Certain Simultaneous Triple Series Equations Involving Laguerre Polynomials

Kuldeep Narain
School of Quantitative Sciences,College of Arts and Sciences, Universiti Utara Malaysia 06010 UUM , Sintok , Kedah Darul Aman, Malaysia
E-mail: kuldeep@uum.edu.my

Abstract

In this paper, an exact solution has been obtained for the simultaneous triple series equations involving Laguerre polynomials by multiplying factor method.

Keywords: Integral Equations, Series Equations, Laguerre Polynomials

1. Introduction

In the present paper, an exact solution of the simultaneous triple series equations has been given
$\sum_{n=o}^{\infty} \sum_{j=1}^{s} \mathrm{a}_{\mathrm{ij}} \frac{A_{n j}}{\Gamma(\alpha+n i+p+1)} L_{n i+p}^{(\alpha)}(x)=f_{i}(x), 0 \leq x<y$
$\sum_{n=o}^{\infty} \sum_{j=1}^{s} \mathrm{~b}_{\mathrm{ij}} \frac{A_{n j}}{\Gamma(\alpha+n i+p+1)} L_{n i+p}^{(\gamma)}(x)=h_{i}(x), y<x<z$
$\sum_{n=o}^{\infty} \sum_{j=1}^{s} \mathrm{c}_{\mathrm{ij}} \frac{A_{n j}}{\Gamma(\alpha+\beta+n i+p)} L_{n i+p}^{(\sigma)}(x)=g_{i}(x), z<x<\infty$
$\mathrm{i}=1,2,3$ \qquad
where, $\alpha+\beta+1>\beta>1-\mathrm{m}, \sigma+1>\alpha+\beta>0$, m is a positive integer, p is an arbitrary non-negative integer, $\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{ij}}$ are known constants; $\mathrm{f}_{\mathrm{i}}(\mathrm{x}), \mathrm{g}_{\mathrm{i}}(\mathrm{x}), \mathrm{h}_{\mathrm{i}}(\mathrm{x})$ are prescribed functions and
$L_{n}^{(\alpha)}(x)=\sum_{K=0}^{n}\left(\frac{n+\alpha}{n-k}\right) \frac{(-x)^{k}}{k}, n=0,1,2, \ldots \ldots$
is the Laguerre polynomial of order α and degree n in x .

2. Priliminary Results

The following results are required in our investigation :
(i) The orthogonality property of the Laguerre polynomials is given by Erdelyi (1953-54)
$\int_{0}^{\infty} e^{-x} \cdot x^{\alpha} L_{m}^{(\alpha)}(x) L_{n}^{(\alpha)}(x) d x=\frac{\Gamma(\alpha+n+1)}{n!} \delta_{m, n}, \alpha>-1 ;$
where $\delta_{m, n}$ is the kronecker delta.
(ii) Formula (27), p. 190 of Erdelyi (1953-54) in the forms:

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}}\left\{x^{\alpha+m} L_{n}^{(\alpha+m)}(x)\right\}=\frac{\Gamma(\alpha+m+n+1)}{\Gamma(\alpha+n+1)} x^{\alpha} L_{n}^{(\alpha)}(x) \tag{2.2}
\end{equation*}
$$

(iii) The following forms of the known results Erdelyi (1953-54)

$$
\begin{equation*}
\int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta-1} L_{n}^{(\alpha)}(x) d x=\frac{\Gamma(\alpha+n+1) \Gamma \beta}{\Gamma(\alpha+\beta+n+1)} \cdot \xi^{\alpha+\beta} \cdot L_{n}^{(\alpha+\beta)}(\xi) \tag{2.3}
\end{equation*}
$$

where, $\alpha>-1, \beta>0$ and

$$
\begin{equation*}
\int_{\xi}^{\infty} e^{-x}(x-\xi)^{\beta-1} L_{n}^{(\alpha)}(x) d x=\Gamma(\beta) e^{-\xi} L_{n}^{(\alpha-\beta)}(\xi) \tag{2.4}
\end{equation*}
$$

where $\alpha+1>\beta>0$.

3. Solution of Triple Series Equations

Multiplying equation (1.1) by $x^{\alpha}(\xi-x)^{\beta+m-2}$, where m is a positive integer, equation (1.3) by
$e^{-x}(x-\xi)^{\sigma-\alpha-\beta}$, integrating them with respect to x over the intervals $(0, \xi)$ and (ξ, ∞) respectively, we find, an using (2.3) and (2.4), that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{J=1}^{s} a_{i j} \frac{A_{n j}}{\Gamma(\alpha+\beta+m+n i+p)} L_{n i+p}^{(\alpha+\beta+n i-1)} \\
& =\frac{\xi^{-\alpha-\beta-m+1}}{\Gamma(\beta+m-1)} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta+m-2} \cdot f_{i}(x) d x \tag{3.1}
\end{align*}
$$

where, $0<\xi<y, \alpha>-1, \beta+m>1, i=1,2,3, \ldots \ldots \ldots . ., s ; \quad$ and

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{J=1}^{s} b i j \frac{A_{n j}}{\Gamma(\alpha+\beta+n i+p)} L_{n i+p}^{(\alpha+\beta-1)}(\xi) \\
& =\frac{e^{\xi}}{\Gamma(\sigma-\alpha-\beta+1)} \int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\alpha-\beta} \cdot g_{i}(x) d x \tag{3.2}
\end{align*}
$$

where, $y<\xi<\infty, \sigma+1>\alpha+\beta>0, i=1,2,3, \ldots \ldots ., s$.

Now multiply equation (3.1) by $\xi^{\alpha+\beta+m-1}$, differentiate both sides m times with respect to ξ, and use the formula (2.2); we thus find
$\sum_{n=0}^{\infty} \sum_{j=1}^{s} b_{i j} \frac{A_{n j}}{\Gamma(\alpha+\beta+n i+p)} L_{n i+p}^{(\alpha, \beta+1)}(\xi)$
$=\sum_{J=1}^{s} e_{i j} \cdot \frac{\xi^{-\alpha-\beta+1}}{\Gamma(\beta+m-1)} \cdot \frac{d^{m}}{\Gamma \xi^{m}} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta+m-2} \cdot f_{i}(\xi) d x$
where, $e_{i j}$, are the element of the matrix $\left[\mathrm{b}_{\mathrm{ij}}\right]\left[\mathrm{a}_{\mathrm{ij}}\right]^{-1}$ and $0<\xi<\mathrm{y}, \alpha>-1, \beta+\mathrm{m}>1, \mathrm{i}=1,2,3, \ldots, \mathrm{~s}$.

Now, the left hand sides of the equations (3.2), (3.3) and (1.2) are identical and hence on using the orthogonality relation (2.1), we obtain the solution of equation (1.1), (1.2) and (1.3) in the form.
$A_{n j}=\sum_{i=1}^{s} d_{i j}\left[\sum_{J=1}^{s} e_{i j} \frac{\Gamma(n i+p)}{\Gamma(\beta+m-1)} \int_{0}^{y} e^{-\xi} \cdot L_{n i+p}^{(\alpha+\beta-1)}(\xi) \cdot F_{1}(\xi) d \xi+\int_{y}^{z} \xi^{\alpha+\beta-1} e^{-\xi} \cdot L_{n i+p}^{(\alpha+\beta-1)}(\xi) h_{i}(\xi) d \xi\right.$
$\left.+\frac{(n i+p)!}{\Gamma(\sigma-\alpha-\beta+1)} \int_{z}^{\infty} \xi^{\alpha+\beta-1} L_{n i+p}^{(\alpha+\beta-1)}(\xi) G_{1}(\xi) d \xi\right]$
where, $\mathrm{n}, \mathrm{p}=\{0,1,2, \ldots \ldots \ldots\}, \mathrm{j}=1,2,3 \ldots \ldots \ldots \ldots, \mathrm{~s} ; \mathrm{d}_{\mathrm{ij}}$ are the element of the matrix $\left[\mathrm{b}_{\mathrm{ij}}\right]^{-1}$ and
$F_{1}(\xi)=\frac{d^{m}}{d \xi^{m}} \int_{0}^{\xi} x^{\alpha}(\xi-x)^{\beta+m-2} f_{i}(x) d x$
$G_{1}(\xi)=\int_{\xi}^{\infty} e^{-x}(x-\xi)^{\sigma-\alpha-\beta} g_{i}(x) d x$
provided that $\alpha+\beta+1>\beta>1-m$ and $\sigma+1>\alpha+\beta>0, m$ being a positive integer

References

Erdelyi, A.(Editor).(1953,54) Higher Transcendental Functions, Vol. I, II, III, 1, Mc Graw Hill, Newyork. Panda, R; (1977) Certain Dual Series Equations Involving Laguerre Polynomials, Indag Math; 39, 122-127
Srivastava, H.M; (1970), Dual series relation involving generalized Laguerre , polynomials, J. Math. Anal Appl; 31,587-594.

