γ -Regular-Open Sets and γ -Extremally Disconnected Spaces

Baravan A. Asaad^{*} Nazihah Ahmad and Zurni Omar

School of Quantitative Sciences, College of Arts and Sciences, University Utara Malaysia, 06010 Sintok * E-mail of the corresponding author: baravan.asaad@gmail.com

Abstract

The aim of this paper is to introduce a new class of sets called γ regular-open sets in topological spaces (X, τ) with an operation γ on τ together with its complement which is γ regular-closed. Also to define a new space called γ extremally disconnected, and to obtain several characterizations of γ extremally disconnected spaces by utilizing γ regular-open sets and γ regular-closed sets. Further γ locally indiscrete and γ hyperconnected spaces have been defined.

Keywords: γ regular-open set, γ regular-closed set, γ extremally disconnected space, γ locally indiscrete space and γ hyperconnected space

1. Introduction

In 1979, Kasahara defined the concept of an operation on topological spaces and introduced α -closed graphs of an operation. Ogata (1991) called the operation α as γ operation on τ and defined and investigated the concept of operation-open sets, that is, γ -open sets. He defined the complement of a γ -open subset of a space X as γ -closed. In addition, he also proved that the union of any collection of γ -open sets in a topological space (X, τ) is γ -open, but the intersection of any two γ -open sets in a space X need not be a γ -open set. Further study by Krishnan and Balachandran (2006*a*; 2006*b*) defined two types of sets called γ -preopen and γ -semiopen sets of a topological space (X, τ) , respectively. Kalaivani and Krishnan (2009) defined the notion of α - γ -open sets. Basu, Afsan and Ghosh (2009) used the operation γ to introduce $\gamma\beta$ -open sets. Finally, Carpintero, Rajesh and Rosas (2012*a*) defined the notion of γ *b*-open sets of a topological space (X, τ) .

2. Preliminaries

Throughout this paper, (X, t) (or simply X) will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. A subset R of X is said to be regular open and regular closed if R = Int(Cl(R)) and R = Cl(Int(R))), respectively (Steen & Seebach, 1978), where Int(R) and Cl(R) denotes the interior of R and the closure of R, respectively.

Now we recall some definitions and results which will be used in the sequel.

Definition 2.1 (Ogata, 1991): Let (X, τ) be a topological space. An operation γ on the topology τ on X is a mapping $\gamma: \tau \to P(X)$ such that $U \subset \gamma(U)$ for each $U \in \tau$, where P(X) is the power set of X and $\gamma(U)$ denotes the value of γ at U.

Definition 2.2 (Ogata, 1991): A nonempty set *R* of *X* is said to be γ -open if for each $x \in R$, there exists an open set *U* such that $x \in U$ and $\gamma(U) \subset R$. The complement of a γ -open set is called a γ -closed.

Definition 2.3: Let *R* be any subset of a topological space (*X*, τ) and γ be an operation on τ . Then

1) the τ_{γ} closure of *R* is defined as intersection of all γ -closed sets containing *R*. That is,

- $\tau_{\gamma} Cl(R) = \cap \{F : R \subset F, X \setminus F \in \tau_{\gamma}\} \text{ (Ogata, 1991).}$
- 2) the τ_{γ} interior of R is defined as union of all γ open sets contained in R. That is, τ_{γ} Int(P) = + + (U + U) is a group set and U = P) (Krishnan & Balachandran 2000)
- τ_{γ} *Int*(R) = $\cup \{U : U \text{ is a } \gamma \text{ open set and } U \subset R\}$ (Krishnan & Balachandran, 2006b).
- Remark 2.4: For any subset *R* of a topological space (*X*, τ). Then:
 - 1) *R* is γ -open if and only if τ_{γ} *Int*(*R*) = *R* (Krishnan & Balachandran, 2006*b*).
 - 2) *R* is γ -closed if and only if τ_{γ} -*Cl*(*R*) = *R* (Ogata, 1991).

Definition 2.5: Let (X, τ) be a topological space and γ be an operation on τ . A subset *R* of *X* is said to be:

- 1) α - γ open if $R \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(R)))$ (Kalaivani & Krishnan, 2009).
- 2) γ preopen if $R \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ (Krishnan & Balachandran, 2006*a*).
- 3) γ semiopen if $R \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(R))$ (Krishnan & Balachandran, 2006b).
- 4) γ -b-open if $R \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(R)) \cup \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ (Carpintero *et al*, 2012*a*).
- 5) $\gamma \beta$ -open if $R \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R)))$ (Basu *et al*, 2009).
- 6) γ -clopen if it is both γ -open and γ -closed.

Definition 2.6: The complement of α - γ open, γ -preopen, γ -semiopen, γ -b-open and $\gamma\beta$ -open set is said to be α - γ -closed (Kalaivani & Krishnan, 2009), γ -preclosed (Krishnan & Balachandran, 2006*a*), γ -semiclosed (Krishnan & Balachandran, 2006*b*), γ -b-closed (Carpintero *et al*, 2012*a*) and $\gamma\beta$ -closed (Basu *et al*, 2009), respectively.

The intersection of all γ -semiclosed sets of *X* containing a subset *R* of *X* is called the γ -semi-closure of *R* and it is denoted by $\tau_{\gamma} sCl(R)$.

The family of all γ open, α - γ open, γ preopen, γ semiopen, γb -open, $\gamma \beta$ -open, γs emiclosed, γb -closed and regular open subsets of a topological space (X, τ) is denoted by $\tau_{\gamma}, \tau_{\alpha-\gamma}, \tau_{\gamma} PO(X), \tau_{\gamma} SO(X), \tau_{\gamma} BO(X), \tau_{\gamma} SO(X), \tau_{\gamma}$

Definition 2.7 (Ogata, 1991): Let (X, τ) be any topological space. An operation γ is said to be regular if for every open neighborhood U and V of each $x \in X$, there exists an open neighborhood W of x such that $\gamma(W) \subset \gamma(U) \cap \gamma(V)$.

Definition 2.8 (Ogata, 1991): A topological space (X, τ) with an operation γ on τ is said to be γ -regular if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U) \subset V$. **Remark 2.9:** If a topological space (X, τ) is γ -regular, then $\tau_{\gamma} = \tau$ (Ogata, 1991) and hence τ_{γ} -Int(R) = Int(R) (Krishnan, 2003)

Theorem 2.10 (Krishnan & Balachandran, 2006*b*): Let *R* be any subset of a topological space (*X*, τ) and γ be a regular operation on τ . Then $\tau_{\tau} sCl(R) = R \cup \tau_{\gamma} Int(\tau_{\tau} Cl(R))$.

Lemma 2.11 (Krishnan & Balachandran, 2006*a*): For any subset *R* of a topological space (*X*, τ) and γ be an operation on τ . The following statements are true.

- 1) $\tau_{\gamma} Int(X \setminus R) = X \setminus \tau_{\gamma} Cl(R)$ and $\tau_{\gamma} Cl(X \setminus R) = X \setminus \tau_{\gamma} Int(R)$.
- 2) $\tau_{\gamma} Cl(R) = X \setminus \tau_{\gamma} Int(X \setminus R)$ and $\tau_{\gamma} Int(R) = X \setminus \tau_{\gamma} Cl(X \setminus R)$.

Lemma 2.12: Let *R* and *S* be any subsets of a topological space (X, τ) and γ be an operation on τ . If $R \cap S = \varphi$, then $\tau_{\gamma} Int(R) \cap \tau_{\gamma} Cl(S) = \varphi$ and $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Int(S) = \varphi$.

Proof: Obvious.

Lemma 2.13 (Krishnan & Balachandran, 2006*a*): Let (X, τ) be a topological space and γ be a regular operation on τ . Then for every γ -open set U and every subset R of X, we have $\tau_{\gamma} Cl(R) \cap U \subseteq \tau_{\gamma} Cl(R \cap U)$.

Definition 2.14 (Carpintero *et al*, 2012*b*): A subset *D* of a topological space (X, τ) is said to be:

- 1) γ -dense if $\tau_{\gamma} Cl(D) = X$.
- 2) γ -semi-dense if $\tau_{\gamma} sCl(D) = X$.

3. **PRegular-Open Sets**

In this section, we introduce a new class of sets called γ regular-open sets. This class of sets lies strictly between the classes of γ -clopen and γ -open sets.

Definition 3.1: A subset *R* of a topological space (X, τ) with an operation γ on τ is said to be γ regular-open if *R* = $\tau_{\gamma} Int(\tau_{\gamma} Cl(R))$. The complement of a γ regular-open set is γ regular-closed. Or equivalently, a subset *R* of a space *X* is said to be γ regular-closed if $R = \tau_{\gamma} Cl(\tau_{\gamma} Int(R))$. The class of all γ regular-open and γ regular-closed subsets of a topological space (X, τ) is denoted by $\tau_{\gamma} RO(X, \tau)$ or $\tau_{\gamma} RC(X, \tau)$ or $\tau_{\gamma} RC(X, \tau)$ or $\tau_{\gamma} RC(X)$, respectively.

Remark 3.2: It is clear from the definition that every γ -regular-open set is γ -open and every γ -clopen set is both γ -regular-open and γ -regular-closed.

Converses of the above remark are not true. It can be seen from the following example.

Example 3.3: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$. Define an operation $\gamma: \tau \to P(X)$ by: $\gamma(R) = R$ for every $R \in \tau$. Then $\tau_{\gamma} = \tau$ and $\tau_{\gamma} RO(X, \tau) = \{\varphi, X, \{a\}, \{b\}\}$. Then the set $\{a, b\}$ is γ -open, but it is not γ -regular-open. Also the sets $\{a\}$ and $\{a, c\}$ are γ -regular-open and γ -regular-closed, respectively, but they are not γ -clopen.

Remark 3.4: Let *R* be any subset of a topological space (*X*, τ) and γ be an operation on τ . Then:

- 1) *R* is γ -clopen if and only if it is γ -regular-open and γ -regular-closed.
- 2) *R* is γ -regular-open if and only if it is γ -preopen and γ -semiclosed.
- 3) R is γ regular-closed if and only if it is γ semiopen and γ preclosed.

Proof: Follows from their definitions.

Theorem 3.5: The concept of γ regular-open set and regular open set are independent. It is showing by the following example.

Example 3.6: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Let $\gamma: \tau \rightarrow P(X)$ be an operation defined as follows: For every $R \in \tau$. Then

$$\gamma(R) = \begin{cases} R, & \text{if } R = \{b\} \\ \\ R \cup \{a\}, & \text{if } R \neq \{b\} \end{cases}$$

Then $\tau_{\gamma} = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_{\gamma} RO(X, \tau) = \{\varphi, X, \{a\}, \{b\}\}$ and $RO(X, \tau) = \{\varphi, X, \{a\}, \{b, c\}\}$. Then the set $\{b\}$ is γ regular-open, but it is not regular open. Also the set $\{b, c\}$ is regular open, but it is not γ regular-open.

Theorem 3.7: If (X, τ) be a γ -regular space, then the concept of γ -regular-open set and regular open set coincide. **Proof:** Follows from Remark 2.9.

Remark 3.8: The union and intersection of any two γ regular-open (respectively, γ regular-closed) sets need not be γ regular-open (respectively, γ regular-closed) set. It is shown by the following example.

Example 3.9: In Example 3.6, the sets $\{a\}$ and $\{b\}$ (respectively, $\{a, c\}$ and $\{b, c\}$) are γ -regular-open (respectively, γ -regular-closed) sets, but $\{a\} \cup \{b\} = \{a, b\}$ (respectively, $\{a, c\} \cap \{b, c\} = \{c\}$) is not γ -regular-open (respectively, γ -regular-closed) set.

Theorem 3.10: Let (X, τ) be a topological space and γ be a regular operation on τ . Then:

1) The intersection of two γ -regular-open sets is γ -regular-open.

2) The union of two γ -regular-closed sets is γ -regular-closed.

Proof: Straightforward from Corollary 3.28 and Corollary 3.29 and the fact that every γ -regular-open set is γ open and every γ -regular-closed set is γ -closed.

Theorem 3.11: For any subset *R* of a topological space (X, τ) , then $R \in \tau_{\gamma}\beta O(X)$ if and only if $\tau_{\gamma}Cl(R) = \tau_{\gamma}Cl(R) = Cl(\tau_{\gamma}Int(\tau_{\gamma}Cl(R)))$.

Proof: Let $R \in \tau_{\gamma} \beta O(X)$, then $R \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R)))$. Then $R \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R)))$ implies that $\tau_{\gamma} Cl(R) \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R))) \subset \tau_{\gamma} Cl(R)$. Therefore, $\tau_{\gamma} Cl(R) = \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R)))$.

Conversely, suppose that $\tau_{\gamma}Cl(R) = \tau_{\gamma}Cl(\tau_{\gamma}Int(\tau_{\gamma}Cl(R)))$. This implies that $\tau_{\gamma}Cl(R) \subset \tau_{\gamma}Cl(\tau_{\gamma}Int(\tau_{\gamma}Cl(R)))$. Then $R \subset \tau_{\gamma}Cl(R) \subset \tau_{\gamma}Cl(\tau_{\gamma}Int(\tau_{\gamma}Cl(R)))$. Hence $R \subset \tau_{\gamma}Cl(\tau_{\gamma}Int(\tau_{\gamma}Cl(R)))$. Therefore, $R \in \tau_{\gamma}\beta O(X)$.

Theorem 3.12: For any subset *R* of a topological space (X, τ) , then $R \in \tau_{\gamma} SO(X)$ if and only if $\tau_{\gamma} Cl(R) = \tau_{\gamma} Cl(\tau_{\gamma} Int(R))$.

Proof: The proof is similar to Theorem 3.11.

Proposition 3.13: For any subset *R* of a topological space (X, τ) . If $R \in \tau_{\gamma} SO(X)$, then $\tau_{\gamma} Cl(R) \in \tau_{\gamma} RC(X)$.

Proof: The proof is immediate consequence of Theorem 3.12.

Corollary 3.14: For any subset *R* of a topological space (*X*, τ). Then

1) $R \in \tau_{\bar{\gamma}}SC(X)$ if and only if $\tau_{\bar{\gamma}}Int(R) = \tau_{\bar{\gamma}}Int(\tau_{\bar{\gamma}}Cl(R))$.

2) if $R \in \tau_{\gamma}SC(X)$, then $\tau_{\gamma}Int(R) \in \tau_{\gamma}RO(X)$.

Theorem 3.15: Let *R* be any subset of a topological space (X, τ) and γ be an operation on τ . Then

- 1) $R \in \tau_{\gamma} \beta O(X)$ if and only if $\tau_{\gamma} Cl(R) \in \tau_{\gamma} RC(X)$.
- 2) $R \in \tau_{\gamma} \beta O(X)$ if and only if $\tau_{\gamma} Cl(R) \in \tau_{\gamma} SO(X)$.
- 3) $R \in \tau_{\gamma}\beta O(X)$ if and only if $\tau_{\gamma}Cl(R) \in \tau_{\gamma}\beta O(X)$.
- 4) $R \in \tau_{\gamma} \beta O(X)$ if and only if $\tau_{\gamma} Cl(R) \in \tau_{\gamma} BO(X)$.

Proof:

1) The proof is immediate consequence of Theorem 3.11.

2) Let $R \in \tau_{\gamma} \beta O(X)$, then by (1), $\tau_{\gamma} Cl(R) \in \tau_{\gamma} RC(X) \subset \tau_{\gamma} SO(X)$. So $\tau_{\gamma} Cl(R) \in \tau_{\gamma} SO(X)$. On the other hand, let $\tau_{\gamma} Cl(R) \in \tau_{\gamma} SO(X)$. Then by Theorem 3.12, $\tau_{\gamma} Cl(\tau_{\gamma} Cl(R)) = \tau_{\gamma} Cl(\tau_{\gamma} Cl(\tau_{\gamma} Cl(R)))$ which implies that $\tau_{\gamma} Cl(R) = \tau_{\gamma} Cl(\tau_{\gamma} Cl(\tau_{\gamma} Cl(R)))$ and hence by Theorem 3.11, $R \in \tau_{\gamma} \beta O(X)$.

3) Let $R \in \tau_{\gamma} \beta O(X)$, then by (2), $\tau_{\gamma} Cl(R) \in \tau_{\gamma} SO(X) \subset \tau_{\gamma} \beta O(X)$. So $\tau_{\gamma} Cl(R) \in \tau_{\gamma} \beta O(X)$. On the other hand, let $\tau_{\gamma} Cl(R) \in \tau_{\gamma} \beta O(X)$, by (2), $\tau_{\gamma} Cl(\tau_{\gamma} Cl(R)) \in \tau_{\gamma} SO(X)$. Since $\tau_{\gamma} Cl(\tau_{\gamma} Cl(R)) = \tau_{\gamma} Cl(R)$. Then $\tau_{\gamma} Cl(R) \in \tau_{\gamma} SO(X)$ and hence by (2), $R \in \tau_{\gamma} \beta O(X)$.

4) Let $R \in \tau_{\gamma}\beta O(X)$, then by (2), $\tau_{\gamma}Cl(R) \in \tau_{\gamma}SO(X) \subset \tau_{\gamma}BO(X)$. So $\tau_{\gamma}Cl(R) \in \tau_{\gamma}BO(X)$. On the other hand, let $\tau_{\gamma}Cl(R) \in \tau_{\gamma}BO(X) \subset \tau_{\gamma}\beta O(X)$, then $\tau_{\gamma}Cl(R) \in \tau_{\gamma}\beta O(X)$ and hence by (3), $R \in \tau_{\gamma}\beta O(X)$.

From Theorem 3.11 and Theorem 3.15, we have the following corollary.

Corollary 3.16: For any subset *R* of a topological space (X, τ) . Then

1) $R \in \tau_{\mathcal{T}} \beta C(X)$ if and only if $\tau_{\mathcal{T}} Int(R) = \tau_{\mathcal{T}} Int(\tau_{\mathcal{T}} Cl(\tau_{\mathcal{T}} Int(R)))$.

- 2) $R \in \tau_{\gamma} \beta C(X)$ if and only if $\tau_{\gamma} Int(R) \in \tau_{\gamma} RO(X)$.
- 3) $R \in \tau_{\mathcal{T}} \beta C(X)$ if and only if $\tau_{\mathcal{T}} Int(R) \in \tau_{\mathcal{T}} SC(X)$.
- 4) $R \in \tau_{\mathcal{T}} \beta C(X)$ if and only if $\tau_{\mathcal{T}} Int(R) \in \tau_{\mathcal{T}} \beta C(X)$.

5) $R \in \tau_{\gamma} \beta C(X)$ if and only if $\tau_{\gamma} Int(R) \in \tau_{\gamma} BC(X)$.

Corollary 3.17: For any subset *R* of a topological space (X, τ) . Then

- 1) If $R \in \tau_{\gamma} RO(X)$, then $\tau_{\gamma} Cl(R) \in \tau_{\gamma} RC(X)$ and $\tau_{\gamma} Int(R) \in \tau_{\gamma} RO(X)$.
- **2**) If $R \in \tau_{\gamma} RC(X)$, then $\tau_{\gamma} Cl(R) \in \tau_{\gamma} RC(X)$ and $\tau_{\gamma} Int(R) \in \tau_{\gamma} RO(X)$.

Lemma 3.18: For any subset *R* of a topological space (X, τ) , then $\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(R)))) = \tau_{\gamma} Cl(\tau_{\gamma} Int(R))$.

Proof: Since $\tau_{\gamma'}Int(\tau_{\gamma'}Cl(\tau_{\gamma'}Int(R))) \subset \tau_{\gamma'}Cl(\tau_{\gamma'}Int(R))$. Then $\tau_{\gamma'}Cl(\tau_{\gamma'}Int(\tau_{\gamma'}Cl(\tau_{\gamma'}Int(R)))) \subset \tau_{\gamma'}Cl(\tau_{\gamma'}Int(R))$. On the other hand, since $\tau_{\gamma'}Int(R) \subset \tau_{\gamma'}Cl(\tau_{\gamma'}Int(R))$ implies that $\tau_{\gamma'}Int(R) \subset \tau_{\gamma'}Cl(\tau_{\gamma'}Int(R))$ and hence $\tau_{\gamma'}Cl(\tau_{\gamma'}Int(R)) \subset \tau_{\gamma'}Cl(\tau_{\gamma'}Int(\tau_{\gamma'}Cl(\tau_{\gamma'}Int(R)))$. Therefore, $\tau_{\gamma'}Cl(\tau_{\gamma'}Int(\tau_{\gamma'}Cl(\tau_{\gamma'}Int(R)))) = \tau_{\gamma'}Cl(\tau_{\gamma'}Int(R))$.

Lemma 3.19: For any subset R of a topological space (X, τ) , then $\tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R)))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$.

Proof: The proof is similar to Lemma 3.18.

It is obvious from Lemma 3.18 and Lemma 3.19 that $\tau_{\gamma} Cl(\tau_{\gamma} Int(R))$ and $\tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ are γ -regularclosed and γ -regular-open sets, respectively.

Lemma 3.20: Let *R* be any subset of a topological space (*X*, τ) and γ be a regular operation on τ . Then $R \in \tau_{\gamma}$ *PO*(*X*) if and only if $\tau_{\gamma} sCl(R) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$.

Proof: Let $R \in \tau_{\gamma} PO(X)$, then $R \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ implies that $\tau_{\gamma} sCl(R) \subset \tau_{\gamma} sCl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R)))$. Since $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \in \tau_{\gamma} RO(X)$. But $\tau_{\gamma} RO(X) \subset \tau_{\gamma} SC(X)$ in general, then $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \in \tau_{\gamma} SC(X)$ and hence $\tau_{\gamma} sCl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$. So $\tau_{\gamma} sCl(R) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$. On the other hand, by Theorem 2.10, we have $\tau_{\gamma} sCl(R) = R \cup \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$. Then $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \subset \tau_{\gamma} sCl(R)$. Therefore, $\tau_{\gamma} sCl(R) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$.

Conversely, let $\tau_{\gamma} sCl(R) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$, then $\tau_{\gamma} sCl(R) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ and hence $R \subset \tau_{\gamma} sCl(R) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ which implies that $R \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$. Then $R \in \tau_{\gamma} PO(X)$.

Proposition 3.21: Let *P* and *R* be subsets of a topological space (*X*, τ) and γ be an operation on τ . Then *P* is γ preopen if and only if there exists a γ -regular open set *R* containing *P* such that $\tau_{\gamma} Cl(P) = \tau_{\gamma} Cl(R)$.

Proof: Let *P* be a γ -preopen set, then $P \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(P))$. Put $R = \tau_{\gamma} Int(\tau_{\gamma} Cl(P))$ is a γ -regular open set containing *P*. Since *P* is γ -preopen, then *P* is $\gamma\beta$ -open. By Theorem 3.11, $\tau_{\gamma} Cl(P) = \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))) = \tau_{\gamma} Cl(R)$.

Conversely, suppose *R* be a γ -regular-open set and *P* be any subset such that $P \subset R$ and $\tau_{\gamma}Cl(P) = \tau_{\gamma}Cl(R)$. Then $P \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(R))$ and hence $P \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(P))$. This means that *P* is γ -preopen set. This completes the proof. **Proposition 3.22:** If *S* is both γ -semicopen and γ -semiclosed subset of a topological space (X, τ) with an operation γ on τ and $\tau_{\gamma}Cl(\tau_{\gamma}Int(S)) \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(S))$. Then *S* is both γ -regular-open and γ -regular-closed. **Proof:** Clear.

Lemma 3.23: Let *R* be any subset of a topological space (*X*, τ) and γ be an operation on τ . Then the following statements are equivalent:

- 1) R is γ -regular-open.
- 2) R is γ -open and γ -semiclosed.
- 3) *R* is α - γ -open and γ -semiclosed.
- 4) R is γ -preopen and γ -semiclosed.
- 5) R is γ -open and $\gamma\beta$ -closed.
- 6) R is α - γ -open and γ - β -closed.

Proof:

(1) \Rightarrow (2) Let *R* be γ regular-open set. Since every γ regular-open set is γ open and every γ regular open set is γ semiclosed. Then *R* is γ open and γ semiclosed.

(2) \Rightarrow (3) Let *R* be γ open and γ semiclosed set. Since every γ open set is α - γ open. Then *R* is α - γ open and γ semiclosed.

(3) \Rightarrow (4) Let *R* be α - γ open and γ semiclosed set. Since every α - γ open set is γ preopen. Then *A* is γ preopen and γ semiclosed.

(4) \Rightarrow (5) Let *R* be γ -preopen and γ -semiclosed set. Then $R \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ and $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \subset R$. Therefore, we have $R = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$. Then *R* is γ -regular-open set and hence it is γ -open. Since every γ -semiclosed set is $\gamma\beta$ -closed. Then *R* is γ -open and $\gamma\beta$ -closed.

(5) \Rightarrow (6) It is obvious since every γ -open set is α - γ -open.

(6) \Rightarrow (1) Let *R* be α - γ open and $\gamma\beta$ -closed set. Then $R \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(R)))$ and $\tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(R))) \subset R$. Then $\tau_{\gamma}Int(R) = \tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(R))) = R$ and hence $\tau_{\gamma}Int(\tau_{\gamma}Cl(R)) = \tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(R))) = R$. Therefore, *R* is γ -regular-open set.

Corollary 3.24: Let *S* be any subset of a topological space (*X*, τ) and γ be an operation on τ . Then the following statements are equivalent:

- 1) S is γ -regular-closed.
- 2) S is γ -closed and γ -semiopen.
- 3) S is α - γ -closed and γ -semiopen.
- 4) S is γ -preclosed and γ -semiopen.
- 5) S is γ -closed and γ - β -open.
- 6) S is α - γ -closed and γ - β -open.

Proof: Similar to Lemma 3.23 taking $R = X \setminus S$.

Lemma 3.25: Let *R* be any subset of a topological space (*X*, τ) and γ be an operation on τ . Then the following statements are equivalent:

- 1) R is γ -clopen.
- 2) R is γ -regular-open and γ -regular-closed.
- 3) *R* is γ -open and α - γ -closed.
- 4) *R* is γ -open and γ -preclosed.
- 5) *R* is α - γ -open and γ -preclosed.
- 6) *R* is α - γ -open and γ -closed.
- 7) R is γ -preopen and γ -closed.
- 8) R is γ -preopen and α - γ -closed.

Proof:

(1) \Leftrightarrow (2) see Remark 3.4 (1).

The implications $(2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (5), (6) \Rightarrow (7)$ and $(7) \Rightarrow (8)$ are obvious (see Figure 1).

(5) \Rightarrow (6) Let *R* be α - γ open and γ preclosed set. Then $R \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(R)))$ and $\tau_{\gamma} Cl(\tau_{\gamma} Int(R))) \subset R$. This implies that $R = \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(R)))$ and hence $\tau_{\gamma} Cl(R) = \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(R))))$. By Lemma 3.18, we get $\tau_{\gamma} Cl(R) = \tau_{\gamma} Cl(\tau_{\gamma} Int(R))$. Since $\tau_{\gamma} Cl(\tau_{\gamma} Int(R))) \subset R$, then $\tau_{\gamma} Cl(R) \subset R$. But in general $R \subset \tau_{\gamma} Cl(R)$. Then $\tau_{\gamma} Cl(R) = R$. It is obvious that *R* is γ closed.

(8) \Rightarrow (1) Let *R* be γ -preopen and α - γ -closed. Then $R \subset \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(*R*)) and τ_{γ} -*Cl*(τ_{γ} -*Int*(τ_{γ} -*Cl*(*R*))) $\subset R$. Therefore, we have τ_{γ} -*Cl*(R) $\subset \tau_{\gamma}$ -*Cl*(π_{γ} -*Int*(τ_{γ} -*Cl*(R))) $\subset R$ and hence τ_{γ} -*Cl*(R) $\subset R$. But in general $R \subset \tau_{\gamma}$ -*Cl*(R). Then τ_{γ} -*Cl*(R) = R. It is obvious that R is γ -closed. Since τ_{γ} -*Cl*(τ_{γ} -*Int*(τ_{γ} -*Cl*(R))) $\subset R$ implies that τ_{γ} -*Int*(τ_{γ} -*Cl*(τ_{γ} -*Int*(τ_{γ} -*Cl*(R)))) $\subset \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(R). Then by Lemma 3.19, $R \subset \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(R)) $\subset \tau_{\gamma}$ -*Int*(R) and hence $R \subset \tau_{\gamma}$ -*Int*(R). But in general τ_{γ} -*Int*(R) $\subset R$. Then τ_{γ} -*Int*(R) = R. It is obvious that R is γ -open. Therefore, R is γ -clopen.

Proposition 3.26: Let *R* and *S* be any two subsets of a topological space (*X*, τ) and γ be an operation on τ . Then: $\tau_{\gamma}Int(\tau_{\gamma}Cl(R \cap S)) \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(R)) \cap \tau_{\gamma}Int(\tau_{\gamma}Cl(S))$

Proof: The proof is obvious and hence it is omitted.

The converse of the above proposition is true when the operation γ is regular operation on τ and if one of the set is γ -open in *X*, as shown by the following proposition.

Proposition 3.27: Let (X, τ) be a topological space and γ be a regular operation on τ . If *R* is γ -open subset of *X* and *S* is any subset of *X*, then

 $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \cap \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R \cap S))$

Proof: It is enough to prove $\tau_{\gamma}Int(\tau_{\gamma}Cl(R)) \cap \tau_{\gamma}Int(\tau_{\gamma}Cl(S)) \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(R \cap S))$ since the converse is similar to Proposition 3.26. Since *R* is γ -open subset of a space *X* and γ is a regular operation on τ . Then by using Lemma 2.13, we have

 $\tau_{\mathcal{T}} Int(\tau_{\mathcal{T}} Cl(R)) \cap \tau_{\mathcal{T}} Int(\tau_{\mathcal{T}} Cl(S)) \subset \tau_{\mathcal{T}} Int[\tau_{\mathcal{T}} Cl(R) \cap \tau_{\mathcal{T}} Int(\tau_{\mathcal{T}} Cl(S))]$

 $\subset \tau_{\gamma} Int(\tau_{\gamma} Cl[R \cap \tau_{\gamma} Cl(S)]) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(R \cap S))$

So $\tau_{\overline{\gamma}}Int(\tau_{\overline{\gamma}}Cl(R)) \cap \tau_{\overline{\gamma}}Int(\tau_{\overline{\gamma}}Cl(S)) = \tau_{\overline{\gamma}}Int(\tau_{\overline{\gamma}}Cl(R \cap S))$. This completes the proof.

From Proposition 3.27, we have the following corollary.

Corollary 3.28: If *R* and *S* are γ open subsets of a topological space (*X*, τ) and γ be a regular operation on τ , then $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \cap \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R \cap S))$

Corollary 3.29: If *E* and *F* are γ -closed subsets of a topological space (*X*, τ) and γ be a regular operation on τ , then

 $\tau_{\gamma}Cl(\tau_{\gamma}Int(E)) \cup \tau_{\gamma}Cl(\tau_{\gamma}Int(F)) = \tau_{\gamma}Cl(\tau_{\gamma}Int(E \cup F))$ **Proof:** the proof is similar to Corollary 3.28 taking $R = X \setminus E$ and $S = X \setminus F$.

4. *p*Extremally Disconnected Spaces

In this section, we introduce a new space called γ extremally disconnected, and to obtain several characterizations of γ extremally disconnected spaces by utilizing γ regular-open sets and γ regular-closed sets.

Definition 4.1: A topological space (X, τ) with an operation γ on τ is said to be γ -extremally disconnected if the τ_{γ} -closure of every γ -open set of X is γ -open in X. Or equivalently, a space X is γ -extremally disconnected if the τ_{γ} -interior of every γ -closed set of X is γ -closed in X.

In the following theorem, a space X is γ -extremally disconnected is equivalent to every two disjoint γ open sets of X have disjoint τ_{γ} -closures.

Theorem 4.2: A space *X* is γ -extremally disconnected if and only if $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \varphi$ for every γ -open subsets *R* and *S* of *X* with $R \cap S = \varphi$.

Proof: Suppose *R* and *S* are two γ -open subsets of a γ -extremally disconnected space *X* such that $R \cap S = \varphi$. Then by Lemma 2.12, $\tau_{\gamma} Cl(R) \cap S = \varphi$ which implies that $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \cap \tau_{\gamma} Cl(S) = \varphi$ and hence $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \varphi$.

Conversely, let *O* be any γ -open subset of a space *X*, then *X**O* is γ -closed set and hence $\tau_{\gamma}Int(X\setminus O)$ is γ -open set such that $O \cap \tau_{\gamma}Int(X\setminus O) = \varphi$. Then by hypothesis, we have $\tau_{\gamma}Cl(O) \cap \tau_{\gamma}Cl(\tau_{\gamma}Int(X\setminus O)) = \varphi$ which implies that $\tau_{\gamma}Cl(O) \cap \tau_{\gamma}Cl(X\setminus \tau_{\gamma}Cl(O)) = \varphi$ and hence $\tau_{\gamma}Cl(O) \cap X\setminus \tau_{\gamma}Int(\tau_{\gamma}Cl(O)) = \varphi$. This means that $\tau_{\gamma}Cl(O) \subset \tau_{\gamma}$. $Int(\tau_{\gamma}Cl(O))$. Since $\tau_{\gamma}Int(\tau_{\gamma}Cl(O)) \subset \tau_{\gamma}Cl(O)$ in general. Then $\tau_{\gamma}Cl(O) = \tau_{\gamma}Int(\tau_{\gamma}Cl(O))$. So $\tau_{\gamma}Cl(O)$ is γ -open set in *X*. Therefore, *X* is γ -extremally disconnected space.

Theorem 4.3: Let (X, τ) be a topological space and γ be a regular operation on τ . Then the following are equivalent:

- 1) X is γ -extremally disconnected.
- 2) $\tau_{\overline{y}}Cl(R) \cap \tau_{\overline{y}}Cl(S) = \tau_{\overline{y}}Cl(R \cap S)$ for every γ -open subsets *R* and *S* of *X*.
- 3) $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \tau_{\gamma} Cl(R \cap S)$ for every γ regular-open subsets *R* and *S* of *X*.
- 4) $\tau_{\gamma} Int(E) \cup \tau_{\gamma} Int(F) = \tau_{\gamma} Int(E \cup F)$ for every γ -regular-closed subsets *E* and *F* of *X*.
- 5) $\tau_{\gamma} Int(E) \cup \tau_{\gamma} Int(F) = \tau_{\gamma} Int(E \cup F)$ for every γ -closed subsets *E* and *F* of *X*.

Proof:

(1) \Rightarrow (2) Let *R* and *S* be any two γ open subsets of a γ -extremally disconnected space *X*. Then by Corollary 3.28, $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \cap \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \tau_{\gamma} Cl(R \cap S)$.

(2) \Rightarrow (3) is clear since every γ -regular-open set is γ -open.

(3) \Leftrightarrow (4) Let *E* and *F* be two γ regular-closed subsets of *X*. Then *X**E* and *X**F* are γ regular-open sets. By (3) and Lemma 2.11, we have

 $\tau_{\bar{\gamma}}Cl(X \setminus E) \cap \tau_{\bar{\gamma}}Cl(X \setminus F) = \tau_{\bar{\gamma}}Cl(X \setminus E \cap X \setminus F)$

 $\Leftrightarrow X \setminus \tau_{\mathcal{T}} Int(E) \cap X \setminus \tau_{\mathcal{T}} Int(F) = \tau_{\mathcal{T}} Cl(X \setminus (E \cup F))$

- $\Leftrightarrow X \setminus (\tau_{\gamma} Int(E) \cup \tau_{\gamma} Int(F)) = X \setminus \tau_{\gamma} Int(E \cup F)$
- $\Leftrightarrow \tau_{\bar{\gamma}} Int(E) \cup \tau_{\bar{\gamma}} Int(F) = \tau_{\bar{\gamma}} Int(E \cup F).$

(4) \Rightarrow (5) Let *E* and *F* be two γ closed subsets of *X*. Then $\tau_{\gamma}Cl(\tau_{\gamma}Int(E))$ and $\tau_{\gamma}Cl(\tau_{\gamma}Int(F))$ are γ -regularclosed sets. Then by (4) and Corollary 3.29, we get

 $\tau_{\vec{\gamma}}Int(\tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(E))) \cup \tau_{\vec{\gamma}}Int(\tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(F))) = \tau_{\vec{\gamma}}Int[\tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(E)) \cup \tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(F))] \text{ and hence } \tau_{\vec{\gamma}}Int(\tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(E))) \cup \tau_{\vec{\gamma}}Int(\tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(F))) = \tau_{\vec{\gamma}}Int(\tau_{\vec{\gamma}}Cl(\tau_{\vec{\gamma}}Int(E\cup F))).$

Since *E* and *F* are $\not\sim$ closed subsets of *X*. Then by Lemma 3.19, we obtain

 $\tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(F)) = \tau_{\gamma}Int(\tau_{\gamma}Cl(E \cup F)).$ This implies that $\tau_{\gamma}Int(E) \cup \tau_{\gamma}Int(F) = \tau_{\gamma}Int(E \cup F).$ (5) \Leftrightarrow (2) the proof is similar to (3) \Leftrightarrow (4).

(2) \Rightarrow (1) let *U* be any γ -open subset of a space *X*, then *X**U* is γ -closed set and hence τ_{γ} -*Int*(*X**U*) is γ -open set. Then by (2), we τ_{γ} -*Cl*(*U*) $\cap \tau_{\gamma}$ -*Cl*(τ_{γ} -*Int*(*X**U*)) = τ_{γ} -*Cl*(*U*) $\cap \tau_{\gamma}$ -*Int*(*X**U*)) which implies that τ_{γ} -*Cl*(*U*) $\cap \tau_{\gamma}$ -*Cl*(*X*\ τ_{γ} -*Cl*(*U*)) = τ_{γ} -*Cl*(φ) since $U \cap \tau_{\gamma}$ -*Int*(*X**U*) = φ . Hence τ_{γ} -*Cl*(*U*) $\cap X \setminus \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(*U*)) = φ . This means that τ_{γ} -*Cl*(*U*) $\subset \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(*U*)). Since τ_{γ} -*Int*(τ_{γ} -*Cl*(*U*)) $\subset \tau_{\gamma}$ -*Cl*(*U*) in general. Then τ_{γ} -*Cl*(*U*) = τ_{γ} -*Int*(τ_{γ} -*Cl*(*U*)). So τ_{γ} -*Cl*(*U*) is γ -open set in *X*. Therefore, a space *X* is γ -extremally disconnected.

Theorem 4.4: Let (X, τ) be a topological space and γ be a regular operation on τ . Then the following are equivalent:

- 1) X is γ -extremally disconnected.
- 2) $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \varphi$ for every γ -open subsets *R* and *S* of *X* with $R \cap S = \varphi$.
- 3) $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \varphi$ for every γ regular-open subsets R and S of X with $R \cap S = \varphi$.

Proof:

(1) \Leftrightarrow (2) see Theorem 4.3.

(2) \Rightarrow (3) since every γ -regular-open set is γ -open. Then the proof is clear.

 $(3) \Rightarrow (2) \text{ Let } R \text{ and } S \text{ be any two } \varphi \text{ open subsets of a space } X \text{ such that } R \cap S = \varphi. \text{ Then by Lemma 2.12, } R \cap \tau_{\gamma} Cl(S) = \varphi \text{ implies that } \tau_{\gamma} Cl(R) \cap \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \varphi \text{ and hence } \tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \cap \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \varphi. \text{ Since } \tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \text{ and } \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) \text{ are two } \varphi \text{ regular-open sets. Then by (3), we obtain } \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R))) \cap \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R))) = \varphi. \text{ Since } \tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \text{ and } \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \varphi. \text{ Since } \tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \text{ and } \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) \text{ are two } \varphi \text{ regular-open sets. Then by (3), we obtain } \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R))) \cap \tau_{\gamma} Cl(R)) \text{ and } \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) \text{ are two } \varphi \text{ regular-open sets, then } \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) \text{ are two } \gamma \beta \text{ open sets. So by Theorem 3.11, we get } \tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(S) = \varphi. \text{ This completes the proof.}$

Theorem 4.5: A space X is γ extremally disconnected if and only if $\tau_{\gamma} Cl(R) \cap \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(S))) = \varphi$ for every γ -open subset R and every subset S of X with $R \cap S = \varphi$.

Proof: see Theorem 4.4, since *R* and $\tau_{\gamma}Int(\tau_{\gamma}Cl(S))$ are two γ -open subsets of *X* such that $R \cap \tau_{\gamma}Int(\tau_{\gamma}Cl(S)) = \varphi$.

Theorem 4.6: Let (X, τ) be a topological space and γ be a regular operation on τ . Then X is γ -extremally disconnected if and only if $\tau_{\gamma} Int(\tau_{\gamma} Cl(R)) \cup \tau_{\gamma} Int(\tau_{\gamma} Cl(S)) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R \cup S))$ for every γ -open subsets R and S of X.

Proof: Let (X, τ) be a γ -extremally disconnected space and let R and S be any two γ -open subsets of X. Then τ_{γ} -*Cl*(R) and τ_{γ} -*Cl*(S) are γ -closed subsets of X. So by Theorem 4.3 (5), we have τ_{γ} -*Int*(τ_{γ} -*Cl*(R)) $\cup \tau_{\gamma}$ -*Int*(τ_{γ} -*Cl*(S)) = τ_{γ} -*Int*(τ_{γ} -*Cl*(S)).

Conversely, let *E* and *F* be two γ closed subsets of *X*. Then $\tau_{\gamma}Int(E)$ and $\tau_{\gamma}Int(F)$ are γ open subsets of *X*. So by hypothesis, $\tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(E))) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(F))) = \tau_{\gamma}Int(\tau_{\gamma}Cl[\tau_{\gamma}Int(E)) \cup \tau_{\gamma}Int(F)] = \tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Int(E)))$. Since *E* and *F* are γ closed subsets of *X*. Then by Lemma 3.19, $\tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(F)) = \tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(\tau_{\gamma}Cl(E)) \cup \tau_{\gamma}Int(T_{\gamma}Cl(E)) = \tau_{\gamma}Int(\tau_{\gamma}Cl(E))$ and hence $\tau_{\gamma}Int(E) \cup \tau_{\gamma}Int(F) = \tau_{\gamma}Int(E \cup F)$. Therefore, by Theorem 4.3 (5), *X* is γ extremally disconnected space.

Theorem 4.7: Let (X, τ) be a topological space and γ be a regular operation on τ . Then X is γ -extremally disconnected if and only if $\tau_{\gamma} Cl(\tau_{\gamma} Int(E)) \cap \tau_{\gamma} Cl(\tau_{\gamma} Int(F)) = \tau_{\gamma} Cl(\tau_{\gamma} Int(E \cap F))$ for every γ -closed subsets E and F of X.

Proof: Similar to Theorem 4.6 taking $R = X \setminus E$ and $S = X \setminus F$.

Theorem 4.8: A space *X* is γ -extremally disconnected if and only if $\tau_{\gamma} RO(X) = \tau_{\gamma} RC(X)$. **Proof:** Obvious.

Theorem 4.9: Let (X, τ) be a topological space and γ be a regular operation on τ . Then the following are equivalent:

- 1) X is γ -extremally disconnected.
- 2) $R_1 \cap R_2$ is γ regular-closed for all γ regular-closed subsets R_1 and R_2 of X.
- 3) $R_1 \cup R_2$ is γ -regular-open for all γ -regular-open subsets R_1 and R_2 of X.

Proof: The proof is directly from Theorem 3.10 and Theorem 4.8.

Theorem 4.10: The following statements are equivalent for any topological space (X, τ) .

- 1) X is γ -extremally disconnected.
- 2) Every γ -regular-closed subset of X is γ -open in X.
- 3) Every γ -regular-closed subset of X is α - γ -open in X.
- 4) Every γ -regular-closed subset of X is γ -preopen in X.
- 5) Every γ -semiopen subset of X is α - γ -open in X.
- 6) Every γ -semiclosed subset of X is α - γ -closed in X.
- 7) Every γ -semiclosed subset of *X* is γ -preclosed in *X*.
- 8) Every γ -semiopen subset of X is γ -preopen in X.
- 9) Every $\gamma \beta$ -open subset of X is γ -preopen in X.
- **10**) Every $\gamma \beta$ -closed subset of X is γ -preclosed in X.
- 11) Every γ -closed subset of X is γ -preclosed in X.
- **12**) Every γ -b-open subset of X is γ -preopen in X.
- **13**) Every γ regular-open subset of X is γ preclosed in X.
- 14) Every γ -regular-open subset of *X* is γ -closed in *X*.
- **15)** Every γ -regular-open subset of X is α - γ -closed in X.

Proof:

(1) \Rightarrow (2) Let *R* be any γ regular-closed subset of a γ -extremally disconnected space *X*. Then $R = \tau_{\gamma} Cl(\tau_{\gamma} Int(R))$. Since *R* is γ -regular-closed set, then it is γ -closed and hence $R = \tau_{\gamma} Cl(\tau_{\gamma} Int(R)) = \tau_{\gamma} Int(R)$. Therefore, *R* is γ -open set in *X*.

The implications (2) \Rightarrow (3) and (3) \Rightarrow (4) are clear since every γ -open set is α - γ -open and every α - γ -open set is γ -preopen.

(4) \Rightarrow (5) Let *S* be a γ -semiopen set. Then $S \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(S))$. Since $\tau_{\gamma} Cl(\tau_{\gamma} Int(S))$ is γ -regular-closed set. Then by (4), $\tau_{\gamma} Cl(\tau_{\gamma} Int(S))$ is γ -preopen and hence $\tau_{\gamma} Cl(\tau_{\gamma} Int(S)) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Cl(\tau_{\gamma} Int(S)))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(S)))$. So $S \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(S)))$. Therefore, *S* is α - γ -open set.

The implications (5) \Leftrightarrow (6), (6) \Rightarrow (7), (7) \Leftrightarrow (8), (9) \Leftrightarrow (10), (10) \Rightarrow (11), (11) \Leftrightarrow (12) and (14) \Rightarrow (15) are obvious.

(8) \Rightarrow (9) Let *G* be a $\not\sim \beta$ -open set. Then by Theorem 3.15 (2), $\tau_{\gamma} Cl(G)$ is $\not\sim$ semiopen set. So by (8), $\tau_{\gamma} Cl(G)$ is $\not\sim$ preopen set. So $\tau_{\gamma} Cl(G) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(G))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(G))$ and hence $G \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(G))$. Therefore, *G* is $\not\sim$ preopen set in *X*.

(12) \Rightarrow (13) Let *H* be a γ -regular-open set. Then *H* is $\gamma\beta$ -open set. By Theorem 3.15 (4), $\tau_{\gamma}Cl(H)$ is γ -open set. Then by (12), $\tau_{\gamma}Cl(H)$ is γ -preopen. So $\tau_{\gamma}Cl(H) \subset \tau_{\gamma}Int(\tau_{\gamma}Cl(\tau_{\gamma}Cl(H))) = \tau_{\gamma}Int(\tau_{\gamma}Cl(H))$. Since *H* is γ -

regular-open set. Then $\tau_{\gamma}Cl(H) \subset H$. Since $H \subset \tau_{\gamma}Cl(H)$. Then $\tau_{\gamma}Cl(H) = H$. This means that *H* is γ -closed and hence it is γ -preclosed.

(13) \Rightarrow (14) Let U be a γ -regular-open set. Then by (13), U is γ -preclosed set. So $\tau_{\gamma} Cl(\tau_{\gamma} Int(U)) \subset U$. Since U is γ -regular-open set, then U is γ -open. Hence $\tau_{\gamma} Cl(U) \subset U$. But in general $U \subset \tau_{\gamma} Cl(U)$. Then $\tau_{\gamma} Cl(U) = U$. This means that U is γ -closed.

 $(15) \Rightarrow (1)$ Let *V* be any γ -open set of *X*. Then $\tau_{\gamma} Int(\tau_{\gamma} Cl(V))$ is γ -regular-open set. By (15), $\tau_{\gamma} Int(\tau_{\gamma} Cl(V))$ is α - γ -closed. So $\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Cl(V)))) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(V))$. By Lemma 3.18, we get $\tau_{\gamma} Cl(V) \subset \tau_{\gamma}$. Int($\tau_{\gamma} Cl(V)$). But $\tau_{\gamma} Int(\tau_{\gamma} Cl(V)) \subset \tau_{\gamma} Cl(V)$ in general. Then $\tau_{\gamma} Cl(V) = \tau_{\gamma} Int(\tau_{\gamma} Cl(V))$ and hence $\tau_{\gamma} Cl(V)$ is γ -open set of *X*. Therefore, *X* is γ -extremally disconnected space.

Theorem 4.11: The following conditions are equivalent for any topological space (X, τ) .

- 1) X is γ -extremally disconnected.
- 2) The τ_{γ} closure of every $\gamma \beta$ -open set of X is γ regular-open in X.
- 3) The τ_{γ} closure of every γb -open set of X is γ regular-open in X.
- 4) The τ_{γ} closure of every γ semiopen set of *X* is γ -regular-open in *X*.
- 5) The τ_{γ} -closure of every α - γ -open set of X is γ -regular-open in X.
- 6) The τ_{γ} closure of every γ open set of X is γ regular-open in X.
- 7) The τ_{γ} -closure of every γ -regular-open set of X is γ -regular-open in X.
- 8) The τ_{γ} closure of every γ -preopen set of X is γ -regular-open in X.

Proof:

(1) \Rightarrow (2) Let *R* be a $\gamma \beta$ -open subset of a γ -extremally disconnected space *X*. Then by (1) and Lemma 3.11, we have $\tau_{\gamma} Cl(R) = \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(R))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R))$ implies that $\tau_{\gamma} Cl(R) = \tau_{\gamma} Int(\tau_{\gamma} Cl(R)) = \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Cl(R)))$. Hence $\tau_{\gamma} Cl(R)$ in γ -regular-open set in *X*.

The implications $(2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (5), (5) \Rightarrow (6)$ and $(6) \Rightarrow (7)$ are clear.

(7) \Rightarrow (8) Let *P* be any γ -preopen set of *X*, then $\tau_{\gamma} Int(\tau_{\gamma} Cl(P))$ is γ -regular-open. By (7), $\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P)))$ is γ -regular-open set. So $\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Cl(\tau_{\gamma} Cl(P))))$. Since every γ -preopen set is $\gamma\beta$ -open. Then by Theorem 3.11 and Lemma 3.19, we have $\tau_{\gamma} Cl(P) = \tau_{\gamma} Int(\tau_{\gamma} Cl(P)) = \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Cl(P)))$. Hence $\tau_{\gamma} Cl(P)$ is γ -regular-open set in *X*.

(8) \Rightarrow (1) Let *S* be a γ -open set of *X*. Then *S* is γ -preopen and by (8), τ_{γ} -*Cl*(*S*) is γ -regular-open set in *X*. Then τ_{γ} -*Cl*(*S*) is γ -open. Therefore, *X* is γ -extremally disconnected space.

Remark 4.12: γ regular-closed set can be replaced by γ regular-open set in Theorem 4.11 (this is because of Theorem 4.8).

5. *p*Locally Indiscrete and *p*Hyperconnected Spaces

In this section, we introduce new types of spaces called γ locally indiscrete and γ hyperconnected. We give some properties and characterizations of these spaces.

Definition 5.1: A topoplogical space (X, τ) with an operation γ on τ is said to be:

- 1) γ locally indiscrete if every γ open subset of X is γ closed, or every γ closed subset of X is γ open.
- 2) γ hyperconnected if every nonempty γ open subset of X is γ dense.

Theorem 5.2: Let (X, τ) be a topological space and γ be an operation on τ . Then the following are holds:

1) If X is γ -locally indiscrete, then X is γ -extremally disconnected.

2) If X is γ -hyperconnected, then X is γ -extremally disconnected.

Proof: Follows from their definitions.

Theorem 5.3: If (X, τ) is γ -locally indiscrete space, then the following statements are true:

- 1) Every γ -semiopen subset of X is γ -open and hence it is γ -closed.
- 2) Every γ -semiclosed subset of X is γ -closed and hence it is γ -open.
- 3) Every γ -open subset of X is γ -regular-open and hence it is γ -regular-closed.
- 4) Every γ closed subset of X is γ regular-closed and hence it is γ regular-open.
- 5) Every γ semiopen subset of X is γ regular-open and hence it is γ regular-closed.
- 6) Every γ semiclosed subset of X is γ regular-closed and hence it is γ regular-open.
- 7) Every $\gamma \beta$ -open subset of X is γ -preopen.
- 8) Every $\gamma \beta$ -closed subset of X is γ -preclosed.

Proof:

1) Let S be any γ semiopen subset of a γ -locally indiscrete space (X, τ) , then $S \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(S))$. Since $\tau_{\gamma} Int(S)$ is γ -open subset of X, then it is γ -closed. So $\tau_{\gamma} Cl(\tau_{\gamma} Int(S)) = \tau_{\gamma} Int(S)$ implies that $S \subset \tau_{\gamma} Int(S)$. But $\tau_{\gamma} Int(S) \subset \tau_{\gamma} Int(S)$.

S. Then $S = \tau_{\gamma} Int(S)$, this means that S is γ open. Since a space X is γ -locally indiscrete, then S is γ -closed.

2) The proof is similar to part (1).

3) Let *O* be any γ -open subset of a γ -locally indiscrete space (*X*, τ). Since every γ -open set is γ -closed, then τ_{γ} $Cl(\tau_{\gamma}Int(O)) = O$. This implies that *O* is a γ -regular-closed set.

4) The proof is similar to part (3).

5) Follows directly from (1) and (3).

6) Follows directly from (2) and (4).

7) Let *P* be a $\not\sim \beta$ -open subset of a $\not\sim locally$ indiscrete space (X, τ) . Then $P \subset \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))) \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(P))$. Cl(P). Since $\tau_{\gamma} Int(\tau_{\gamma} Cl(P))$ is $\not\sim open$ set and hence it is $\not\sim closed$ in $\not\sim locally$ indiscrete space *X*. Then $\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))) = \tau_{\gamma} Int(\tau_{\gamma} Cl(P))$. Then $P \subset \tau_{\gamma} Int(\tau_{\gamma} Cl(P))$. Hence *P* is $\not\sim preopen$ set in *X*.

8) The proof is similar to part (7).

From Theorem 5.3, we have the following corollary.

Corollary 5.4: If (X, τ) is γ -locally indiscrete space, then

1) $\tau_{\gamma} RO(X) = \tau_{\gamma} = \tau_{\alpha \cdot \gamma} = \tau_{\gamma} SO(X).$

2) $\tau_{\gamma} PO(X) = \tau_{\gamma} BO(X) = \tau_{\gamma} \beta O(X).$

Theorem 5.5: A space (X, τ) is γ -hyperconnected if and only if $\tau_{\gamma} RO(X) = \{\varphi, X\}$.

Proof: In general φ and X are γ -regular-open subsets of a γ -hyperconnected space X. Let R be any nonempty proper subset of X which is γ -regular open. Then R is γ -open set. Since X is γ -hyperconnected space. So τ_{γ} -Int(τ_{γ} -Cl(R)) = τ_{γ} -Int(X) = X and hence R is γ -regular-open set in X. Contradiction. Therefore, τ_{γ} -RO(X) = { φ , X}.

Conversely, suppose that $\tau_{\gamma} RO(X) = \{\varphi, X\}$ and let *S* be any nonempty γ -open subset of *X*. Then *S* is $\gamma\beta$ -open set. By Theorem 3.11, $\tau_{\gamma} Cl(S) = \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(S)))$. Since $\tau_{\gamma} Int(\tau_{\gamma} Cl(S))$ is γ -regular-open set and *S* is nonempty γ -open set. Then $\tau_{\gamma} Int(\tau_{\gamma} Cl(S))$ should be *X*. Therefore, $\tau_{\gamma} Cl(S) = \tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(S))) = \tau_{\gamma} Cl(X) = X$. Then a space *X* is γ -hyperconnected.

Corollary 5.6: A space (X, τ) is γ -hyperconnected if and only if $\tau_{\gamma}RC(X) = \{\varphi, X\}$.

Proposition 5.7: If a space (X, τ) is γ -hyperconnected, then every nonempty γ -preopen subset of X is γ -semi-dense.

Proof: Let *P* be any nonempty γ -preopen subset of a γ -hyperconnected space *X*. By Lemma 3.19 and Lemma 3.20, we have $\tau_{\gamma} sCl(P) = \tau_{\gamma} Int(\tau_{\gamma} Cl(P)) = \tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))))$. Since $\tau_{\gamma} Int(\tau_{\gamma} Cl(P))$ is a nonempty γ -open set and *X* is γ -hyperconnected space. Then $\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))) = X$ and hence $\tau_{\gamma} Int(\tau_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P)))) = T_{\gamma} Int(T_{\gamma} Cl(\tau_{\gamma} Int(\tau_{\gamma} Cl(P))) = X$. This completes the proof.

6. Conclusion

In this paper, we introduce a new class of sets called γ regular-open sets in a topological space (X, τ) together with its complement which is γ regular-closed. Using these sets, we define γ extremally disconnected space, and to obtain several characterizations of γ extremally disconnected spaces. Finally, γ locally indiscrete and γ hyperconnected spaces have been introduced.

References

Basu, C. K., Afsan, B. M. U. & Ghosh, M. K. (2009). A class of functions and separation axioms with respect to an operation. *Hacettepe Journal of Mathematics and Statistics*, 38 (2), 103-118.

Carpintero C., Rajesh N. & Rosas E. (2012a). Operation approaches on *b*-open sets and applications, *Bol. Soc. Paran. Mat.*, 30 (1), 21-33.

Carpintero C., Rajesh N. & Rosas E. (2012*b*). Somewhat (γ , β)-semicontinuous functions, *Bol. Soc. Paran. Mat.*, 30 (1), 45-52.

Kalaivani N. & Krishnan G. S. S. (2009). On α - γ open sets in topological spaces, *Proceedings of ICMCM*, 370-376.

Kasahara, S. (1979). Operation compact spaces. Math. Japonica, 24 (1), 97-105.

Krishnan G. S. S. (2003). A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, 305-311.

Krishnan G. S. S., & Balachandran K. (2006*a*). On a class of *p*-preopen sets in a topological space, *East Asian Math. J.*, 22 (2), 131-149.

Krishnan G. S. S., & Balachandran K. (2006b). On γ semiopen sets in topological spaces, *Bull. Cal. Math. Soc.*, 98 (6), 517-530.

Ogata, H. (1991). Operation on topological spaces and associated topology, Math. Japonica, 36 (1), 175-184.

Steen L. A. & Seebach J. A. (1978). *Counterexamples in Topology*, Springer Verlag New York Heidelberg Berlin.

By Remark 3.4, Definition 2.5 and Definition 2.6, we have the following figure.

Figure 1:

The relations between γ -regular-open set, γ -regular-closed set and various types of γ -sets.

* A -----> B represents A implies B but not conversely