closed subsets of X. Then 7,-Int(E) and 7,-Int(F) are jopen subsets of X. So by
hypothesis, 7,-Int(7,Cl(t Int(E))) U T-Int(t,Cl(t-Int(F))) = tyInt(t,Cl[7,Int(E) U TyInt(F)]) = 7,Int(7,
Cl(tyInt(E U F))). Since E and F are jclosed subsets of X. Then by Lemma 3.19, 7,Int(7,CI(E)) U T-Int(7,
CU(F)) = tyInt(7,CI(E U F)) and hence 7,/Int(E) U 7,-Int(F) = 7,-Int(E U F). Therefore, by Theorem 4.3 (5), X is
yextremally disconnected space.
Theorem 4.7: Let (X, 7) be a topological space and y be a regular operation on 7. Then X is yextremally
disconnected if and only if 7,-Cl(7-Int(E)) N 7,Cl(T,Int(F)) = 7,,CI(7,Int(E N F)) for every )-closed subsets E
and F of X.
Proof: Similar to Theorem 4.6 taking R = X\E and S = X\F.
Theorem 4.8: A space X is jeextremally disconnected if and only if 7,,RO(X) = 7,RC(X).
Proof: Obvious.
Theorem 4.9: Let (X, 7) be a topological space and ¥ be a regular operation on 7. Then the following are
equivalent:

1) Xis pextremally disconnected.

2) R; N R,is pregular-closed for all pregular-closed subsets R; and R, of X.

3) R; U R,is pregular-open for all y#regular-open subsets R; and R, of X.
Proof: The proof is directly from Theorem 3.10 and Theorem 4.8.
Theorem 4.10: The following statements are equivalent for any topological space (X, 7).

1) Xis pextremally disconnected.

2) Every yregular-closed subset of X is »open in X.

3) Every yregular-closed subset of X is a+Jopen in X.

4) Every yregular-closed subset of X is ypreopen in X.

5) Every ysemiopen subset of X is ¢~ )open in X.

6) Every psemiclosed subset of X is ¢ jclosed in X.

7) Every ysemiclosed subset of X is ypreclosed in X.

8) Every ysemiopen subset of X is y¥preopen in X.

9) Every yf-open subset of X is ¥preopen in X.

10) Every pf-closed subset of X is ypreclosed in X.

11) Every pb-closed subset of X is ypreclosed in X.

12) Every j~b-open subset of X is y#preopen in X.

13) Every pregular-open subset of X is ypreclosed in X.

14) Every pregular-open subset of X is yclosed in X.

15) Every jregular-open subset of X is o~7)+closed in X.
Proof:
(1) = (2) Let R be any jregular-closed subset of a jextremally disconnected space X. Then R = 7,,CI(7,-Int(R)).
Since R is yregular-closed set, then it is J-closed and hence R = 7,,Cl(7,Int(R)) = T,Int(R). Therefore, R is }
open set in X.
The implications (2) = (3) and (3) = (4) are clear since every Jopen set is ¢+ )open and every o+ yopen set is
¥preopen.
(4) = (5) Let S be a gsemiopen set. Then S < 7,-CI(7,-InK(S)). Since 7,-Cl(7,Int(S)) is yregular-closed set. Then
by (4), ©Cl(7,Int(S)) is ypreopen and hence 7,CI(7,Int(S)) C T Int(T,Cl(T, CI(7,Ink(S)))) = trInt(7,Cl(7,
In«(S))). So S < 7yInt(t,Cl(7,Int(S))). Therefore, S is a-)-open set.
The implications (5) < (6), (6) = (7), (7) & (8), 9) & (10), (10) = (11), (11) & (12) and (14) = (15) are
obvious.
(8) = (9) Let G be a pf-open set. Then by Theorem 3.15 (2), 7-CI(G) is }*semiopen set. So by (8), 7,,CI(G) is
ypreopen set. So 7,-CI(G) C t,-Int(7,,Cl(t-CI(G))) = 7,Int(7,CI(G)) and hence G < 7,-Int(7,,CI(G)). Therefore,
G is ypreopen set in X.
(12) = (13) Let H be a pregular-open set. Then H is ) fB-open set. By Theorem 3.15 (4), 7,-CI(H) is )-b-open
set. Then by (12), 7,,CI(H) is ypreopen. So 7,,Cl(H) C t,Ini(7,Cl(7,CI(H))) = t-Int(7,CI(H)). Since H is }
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regular-open set. Then 7,-CI(H) < H. Since H c 7,;CI(H). Then 7,,CI(H) = H. This means that H is }closed and
hence it is ypreclosed.
(13) = (14) Let U be a pregular-open set. Then by (13), U is ypreclosed set. So 7,-Cl(7-Int(U)) c U. Since U is
yregular-open set, then U is popen. Hence 7,CI(U) c U. But in general U c 7,-CI(U). Then 7,,CI(U) = U. This
means that U is yclosed.
(15) = (1) Let V be any yopen set of X. Then 7,-Int(7,-CI(V)) is yregular-open set. By (15), 7,-Int(7,CI(V)) is
o-yclosed. So 7,Cl(7,Int(7,Cl(7,Int(7,CI(V))))) < 7-Int(7,CI(V)). By Lemma 3.18, we get 7,,CI(V) C 7,
Int(7,CI(V)). But 7-Int(7,,CI(V)) C 7,-CI(V) in general. Then 7,-CI(V) = 7,-Int(7,-CI(V)) and hence 7,,CI(V) is }
open set of X. Therefore, X is ¥extremally disconnected space.
Theorem 4.11: The following conditions are equivalent for any topological space (X, 7).

1) Xis pextremally disconnected.

2) The 7closure of every jfS-open set of X is pregular-open in X.

3) The z,closure of every j-b-open set of X is yregular-open in X.

4) The 7,closure of every J-semiopen set of X is jeregular-open in X.

5) The 7,closure of every a-)-open set of X is Jregular-open in X.

6) The 7,closure of every yopen set of X is yregular-open in X.

7) The z,closure of every pregular-open set of X is jregular-open in X.

8) The 7,closure of every ypreopen set of X is yregular-open in X.
Proof:
(1) = (2) Let R be a pf-open subset of a pextremally disconnected space X. Then by (1) and Lemma 3.11, we
have 7,CI(R) = 7,Cl(7,Int(7,CI(R))) = 7,Int(7-CI(R)) implies that 7,-CI(R) = T-Int(T,CI(R)) = Ty Int(T,Cl(7,
CI(R))). Hence 7,-CI(R) in yregular-open set in X.
The implications (2) = (3), (3) = (4), 4) = (5), (5) = (6) and (6) = (7) are clear.
(7) = (8) Let P be any jpreopen set of X, then 7,-Int(7,-CI(P)) is pregular-open. By (7), 7,,Cl(ty-Int(7,,CI(P)))
is peregular-open set. So 7, Cl(7-Int(7,,CI(P))) = t,Int(7,Cl(7-CIl(7,Int(7-CI(P))))). Since every y-preopen set
is pB-open. Then by Theorem 3.11 and Lemma 3.19, we have 7,Ci(P) = t,Inf(7,CI(P)) = t,Int(t,-Cl(7,
CI(P))). Hence 7,,CI(P) is jregular-open set in X.
(8) = (1) Let S be a jopen set of X. Then S is ppreopen and by (8), 7,,CI(S) is yregular-open set in X. Then 7,
CI(S) is yopen. Therefore, X is pextremally disconnected space.

Remark 4.12: pregular-closed set can be replaced by yregular-open set in Theorem 4.11 (this is because of
Theorem 4.8).

5. #Locally Indiscrete and Hyperconnected Spaces
In this section, we introduce new types of spaces called Jlocally indiscrete and phyperconnected. We give some
properties and characterizations of these spaces.
Definition 5.1: A topoplogical space (X, 7) with an operation yon 7is said to be:
1) plocally indiscrete if every Jopen subset of X is Jclosed, or every J+closed subset of X is jopen.
2) phyperconnected if every nonempty Jopen subset of X is j~dense.
Theorem 5.2: Let (X, 7) be a topological space and ybe an operation on 7. Then the following are holds:
1) If Xis plocally indiscrete, then X is yextremally disconnected.
2) If X is phyperconnected, then X is ¥extremally disconnected.
Proof: Follows from their definitions.
Theorem 5.3: If (X, 7) is Jlocally indiscrete space, then the following statements are true:
1) Every psemiopen subset of X is »open and hence it is }~closed.
2) Every ysemiclosed subset of X is Jclosed and hence it is open.
3) Every yopen subset of X is yregular-open and hence it is }regular-closed.
4) Every yclosed subset of X is pregular-closed and hence it is yregular-open.
5) Every ysemiopen subset of X is pregular-open and hence it is yregular-closed.
6) Every psemiclosed subset of X is pregular-closed and hence it is y#regular-open.
7) Every yfS-open subset of X is ppreopen.
8) Every pf-closed subset of X is ypreclosed.
Proof:
1) Let S be any psemiopen subset of a }locally indiscrete space (X, 7), then S < 7,,CI(7-In«(S)). Since 7,-Int(S)
is j~open subset of X, then it is }closed. So 7,-CI(7,Int(S)) = t,Int(S) implies that S < 7,-In#(S). But 7,-Int(S) C
S. Then § = 7-In#(S), this means that S is }open. Since a space X is jlocally indiscrete, then S is pclosed.
2) The proof is similar to part (1).
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3) Let O be any jopen subset of a }locally indiscrete space (X, 7). Since every jopen set is jclosed, then 7,-
Cl(7yInt(0)) = O. This implies that O is a jpregular-closed set.
4) The proof is similar to part (3).
5) Follows directly from (1) and (3).
6) Follows directly from (2) and (4).
7) Let P be a yfB-open subset of a ylocally indiscrete space (X, 7). Then P c 7,-Cl(tyInt(7,CI(P))) C t/Int(t,
CI(P)). Since 7,-Int(7,,CI(P)) is open set and hence it is J~closed in jplocally indiscrete space X. Then 7,-CI( 7,
Int(7,CI(P))) = 7,Int(7,CI(P)). Then P C 7,-Int(7,CI(P)). Hence P is j-preopen set in X.
8) The proof is similar to part (7).
From Theorem 5.3, we have the following corollary.

Corollary 5.4: If (X, 7) is locally indiscrete space, then

1) 7-ROX) = 7,= 7p,= 7,50(X).

2) POX) = 7BO(X) = 7, OX).
Theorem 5.5: A space (X, 7) is phyperconnected if and only if 7,,RO(X) = {9, X}.
Proof: In general ¢ and X are }regular-open subsets of a phyperconnected space X. Let R be any nonempty
proper subset of X which is pregular open. Then R is }-open set. Since X is j*hyperconnected space. So 7,-In#( 7
CI(R)) = tyInt(X) = X and hence R is jregular-open set in X. Contradiction. Therefore, 7,-RO(X) = {9, X}.
Conversely, suppose that 7,RO(X) = {¢, X} and let S be any nonempty J<open subset of X. Then § is }f-open
set. By Theorem 3.11, 7,,CI(S) = 7,Cl(t -Int(7,CI(S))). Since 7, Int(7,CI(S)) is )regular-open set and S is
nonempty j-open set. Then 7,-Int(7,-CI(S)) should be X. Therefore, 7,-CI(S) = 7,,Cl(t-Int(7,CI(S))) = 7,,CI(X) =
X. Then a space X is yhyperconnected.
Corollary 5.6: A space (X, 7) is hyperconnected if and only if 7,,RC(X) = {¢, X}.
Proposition 5.7: If a space (X, 7) is »hyperconnected, then every nonempty )preopen subset of X is semi-
dense.
Proof: Let P be any nonempty }preopen subset of a }hyperconnected space X. By Lemma 3.19 and Lemma
3.20, we have 7,sCI(P) = t,Int(7,CI(P)) = T-Int(7,,Cl(T-Int(7,CI(P)))). Since 7,-Int(7,CI(P)) is a nonempty }
open set and X is jpchyperconnected space. Then 7,Cl(7-Int(7-CI(P))) = X and hence 7,Int(7,CI( 7 Int(7,
CI(P)))) = tyInt(X) = X. Thus 7,,sCI(P) = X. This completes the proof.

6. Conclusion

In this paper, we introduce a new class of sets called pregular-open sets in a topological space (X, 7) together
with its complement which is yregular-closed. Using these sets, we define yextremally disconnected space, and
to obtain several characterizations of Jextremally disconnected spaces. Finally, jlocally indiscrete and
hyperconnected spaces have been introduced.
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By Remark 3.4, Definition 2.5 and Definition 2.6, we have the following figure.
Figure 1:
The relations between yregular-open set, pregular-closed set and various types of }sets.

-regular-open = j-open = @-j~open = j-preopen
A

L

wsemiopen = j=b-open = =f-open

wclopen

wsemiclosed = j+b-closed = 1+f-closed

P

:"-I’eg‘LlYElI’—ClOSEd = sclosed = o-j-closed = j-preclosed

* A =——p B represents.d implies B butnot conversely
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