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Abstract

In this research work, three new spaces are proposed and investigated. The spaces are named characterized
proximity L-space, characterized compact L-space and characterized uniform L-space. The properties of such
spaces are deeply studied. Some sort of relationship were introduced among such spaces and other published

spaces resented by the author. The published spaces are named characterized FT -spaces and characterized
N
FR, -spaces ([2,3.4]), for s € {0,1,2, 2% ,3,4} and k € {0,1,2,3}. New properties were already added to

the characterized FT -spaces and to the characterized FR, -spaces. Moreover, the characterized proximity L-
space, characterlzed compact L-space and characterized uniform L-space are classified according to the

characterized FTS -spaces and the characterized FR, -spaces for s € {0,1,2,4}and k € {2, 3}.

Keywords: L-filter, topological L-space, operations, isotone and idempotent, characterized L-space, @} 5 L-

neighborhood filters, uniform L-structure, L-proximity, characterized proximity L-space, characterized compact

L-space, characterized uniform L-space, characterized FT -space, F), ,-T space, characterized FR, -space
N > S

and F¢12-Rk space for s € {0,1,2,4}and k € {2, 3}.

1. Introduction
The notion of fuzzy filter which is named here L-filter has been introduced by Eklund et al. [13]. By means of
this notion a point-based approach to L- topology related to usual points has been developed. The more general

concept for L-filter introduced by G d hler in [15] and L-filters are classified by types. Because of the specific
type of L-filter however the approach of Eklund is related only to L-topologies which are stratified, that is, all
constant L-sets are open. The more specific L-filters considered in the former papers are called now
homogeneous.

On the ordinary topological space (X ,T ), the operation has been defined by Kasahara ([22]) as a mapping

X
@ from T into 2° such that A C A ¢ , for all A € T . Abd El-Monsef it al. ([7]) extend Kasahara
operation to the power set P (X ) of a set X . Kandil et al.([21]) extended Kasahars's and Abd El-Monsef's

operations by introducing an operation on the class of all L-sets endowed with an L-topology 7 as a mapping

X X . X
@:L — L suchthat int 4 < ,tl¢ forall £ € L, where ﬂ¢ denotes the value of @ at .

The notions of the L-filters and the operations on the class of all L-sets on X endowed with an L-topology T
are applied in [1,5,6] to introduce a more general theory including all the weaker and stronger forms of the L-

topology. By means of these notions the notion of ¢, 5 -interior of L-set, ¢ , L-convergence and @ 5 L-

neighborhood filters are defined and applied to introduced many special classes of separation axioms. The notion

. X X
of @, , -interior operator for L-sets is defined as a mapping @, ,.1nt :L — L which fulfill (I1) to (I5) in
[1]. There is a one-to-one correspondence between the class of all ) 5 -open L-subsets of X and these
operators, that is, the class ¢L2OF (X ) of all @, 5 -open L-subsets of X can be characterized by these

operators. Then the triple (X, (01 e int) as will as the triple (X, ¢1,20F (X)) will be called the characterized
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L-space of @), 5-open L-subsets. The characterized L-spaces are characterized by many of characterizing notions

in [1,5], for example by: @) 5 L-neighborhood filters, @) 5 L-interior of the L-filters and by the set of @] 5 -inner

points of the L-filters. Moreover, the notions of closeness and compactness in characterized L-spaces are

introduced and studied in [6]. The notions of characterized FT -spaces, F(Dl 2-T spaces, characterized FR 0
S ’ S

spaces and FR , -spaces spaces are introduced and studied in [2,3,4] for all s € {0,]1, 2,2%,3,4} and

k € {0,1,2,3}. This paper is devoted to introduce and study three new spaces named characterized proximity
L-space, characterized compact L-space and characterized uniform L-space. Many relations between these

spaces and our spaces characterized FT -spaces, F@) 5-T spaces, characterized FR, -spaces and F@) ,-R
N » s >

spaces are investigated for s € {0,1,2,4}and k € {2, 3}.
In section 2, some definitions and notions related to L-sets, L-topologies, L-filters, L-proximity, operations on

L-sets, (01’2 L- neighborhood filters, characterized L-spaces, characterized FTS -spaces, F ¢1,2 - 1; spaces,

characterized FR, -spaces and F ¢, , -spaces spaces are given for s € {0,1,2,4}and k € {2,3}.Section 3, is
devoted to introduce and study the relation between characterized proximity L-spaces and our classes of

characterized FT -spaces and characterized FR  -spaces. It will be shown that in the characterized L-space
s

(X, ¢1,2 .int), the L-proximity O will be identified with the finer relation on the ¢1,2 L-neighborhood filters.
Also, we will show that any L-proximity is separated if and only if the associated characterized proximity L-

space is characterized FTj; and to each L-proximity is associated a characterized FR, -space in our sense.
Generally, it will be shown that the associated characterized proximity L-space (X , ¢1’2.int 5) is
characterized FR, -space if the related topological L-space (X ,7) is F¢1,2' R, space. Moreover, for each
characterized FR ;-space the binary relation on LX defined by means the (01’2 -closure operator ¢1,2 clof T
in Eq. (3.6), is L-proximity on X and conversely, to each L-proximity X , which has a ¢1,2 -closure operator
fulfills the binary relation given in (3.6), is associated characterized FR ;-space (X, (01,2 .int 5)

There is a good notion of @), , -compactness of the L-filters and of topological L-spaces introduced and studied

by Abd-Allah et all. in [6]. This notion fulfills main properties, for example, it fulfills the Tychonoff Theorem.
In section 4, we used this notion to introduce and study the notion of characterized compact L-spaces. It will be

shown that every ¢1,2 -closed subset of a characterized compact L-space is (01’2 -compact and each (01’2-
compact subset of a characterized FT2 -space is (01’2 -closed. Also, it will be shown that each characterized
compact FT2 -space is characterized FT 4 ~Space. Moreover, if (X, l//l,Z .int) is characterized compact L-space
finer than the characterized FT2 -space (X, (01’2.in'[) , then (X, ¢1’2.int) is isomorphic to

X, v 2.iﬂt) . The notion of fuzzy uniform structure which is named here uniform $L$-structure had been

introduced and studied by Gd hler et all. in [17]. We used in the least section this notion to introduced the notion
of characterized uniform L-spaces and the notion of associated characterized L-spaces. Finally, we show that the
uniform L-space (X ,U) is separated if and only if the associated characterized stratified L-space
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(X ’@,z'intu) is characterized FTO -space and specially, (X ,U) is separated if and only if the associated

stratified topological L-space (X ,7, U )isF D 5- TO space.

2. Preliminaries
We begin by recalling some facts on the L-filters. Let L be a completely distributive complete lattice with

different least and last elements 0 and 1, respectively. Let Lo =L \{0}. Sometimes we will assume more
specially that L is complete chain, that is, L is a complete lattice whose partial ordering is a linear one. For a set
X , let L be the set of all L-subsets of X , that is, of all mappings f :X — L. Assume that an order-

reversing involution & > 0/ of L is fixed. For each L-set HE L* , let y” denote the complement of £ and it
is defined by: u#'(x) = p(x ) for all x € X . Denote by & the constant L-subset of X with value &¥€ L .
For all x € X .and for all @ € Lo , the L-subset X, of X whose value & at X and O otherwise is called an
L-point in X .

The fuzzy filter on X ([15]) which is named here L-filter is a mapping A : L* — L such that the following
conditions are fulfilled:

(F1) M (@) < a forall @€ Land H(1)=1.

(F2) S (A p) =M () A M(p)forall it,pe L~

The L-filter A is called homogeneous ([13]) if (&) = « for all A€ L . For each x € X , the mapping
X : LY — L defined by x (1) = p(x ) forall i€ L¥isa homogeneous L-filter on X . Foreach (£ € L*
, the mapping f{ :L* — L defined by () = O<§Ec )77()6) for all I} € L* is also homogeneous L-filter on

X , called homogenous L- filter at the L-subset l & LY. Let ¢7LX and F . X will be denote the sets of all L-
filters and of all homogeneous L- filters on a set X , respectively. If M and N are L- filters on a set X |
M is said to be finer than A, denoted by M < N, provided M (11)> N (1) holds for all {LE Lr.
Noting that if L is a complete chain then . is not finer than ¥ , denoted by M £ A, provided there exists
HE L* such that M) <A (1) holds.
Proposition 2.1 [11] For all 4, p€ L* . we have

U < pifandonlyif g < p
For each non-empty set A of the L- filters on X the supremum Jl\e/ﬂ M exists ([15]) and given by:

vV M = N M
(N, AW = N M)
forall € L* . Whereas the infimum /ﬂ/\ﬂ M of A does not exists in general as an L-filter. If the infimum
€
N\ M exists, then we have:

Me A
(A= N (M)~ A1)

Aee Ny S

..... /€

for all Y € L* , where 7 is an positive integer, 4, ,..., /4, is a collection such that £ A ...AfL <M and
.ﬂ y eee ,‘/fln are L- filters from .4 . Let X be a set and HE LX , then the homogeneous L- filter /& at
HE L¥ is the Lfilter on X given by:

i= V ¥ (2.1)

0< pu(x)
L- filter bases. A family (‘Z)a )0,E L, of non-empty subsets of L is called a valued L- filter base ([15]) if the

following conditions are fulfilled:
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(V1) e &, implies o < sup L.
(V2) For all &, € L, with an Be L, and all € B, and p€ By there are ¥ > ¢ A § and
N2 UA O suchthat 7] € j);,

defines the L-filter # on X by HA(U)= V & for

Proposition 2.2 [15] Each valued base (‘Z)a)
PEBy P

oel,

all 4 e L. Conversely, each L- filter  can be generated by a valued base, e.g. by (Ot-pr M ) oel, with
a-prM={uec ¥ | a< Mu)}.

(Ot-pr M ) wel, is a family of prefilters on X and is called the large valued base of # . Recall that a prefilter
on X ([25]) is a non-empty proper subset F of L* such that:

() 4, pe F implies u A pe F and (2) from g€ F and U < p itfollows pe F .

Proposition 2.3 [15] Let A be aset of L- filters on a set X . Then the following are equivalent:

(1) The infimum M/e\ﬂ‘ﬂ of A4 with respect to the finer relation for L- filters exists.

@ M)A AM(W) S sup(f Ao AL for all finite subset {M,..., M} of A and
s i, €L
(3) a< sup (Y, A...AlL, ) holds for all non-empty finite subset {,Ul, s 1 } of J{L{qa—pr Mand e L,

L-topology. By an L-topology on a set X ([12,20]), we mean a subset of l € L* which is closed with
respect to all suprema and all finite infima and contains the constant

L-sets 0 and 1. A set X equipped with an L-topology 7 on X is called topological L-space. For each
topological L-space (X ,7) , the elements of 7" are called open L-subsets of this space. If 7, and 7, are L-
topologies on a set X , 7, is said to be finer than 7, and 7, is said to be coarser than 7, provided 7, C 7T,
holds. The topological L-space (X ,7) and also 7 are said to be stratified provided & € T holds for all

o € L | that is, all constant L-
sets are open ([24]).

Proximity L-space. A binary relation O on L* is called L-proximity on X ([23]), provided it fulfill the
following conditions:

P U 3,0 implies O 3;1 forall UYU,p€ L* , where ¢ is the negation of O .

®2) (v p) O Nifandonlyif £ 87 and p SN forall i, p,e L*

P3) U =0 or P =0 implies 4 gp forall U, P € L*.

(P4) 1 8 p implies 1 < p’ forall i, pe L~ .

P5)If U 5,0, then there is an 7] € L" such that U 37] and 77 gp

A set X equipped with an L-proximity O on X is called a proximity L-space and will be denoted by (X , ).
Every L- proximity O onaset X isassociated an L-topology on X denoted by 7. The L- proximity 0 ona
set X is said to be separated if and only if for all x,y € X such that X # Y we have X, gyﬁ for all
a,fBeL,.

Operation on L-sets. In the sequel, let a topological L-space (X ,7) be fixed. By the operation ([21]) on a set
X we mean a mapping @: L* —L" such that int 758 ,u‘” holds, for all (£ € L* , where, U ? denotes the

value of ¢ at f . The class of all operations on X will be denoted by O e By identity operation on

ar,

O(LX 4> We mean the operation 1LX :L¥ — L such that 1LX (,U) =M, forall Ue L* . Also by constant
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operation on O(LX ., We mean the operation Cx * L¥ — L such that Cox (,U) = T ,forall H € LY 1t <is

a partially ordered relation on O(LX 5 defined as follows: @ <@, & ,Uq)‘ < ,u”’l for all (L€ L* , then

obviously, O(LX 5 is a completely distributive lattice. As an application on this partially ordered relation, the

operation @: L* —L* will be called:

(i) Isotoneif 1 < p implies 1? < p? forall i, pe L.

(ii) Weakly finite intersection preserving (wfip, for short) with respect to .4 C L* i PA ,U(p <(pAa ,Ll)(p
holds, forall pe 4 and U € L*

(iii) Idempotent if 1? = (u?)? forall g€ L .

The operations @, ¥ € O(LX o are said to be dual if ,U'// =co((co ,Ll)(por equivalently ,U¢ =co((co ,Ll)w
for all € L* , where co i denotes the complementation of £ . The dual operation of @:L* —L* will
be denoted by @Z L¥ —L* . 1n the classical case of L = {0,1}, by the operation on a set X we mean the
mapping @ : P(X ) — P (X ) such that intA < A”for all A in the power set P(X ). The identity
operation on the class of all ordinary operations 0( P(x)r) O X will be denoted by i p(x)» Where
Ipix)(A)=Aforall Ae P(X).

The @ -open L- sets. Let a topological L-space (X ,7) be fixed and ¢ € O(LX e The L-set p4:X — Lis

called ¢ -open L- set if 4 < y"’ holds. We will denote the class of all ¢ -open L-setson X by @OF (X ).

The L- set w4 is called @ -closed if its complement co i is ¢ -open. The two operations @, I/ € O(LX . are
equivalent and written @ ~ ¥ if QOF (X )=wOF (X ).

The @, , -interiors of L- sets. Let a topological L-space (X ,7) be fixed and ¢, @, € O(LX o Then the
@, , -interior of the L-set £ : X — L is the mapping (pl’z.int,u : X — L defined by:

@, .int ft= Vv o (2.2)

PEPOF (X)), p? <p

ﬂyz.intﬂ is the greatest ¢ -open L-set O such that ,0(02 less than or equal to £ ([1]). The L- set g is said
to be @, -openif M < @,.int L. The class of all @, , -open L- sets on X will be denoted by @, ,0F (X').
The complement co (4 of a @, , -open L-subset (4 will be called @), , -closed, the class of all @, , -closed L-
subsets of X will be denoted by Q,ZCF(X ). In the classical case of L ={0,1}, the topological L-space
(X ,7) is up to an identification by the ordinary topological space (X ,T )and @), ANt 4 is the classical one.
Hence, in this case the ordinary subset A of X is @), , -open if A C (Dl’z.intA . The complement of a @, , -
open subset A of X will be called @, , closed. The class of all @), , -open and the class of all @), -closed
subsets of X will be denoted by ¢1,20 (X ) and ¢1,2C (X ), respectively. Clearly, F is @, , closed if and
only if ¢1,2'C1T F=F.

Proposition 2.4 [1] If (X ,7) be a topological L-space and @, @, € O(LX o Then, the mapping
(pl’z.int,u : X — L fulfills the following axioms:

(i) If @, 21 ., then @,.Int &£ < 1 holds.

(ii) (pl’z.int,u is isotone, i.e, if 4 < P then (ol,z.int,u < (pu.intp holds for all i, p€e L*.
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(iii) @,,.int T=1.

Giv)y If @, 2> 1LX is isotone and ¢ is wfip with respect to ¢10F (X) ., then
@, ANt (UAP)=@,.int & A@,,.int P forall i, pe L* .

(v) If @, is isotone and idempotent operation, then (pwint J78S (pwint (ﬂyz.int M) holds.

(vi) @,,.int (\/I U, ):i\e/l @, ,.int g, forall 4 € ¢,0F (X).

Proposition 2.5 [1] Let (X ,7) be a topological L-space and @, @, € O(LX o Then the following are

fulfilled:
G If @, 2 1LX , then the class ¢L2OF (X )of all @, , -open L-sets on X forms an extended L- topology on

X , denoted by 777 ([18]).
(i) If @, 2 lLX , then the class ¢1,20F(X ) of all @, , -open L-sets on X forms a supra L- topology on X ,

denoted by 72 ([18]).
(i) If @, 2 1 X is isotone and ¢, is wfip with respect to ¢10F (X ), then (DI’ZOF (X )is a pre L-topology on

X , denoted by r;“ ([18D).
Gv) If @, Zle is isotone and idempotent operation and ¢, is wfip with respect to ¢10F (X ), then
(DI’ZOF(X ) forms an L- topology on X , denoted by T, ([12,20]).
From Propositions 2.4 and 2.5, if the topological L-space (X ,7) be fixed and @, @, € O(LX 5" Then
X .
G O0FX)={uel” | u<g@,.intu} (2.3)

and the following conditions are fulfilled:
() If @, 21, then @ ,.Int & < 4L holds for all L€ L.

(I2)1f 4 < p then @,.int 4 < @,,.int P holds forall &, pe L* .

13) @,.int 1=1.

I4) 1t @, 2> 1LX is isotone and ¢ is wfip with Trespect to (010F (X) ., then
@, ANt (UAP)=@,.int & A@,,.int P forall i, pe L* .

15 If @, 2 1LX is isotone and idempotent operation, then (pwint (¢)L2.int ,ll)=¢)1’2.int,tl forall L€ L.
Independently on the L- topologies, the notion of ), , -interior operator for L- sets can be defined as a mapping
@’z.int:LX — L* which fulfill (I1) to (I5). It is well-known that (2.2) and (2.3) give a one-to-one
correspondence between the class of all @), -open L- sets and these operators, that is, (01,20F (X ) can be
characterized by @), , -interior operators. In this case (X, ﬂyz.int) as will as (X ’¢1,20F (X)) will be called
characterized L- space ([1]) of @), -open L- subsets of X .1t X ,ﬂ’z.int) and (X ,l//l’z.int) are two
characterized L-spaces, then X ,q’z.int) is said to be finer than (X ,Q//m.il’lt) and denoted by
@ ,-Int <Y, ,.int provided @,.int 4 2 Y, ,.Int 4 holds for all i€ L* . The characterized L-space
X, ﬂyz.int) of all @, , -open L-sets is said to be stratified if and only if ¢1’2.th =0 forall € L . As
shown in [1], the characterized L-space (X ,(01’2.i1’1'[) is stratified if the related L- topology is stratified.

Moreover, the characterized L-space (X ,ﬂ’z.int) is said to have the weak infimum property ([18]) provided
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for all 4 € L* and are L . The characterized L-space X ,ﬂ’z.int) is said to be strongly stratified ([18])
provided @, , .nt is stratified and have the weak infimum property.

If ¢ = intand @, = 1LX , then the class Q,ZOF (X )ofall @, , -open L-set of X coincide with 7 which is
defined in [12,20] and hence the characterized L- space (X ,(01’2.i1’1'[) coincide with the topological L-space
(X ,7) . Another special choices for the operations ¢ and (, obtained in Table(1).

The @, , L- neighborhood filters. An important notion in the characterized L-space (X, (01’2.i1’1'[) is that of a
@, , L-neighborhood filter at the point and at the ordinary subset in this space. Let (X ,7) be a topological L-

space and @, @, € O(LX o As follows by (I1) to (I5) for each x € X , the mapping ./Vq)]‘2 (x):L¥ > L

which is defined by:
A, ()W) = (@,-int f)(x) (2.4)

for all L € L¥ is L-filter, called @, , L-neighborhood filter at X ([1]). If ¢ # F < P(X ), then the @, , L-
neighborhood filter at F will be denoted by ‘/le , (F') and it will be defined by:

Ao, (F)= NV Ay ().
Since /I/m(x ) is L-filter for all x € X , then ,/V(p]2 (F) is also L-filter on X . Moreover, because of

[ %] :x\E/Fx' , then we have ‘/’/ﬂ,z (F) =[] holds.

If the related @), -interior operator fulfill the axioms (I1) and (I2) only, then the mapping
‘/’/%2 (x): LY 5L , which is defined by (2.4) is an L-stack ([18]), called ¢1,2 L- neighborhood stack at X .
Moreover, if the @), , -interior operator fulfill the axioms (I1), (I2) and (14) such that in (I4) instead of PO € LY

we take & , then the mapping A/, os (x):L* — L, isan L-stack with the cutting property, called here @, L-

neighborhood stack with the cutting property at X . Obviously, the ), L-neighborhood filters fulfill the

following axioms:
(N1) X S,/V%2 (x)holds forall x € X .

N2) A, (X)) S A, (x)(P) holds forall 41, pE L¥and u<p.

(N3) A, )y M, (9)(0) = A, (X)), forall x € X and pr& L.

Clearly, y r—ul/m (¥ (1) is the L-set @, ,.Int 4L .

The characterized L-space (X , ¢ ,.int) of all @), , -open L-subsets of a set X is characterized as a filter pre L-
topology ([1]), that is, as a mapping /I/m x): X -ZX

such that the axioms (N1) to (N3) are fulfilled.

The @, , L-convergence. Let a topological L-spaces (X ,7) be fixed and @, ¢, € O(LX o If X is a point in
the characterized L-space (X ,(01’2.i1’1t) , F < X and M is L-filter on X . Then M is said to be ., L-
convergence ([1)] to X and written Wx , provided A is finer than the @, , - neighborhood filter

‘/Vﬂ , (x). Moreover,  is said to be @, , -convergence to F' and written M ——F | provided M

@ ,.int
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is finer than the @), , L-neighborhood filter ‘/V(p12 (x) for all x € F , that is, A is finer than the @, L-
neighborhood filter ,/V% , (F).

Internal @, , -closure of L-sets and @), , -closure operators. Let a topological L-spaces (X ,7) be fixed and

o, Qe O(LX 5" The internal @, , -closure of the L-set ¢ :X — L is the mapping (01’2.01,[1:)( — L

defined by:
@ el )=V M) 2.5)

<Ay, (x)
for all x € X . In (2.5) the L-filter ./ my have additional properties, e.g, we my assume that is
homogeneous or even that is ultra. Obviously, ¢1’2.CI,U 2 M holds for all U€E L* .The mapping

¢1,2'C| : J“'ZX —)J“’ZX which assigns ¢L2‘Cl M 1o each L-filter M on X , that is,
(@0l M= M (p) (2.6)

2-clpsu

is called @, , -closure operator ([6]) of the characterized L-space X, D .Int) with respect

to the related L-topology 7" . Obviously, the @), , -closure operator ¢1’2.C| is isotone hull operator, that is, for

all M, N e ¢7LX we have
ML implies (Dl’z.Cl ML (01’2.C| N
and that < ¢)172.C| M.

Characterized FT and F(Dl o - T spaces. The notions of characterized FT and F @) ,-T spaces are
S > S N » S

investigated and studied in [2,3] for all s € {0,1,2, 2% ,3,4}. These spaces depend only on the usual points
and the operation defined on the class of all L-subsets of X endowed with a topological L-space (X ,7) .

Let a topological L-space (X ,7) be fixed and @, @, € O(LX o Then the characterized L- space
(X, @,,.1nt) is said to be:

(1) FT}y -space (resp. FT1 -space) if for all x,y € X such that X # Yy there exists M€ L* and ae L,
such that ,u(x) <a< ((01’2.int,u)(y) holds or (resp. and) there exist P € L* and ,BE L0 such that
py) < IH < (q’z.int L)(X ) holds. The related topological L-space (X ,7) is said to be F ¢L2- TO (resp. F
¢L2-T1 yifforall x,y € X suchthat X # Y we have X £ ‘/le-2 (y)or(resp.and) y £ ‘/V%2 (x).

2) FT2 -space if for all x,y € X such that X # Yy , the infimum ,/le_2 x) A ./le_2 (¥ ) does not exists.

The related topological L-space (X ,7) is said to be F@), 5- T2 if //[W) X,y implies x =y for all
> 71,2

Me FX andforall x,y € X

Characterized FR, and F(DI,Z -R, spaces. The notions of characterized FR, and F¢L2- R, spaces are
introduced and studied in [3] for all k e {0, 1}. Moreover, the notion of @), , L-neighborhood filter at a point

and at the ordinary subset of the characterized L-space (X , D .int) is applied in [4], to introduced and studied

the notions of FR, -spaces for k € {2,3}. However, the notions of F¢1,2- R, spaces are also given by

means of the @), , L-convergence at a point and at the ordinary set in the space.
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Let a topological L-space (X ,7) be fixed and @, @, € O(LX o Then the characterized L- space

(X, @,,.1nt) is said to be:

(1) FR, -space (resp. FR, -space), if for all x € X, FEQ’ZC(X) such that X & F (resp.
Fl ,F2 € ¢1,2C (X ) such that F1 ﬁF2 =¢@ ), the infimum /Vm(x) A /V%Z(F) (resp.

‘/th2 (F) A /V%Z (F,)) does not exists. The related topological L-space (X ,7) is said to be F@,-R,

(resp. F¢l,2'R3) if for all x € X , (resp. I G(DLZC (X)and MHe “'/ZX such that M ———> x

@ - int
(resp. M ——— F ) we have (01,2.C| /ﬁlW X (resp. (01’2.C| /IW) F @,).

L@ ,.int

(2) FT -spaceif and only ifitis FR, and FT1 . The related topological L-space (X ,7) is said tobe F@, 5-
S s

TS if and only if it is F¢1,2'Rk and F¢1,2'T1 for k € {2,3}and s € {3, 4}.

3. Characterized Proximity L-spaces
In this section we are going to introduce and study the notion of characterized proximity L-spaces. We make at

first the relation between the farness on L-sets and the finer relation on L-filters. So, we define a ), , L$-
neighborhood filter ‘/Vﬂ , (1) at the L-subset U € L* and we show some results for this notion. The notion of
homogeneous L-filter 4z which is defined in (2.1) and the notion of ), , L-neighborhood filter ‘/’/ﬂ , (x) at the

L-subset (€ L¥ are applied to study the relation between the L-proximity O defined in [23] and our L-
separation axioms in [2,3,4]. Moreover, the relation between characterized proximity L-spaces and the

characterized FTS -spaces, characterized FR, -spaces and characterized FR -spaces are introduce
Proposition 3.1 Let a topological L-space (X ,7) be fixed and @, @, € O(LX - such that @, = 1LX is
isotone and idempotent and ¢, is wfip with respect to ¢10F (X ). Then the supremum of the @, L-
neighborhood filters ,/le , (x) at x € X which is given by:

A, (=N M, () 3.1

O<u(x)
forall g€ L* is L-filter on X called a @, , L-neighborhood filter at 1 € L* .

Proof. Fix an & € L0 , then because of (2.4) and the condition @, > lLX , we have
N (@)= N\ N a)= /N antad)y)< N\ ay)=«a
0. @= N M, (D@ =N (@@ A ay)
and

A, (D= A A, ID= A (@, intDy) = A Tp)=1.

Thus, condition F1) is fulfilled. To prove condition F2, let O, 7] € LX , then because of Proposition 2.4 and
(2.4) we have

Ao, WP A= /N @500t (p AI(Y)
= A (¢1,2‘int P)(y) A A (ﬂ,z'intﬂ)(}’)
O<pu(y) O<u(y)
=, (W(P) A N, (D).
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Hence, /V(m (1) is L- filter on X . Since (ﬂ’z.int )(x) < p(x) holds for all x € X and p€ L* , then

/Vq,lz(u)(p) S f(p) holds for all pe L* . Thus, < ‘/’/ﬂz('u) and therefore ‘/V%z('u) fulfills

condition (N1). For condition (N2), let P, 7] € L¥ such that L <17 . Because of Proposition 2.4, we have

@,,.int p < @ ,.int7 which implies 0/(\ )((plz.intp)(y) < 0/(\ )((plz.intn)(y) holds forall y € X .
’ ’ <u(y) " <u(y)

Hence ,/Vm(,u)(p) < ‘/V%Z(,U)(ﬂ) and therefore (N2) is fulfilled. Since for any y € X we have

. /(\ )y = o /(\ )((01 2 .Ant p)(y ) represents the mapping @, , .Ant P . Then from Proposition 2.4 we have
<u(y <u(y ’ ’

A, (W)(@,,.int p) = 04}‘ (@,-int @, int P)(x) = 04}‘ (@it p)x),
and then A, (1) AN y > N\ (@,.int p)(y) =A,, (W)(P) for all y € X and pe L* . Thus,
2 0<u(y) O<u(y) 2

condition (N3) is also fulfilled and therefore /I/m(u) fulfilled the conditions (N1) to (N3) of the @, , -

neighborhood filters. O
Not that in [11] the supremum of the empty set of the L-filters is the finest L-filter. This means ./V(p] , 0) < i

forall L € L* . Because of (2.4) the equations (2.1) and (2.2) can be written as in the following:

f(p) = 0@ ) 3.2)
M (WP) = N Ay ()(P) = /N (@it p)(x) (3.3)

forall p € L* . Here a useful remark is given
Remark 3.1. The homogeneous L-filter X at the ordinary point X is nothing that a homogeneous L-filter X o At
the L- point X ,, that is, X o= X for all x € X and € Lo- Moreover, the ¢1,2 L-neighborhood filter
/V(m (x)at x € X isitselfa @, , -neighborhood filter ‘/V(P],z (xa) at X ,.

The @), , L-neighborhood filter ‘/’/ﬂ , (1) at the L-subset [l € L* and the homogeneous L-filter gz fulfill the

following properties.

Lemma 3.1 Let (X ,7) be a topological L-space and @, @, € O(LX &+ Then for all 4,pe LY the

following properties are fulfilled:

(1) g < p implies Ay () <A and M, (1) <p implies A, (p) < 4.

@) p < pimplies A, (1) < A, (P).

& A, (uvp)y=H, WvAH, (p).

@ A, (W) <P implies £ < p.

5) A, (1) < p implies there is an 77 € L* such that N, (W) <npand A, () <P.

Proof. Let 4 <p . From (NI) we have (<, (p) and therefore for all 7€ L* we have

0/\ 7]()6) > A (¢L2.int77)(y ). Hence, A 7]()6) < /\ (¢L2.int77)(y). Thus,
<u(x) 0<p(y) 0<p'(y)

0<4/(x)

/V% . (P')(m) = f'(17) and therefore, /’/q)] . (p") < 1. Similarly, if ‘/V% . (1) <P, then from (N1) we have
f < p which implies A/, (p") < A" . Thus, (1) is fulfilled. Since g < p implies u(x ) < p(x ) for all

x € X ,then

0/\ (@, 1t77)(x ) 2 N (@,-Int77)(x ).
<u(x) O<p(x)
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Hence, /V(m (wmn) = ‘/’/ﬂ,z (P)(@) for all R e L* and therefore /V(m (W < /V(m (0). Hence, (2) is
fulfilled.

Since i, p < U Vv p, then from (2) we have ‘/V(P],z (W A ‘/’/ﬂ,z (p) < ‘/’/ﬂ’2 (Uv p) . Now, let M€ L*
then

(AN, () ~ A, (p))1]) = V (‘/V,/,L2 (W) (k) A, (p)k,))
= \/ (N @,.intk, ) A /\ ¢121ntk (y))

kynk,<n O<p(x)

<V A g,.int(k, Ak )(z)

kynk,<n O<(uvp)(z)

< A (01,2'1“”7(2 ):/V¢ (u Ap)m)
0<(uv p)(z) 12
Hence, ‘/le , (ﬂ) A ,/le , (p) > ./V% , (,uvp) and therefore (3) is fulfilled. To prove (4), let ‘/le , (ﬂ) Sp
holds. Because of (2.1), (3.1) and (N1) we have ,U < ‘/V%2 (,U) and then 1 < p . Hence, Proposition 2.1
implies 4 < p. Thus, (4) is fulfilled. Finally, let ‘/le (1) £p. Then VAN (@,.1nt Dx)= A Ay)
2 O<p(x) " 0<p(y)
forall Ae L* . Hence there is 7] € L¥ such that
A (@, intHx) 2 AN Uz) = N (@,.intD(z) = AN\ Ay).
O<pu(x) 0<77(z) 0<77(z) 0<p(y)
This means there is 7] € L¥ such that ‘/I/m(u) (A) 21(A) and ‘/lez (1) (A) 2 p(A) are hold for all
Ae L* . Thus, /’/q)] . (1) <1 and ‘/’/ﬂ . (17) <P are also hold. Consequently, (5) is fulfilled. O
In the characterized L-space (X , D .Int) , the L-proximity will be identified with the finer relation on the L-

filters, specially with the finer relation on the ¢, L- neighborhood filters. This shown in the following
proposition.
Proposition 3.2 Let (X ,7) be a topological L-space and ¢, @, € O o Then the binary relation 0 on

L* which is defined by:
MO p if and only if ‘/Vﬂz(p)S/l,

forall U, p€ L* is L-proximity on X .
Proof. Let i, p€ L* such that #gp , then ‘/’/ﬂ,z (p) < f" . Because of (1) in Lemma 3.1, we have

‘/le-2 (w) < ,0', and therefore O S M . Hence, condition (P1) is fulfilled.
Since ‘/V%2 (W) S,/le_2 (U v p) and ‘/V%2 (p) S,/le_2 (U v p) are hold for all g, p€ L* | then
‘/Vq)]z (U v p)<n" implies /V%Z (1) <" and /V%Z (0) <7 are hold for all 7€ L* . This means

n g(/.l V p) implies 77 5,11 and 7] 3,0 Conversely, let 77 é_’,u and 7] 3,0 for all K, p,Ne L* | then
‘/V%2 7)) Sf]’ and ‘/V%2 (p) Sf]’ are  hold. Hence, (3) in Lemma 3.1  implies

/V(m (,uvp):/lfm (w) \/‘/I/(P]2 (P)<K" holds and therefore n g(/.l V P) . Consequently, (P2) is
fulfilled. To prove (P3), since A, (0) < f2’ holds for all € L* . Then, yé_‘ﬁ for all L€ L* . Hence,

14=0 or p=0 implies #£8 p forall 4, p€ L* . Thus, (P3) is fulfilled.
Let U,pe L such that #gp , then ‘/’/ﬂ,z (p) S,ll,. Because of (1) and (4) in Lemma 3.1, we have

/V%Z (1) <P and therefore 1< p’ ., that is, (P4) is fulfilled. Finally, let £, 0 € L such that 4 gp , then
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/V(M (p) < I’ which implies /Vﬂz (1) <P’ . Because of (5) in Lemma 3.1, there is an 77€ L* such that
/V(p] . (1) <1 and ‘/’/ﬂ . (17) <" are hold. Hence, ‘/Vq)] . (n") <4 and ‘/’/ﬂ . () <7’ are also hold, that

is, ﬂg 77’ and 77 K} P . Thus, (P5) holds and consequently, O is L-proximity on X . O
If the topological L-space (X ,7) be fixed and @, @, € O(LX o Then each L-proximity O on X is

associated a set of all @, , -open L-subsets of X with respect to 0 denoted by ¢1,20F (X) s - In this case the
triple (X ’¢1,20F X) 5) as will as the triple (X ,ﬂyz.int 5) is said to be characterized proximity L-space.

The related @), , -interior and @, , -closure operators ¢L2.int s and @, cl 5 are given by:

@ int; =V p (3.4)
Hop
and
@ Clst= I\ p (3.5)
pou

respectively, for all (€ L* . In the following we will show that the characterized proximity L-space
(X, D> .Ant 5) is characterized FTj -space as in sense of ([2]) if and only if O is separated.

Proposition 3.3 Let (X ,7) be a topological L-space, @,, @, € O @ o and O is an L-proximity on X .

Then the characterized proximity L-space (X ,ﬂ’z.il’lt 5) is characterized FT -space if and only if 0 is

separated.

Proof. Let (X ,@,,.ints) is characterized FT -space and let x,y € X such that X #y . Then

X £ /Vwi (y ) and therefore there is [ € L* such that (pl,z.int(; M(y )> (X)) . Because of (3.4), we have
¥ P(y) >p(x )and hence u(x ) < p(y )holds forall pe L*

Hép

with 4’8 p, that is, g(x) <p(y)holds for all p& L* with N, (P)S fL . Choice fI =X/ and
P =1Y,, then because of Remark 3.1, we get ,/V(pi (< xl,. Using Proposition 3.2 we get x15y1 and

therefore X ag Vs holds for all &, ,B € Lo . Thus, Ois separated.
Conversely, let 0 is separated L-proximity and let x,y € X such that X #y . Then, X 13 Yy, and
.. o ./ .
because of Proposition 3.2 and Remark 3.1, we have ,/Vq)]~2 (y)< X" Therefore, @, ,.int; L(y )>Z/$\)C H(Z)
holds for all (€ L*. Consider, U =x1' we get (pl’z.intsxl'(y )=1 and xl'(x) =(. Hence, there exists

U= X{E L¥ such that ﬂ’z.ints M(y)=1>u(x), thatis, x £ /Vwi (y ) and therefore (X ,ﬂyz.ints)

is characterized FTjy -space. O $\Box$

In the following proposition, the @), -closure of the L-subsets in the characterized proximity L-space
(X, D .Ant 5) are equivalent with the L-subsets by the L-proximity O onX.

Proposition 3.4 Let (X ,7) be a topological L-space, @, @, € O(LX o such that @, 2 1LX and O is an L-
proximity on X .Then, 3,0 if and only if @), .clﬁ,uggol,z.clap forall U,pe L*

Proof. Let WU,pE L*  such that Ds .clﬁ,uggol,z.clap , then Proposition 3.2 implies

/Vwi (@,clyp) (@, clgu)". Since @, 2 1, and ,/’/(/f2 (1) is isotone operator, then U <@, ,.Clsu
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and /V(/,i (p) < ./wa2 (¢,,Clsp) are hold for all K,p€E L* . Hence, ‘/’/‘/’15,2 (p) < fi” and therefore
ud p.

Conversely, Let i, € L* such that 5 P . Because of Proposition 3.2 we have 4/, (/,i (p)< it . Since
Q2 1LX and A (/’15,2 () is isotone operator, then ,tl, Sﬂ’z.Cl J,U/ holds for all ,u'e L* and therefore
,O'S‘/I/wf2 )< ./V(/,f2 (@, clsy’) . From Lemma 3.1, we have /Vwi (@, clsu)<p” and then
o 5y @, clsu . Therefore, @, clsu < ‘/wa: (p’) holds. Using Lemma 3.1 we get

o, clsu S‘/V(:~2 (,0/)3,/1/(:~2 (¢,clgp’) . Thus, ,/V(p]i (prclsp< (¢, .cia,u)' and therefore
@l 8 @, .clyp forall u,pe ¥ . O

In the following theorem we give new description for the characterized FR , -spaces and its related F @] ,-R

spaces.
Theorem 3.1 Let (X ,7) be a topological L-space and @, @, € O(LX 5" Then the following statements are

equivalent:

1) (X ,7) is F¢1,2'R2 space.

) (X ,(01’2.i1’1'[) is characterized FR , -space.

(3) For all x € X and UE L with ‘/’/ﬁ2 (x) < f1, there exists P € L such that ‘/’/ﬁ2 (x)< pand
‘/th2 (@, Clsp) < At are hold.

Proof. The equivalent between (1) and (2) is already proved in [4, Theorem 2.1]. Now, let (X ,(01’2.i1’1t) is
characterized FR, -space and let O € L* holds for all x € X and HE L* . Then because of part (5) in
Lemma 3.1, there exists P € L such that ‘/’/4’1,2 (x)< p and /V(m () < [t are hold. By using (2.1) and

(3.1) we have also 0/(\)((012.int77)(z) 20/(\)7]()/) holds for all 7€ L* . Since X ,¢12.int) is
<p(z ’ <u(y ’

characterized ~ FR, -space, then we have ¢1,2.C| (‘/Vq)12 (x ))=‘/’/¢12 (x) for all x € X and then

(Dlz.inti](z)Z/\ Vv @,.nto(z) 20/(\)7]()7) holds for all ?]ELX . Thus,
’ ’ <u(y

0<p(z) @, .clo<y

vV A @,.nto(z) 2 /\ 1(y) holds. Since @,,.cl is hull operator, then for all p € LY we
@ ,-closn0<p(z) " O<u(y) ’

have

V N g,into(z)= AN V  g@,.into(z) 2 0<i(\y)?](y)

@ ,.clo<n 02¢ 5 clp(z) 0<gy,.clp(z) @ ,.clo<y
holds and therefore (2.4) and (2.6)imply \{ 3 @,.into(z)= ‘/Vﬂ . @) =@,,.nt7(z) for all
@aclosp ' :

zeX and 7)€ L*¥ . Then VAN @,.nt7n(z) 2 /\ 1n(y) holds and therefore
0<@ ,.clp(z) O<u(y)

/V%z (@, ClsP)(17) 2 fi(77) is also holds. Thus, ‘/V(P],z (@, clsp) < fi, that is, /V(m (x) < £t implies that,
there exists P € L such that /V(m (x)< P and ‘/Vﬂ,z (@, €lsp) < fi are hold. Hence, (3) is fulfilled.

Finally, let (3) is fulfilled and let x € X and F € ¢1,2C (X )such that x € F'. Then, x € F " and therefore

x < ,‘L’F Because of Proposition 2.1 and Lemma 3.1 we have ‘/V%.z (x)< ,?:’F» holds and then there is

X . . .
P € L such that /V(m (x)<p and ‘/’/ﬂ,z (x) S‘/’/ﬂy2 (@, ClsP) < ¥ are hold. By using part (1) from

110



Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) gy
Vol.3, No.12, 2013 IISE
Lemma 3.1, we get ‘/’/ﬂ ) (F)< p, and hence

N, ()DAA, (F)o)z2pmap(c)= N\ ny)A /N 0(z) holds for all N0 L* .
2 2 0<p(y) 0<p(z)

Consider, p=x,V Yy, forallx #y € F’ we get

S, @A, (FYo)Z A po)a A ok)

0<(xy vy (y) 0<(xvy, Y(z)
holds for all 77,0 € L . Since for choice n=x,vy, and 0=(x,V yl)' we have sup(7 Ao) =0 and
‘/’/ﬂ ) (x )(77) A ‘/V% , (F)(0) >0 are fulfilled, then the infimum ‘/V% , x)A ‘/V% , (F) does not exists.

Hence, (X, D, .int) is characterized FR , -space and therefore (3) and (2) are equivalent. O

In the following proposition we show that the associated characterized proximity L-space (X ,¢L2.int 5) is

characterized FR | -space if the related topological L-space (X ,7) is F ¢1,2 -R, space.

Proposition 3.5 Let (X ,7) be a topological L-space, @,, @, € O(LX 5 and O isan L-proximity on X .

Then the associated characterized proximity L-space (X , ¢L2.int 5) is characterized FR, -space if (X ,7) is

F@ >-R, space.

Proof. Let x € X and (L € L* with ‘/Vq)] ) (x) < ft. Because of Proposition 3.2, we have ,U, gxl and from

(P5), there is pE€E L* such that y'g P and ,0, Sx . - Therefore Proposition 3.4 implies
;= S 1 N4 ) .

@,Clpt’ 0 @, .clgp and hence ‘/V%2 (@,clsP)< (@, Clsut’) and /V%z (x )< p are hold. Hence,
0 P . . X ’ . ’ . .
/V%z (x )< st implies there is P € L™ such that /V%z (x)<p and N (9,,.l;p)< [t are hold. Since
(X ,7) isF@ »-R, space, then from Theorem 3.1 we have (X, D .int(;) is characterized FR , -space. O

In the following theorem we give a new description for the characterized FR ,-spaces and its related F @} 5-R

spaces.
Theorem 3.2 Let (X ,7) be a topological L-space and @, @, € O o Then the following statements are

equivalent:

(D) (X ,7) isF@ ,-R, space.

2 X ,ﬂyz.int) is characterized FR,-space.

(3) For all Fe ¢1,2C (X) and ue LY with ‘/V%Z(F) <ML, there exists PE L* such that
‘/V(Pl.z (F) < pand ‘/V(/,L2 (9, clsp) < f1 are hold.

Proof. The equivalent between (1) and (2) is already proved in [4, Theorem 3.1]. Now, let (X ,(01’2.i1’1t) is
characterized FR,-space and let ‘/V(Pl.z (F) < Mt holds for all '€ (DI’ZC (X)) and HE L* . Then because
of part (5) in Lemma 3.2, there exists 0 € L* such that ,/V(/,] , (F)< ,0 and ‘/Vﬂ , (,0) < ﬂ By using (2.1)

and (3.1) we also have 0/(\)((012.int7])(2) 20/(\)77(y)holds for all 7€ L*. Since (X ,ﬂz.int) is
<p(z ’ <u(y ’

characterized FR, -space, then @), cl (‘/’/q)]’2 (F))Z‘/’/%2 (F) and therefore x/ﬁ} @,.int7(x) =

VvV A ¢L2.int o (x) holds for all ne L* . Since ,/V(/,] , (F)< ,0 , then Proposition 2.1 and Lemma 3.1

G ,closnxeF
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we have F' < P and therefore F' S (p), that is, /\ @, ,.int7(x) > 0/(\)(012.int77(x) holds for all
xeF " 7 <p(x ’

ne L* . Hence,
Q @,.intn(x) = AN\ A g,.intnx)

O<p(x)xeF

=N\ V Ag,.into(x)

0<p(x) @ ,.closp xeF

2 N @,.intn(z) 2 N 7(y).
<p(y)

0<p(z)

Since @, 2.C1 is hull operator, then we have Vv VAN VAN () 2.iIl'( ox) 2 VAN n(y) holds for all
’ G ,closn 0@ ,.clp(x ) xeF 7 O<u(y)

PE L* and therefore from the distributivity of L we get

VAN V. Ag,.intox)=_ AN Ag@,cnix) 204(\”77())).

0<gy ,.clp(x) @ ,.closn xeF 0<¢y ,.clp(x) xeF

Hence, /’/¢’1,2 (@, p)(7) 2 f1(77) holds for all 7€ L* and therefore ‘/’/q)]’2 (@, clp)< ft, that is,
‘/V%2 (F) < f1, implies that there exists P € L* such that ‘/V("n,z (F)< pand ‘/’/0’1,2 (@, Clsp) < i are
hold. Hence, (3) is fulfilled. Finally, let (3) is fulfilled and let F},F, € ¢ ,C (X )such that F; N F,=¢.
Because of Proposition 2.1 and Lemma 3.1 we have ‘/V% , (Fl) < ZFZ holds and then there is O € L such
that ‘/V%2 (F)<p and ‘/’/ﬂ,z (p,clp)< ZFz are  hold.  Hence, ‘/V%2 (F))<p and
‘/V(M (F,) < (ﬂ’z.Cip)’S ,D, are hold and hence ‘/V% , (F)(m) /\/V% . (F,))(o) = pm) /\,O’(O') holds
for all 77,0 € L* . Consider, P=Xr VX, foral x € Fz, \F,. Then for 7 = pand o = p’ we have
sup(7 Ao) =0 and /’/¢’12 (F1 )(7])/\ /Vﬂz (F2 )o) > sup(n A0) =0 are fulfilled , then the infimum

‘/V(a , (Fi) A /V% , (Fz) does not exists. Hence, (X, (01’2.int) is characterized FR-space and therefore (3)

and (2) are equivalent. O
In the following we are going to show an important relation between the associated characterized proximity L-

space and the characterized FR ;-space.

Proposition 3.5 Let (X ,7) be a topological L-space and @,, @, € O(LX - such that @, = 1LX is isotone and

@, is wfip with respect to QOF(X ), where L is a complete chain. If (X ,7) is F¢1,2'R3 space, then the

binary relation O on X which is defined by:

HEp & N, (p,cl )< (gy,clp) (3.6)
for all i,p€ L¥is L-proximity on X and (X ,d) is proximity L-space. On other hand if (X ,0) is
proximity L-space for O is defined by (3.6)}, then the associated characterized proximity L-space
(X, D, .Ant 5) is characterized FR ;-space.

Proof. Let (X ,7)isF ¢L2- R -space and 0 a binary relation on X defined by (3.6). Then, U gp implies
/V%Z (p,clp) < (¢12C1 p) and from Lemma 3.1 part (1) we get /’/¢’1,2 (p,clp) < ((01’2.01[[), and then

,05/.!.. Hence, condition (P1) is fulfilled. For showing condition (P2), let (& V Q) 5] 7] for a fixed L-subsets
U, p,Ne L* . Then, ‘/V%2 (g, cl(uvp))< ((01’2.C17]), . Since L is complete chain, @, 2 1LX is isotone
and @, is wfip with respect to QOF(X ), then ¢172.C1 (,uvp)zqol’z.cl,u V¢172.C1,0 and therefore
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‘/V(a , (q)12 .Cl,tl \Y% ¢1,2 cl p) < (¢12 cl 77), . Because of Lemma 3.1 part (3) we have

‘/V(/,L2 (q)l,z.cl,u) < (q)12 .Ci 7]), and ‘/V(/,L2 (¢)1,2'C1 ,0) < (¢)12 .Ci 7]), are hold and therefore A 577 and
Yy 377. Thus, (U V P) g?] implies 4 577 and O 577 . On the other hand let U 577 and QO 577 are hold for
all U,p,ne L* . Then from Lemma 3.1 we have ‘/Vq)]’2 (p,clu)<(g, <l 7)  and

/Vq)] . (p,clp)<(g, <l n) are hold and therefore

N, (@, Cluy p)=H, (@) Ab, (§,Cp)<(@,cln) . thatis, uSnand p&7y

imply (uvp)gn. Hence, (P2) is fulfilled. Now, let U, p€ L* such that 1=0 or ,026. Since
‘/’/@2(6) is the finest L-filter on X and from the fact ¢1,2.C16=6 ,  we get

/I/m(ﬁ) =‘/V¢]Y2((0L2.016)S(¢L2.Cip), holds for all p € L* . Thus, 65,0 for all p€ L* . Since
U= 0 or P = 0 , then we have /.lgp , that is, (P3) is also fulfilled. Since U 3,0 implies
‘/V%,z (p,clp) < (@,z.cip)' which means by the inequality ((01’2.01/1) S‘/’/ﬂ2 (@, cly) that
cl ) <( cl ). Because of Proposition 2.1 and the fact that cl is hull operator we get
((01,2 M @ ,clp P 1,2 p g
US QLU (@,clp) <P’ . Thus, (P4) is fulfilled. Let 4, p€ L* such that [ p , then
‘/V%Z (¢1’2.C1‘u) < (ﬂ,z-CiP)’- Consider, F =So(¢1’2.01,u) , hence F € ¢1,2C (X) and therefore
/Vﬂz(F) S(%Tcip)' holds. Since (X ,7) is F @5 - R, -space, then from Theorem 3.2 there exists
n'e L* with arbitrary choice such that ‘/’/ﬂ . (F)<1n and /V¢,] . ((01’2.0177,) < (¢12C1 p) are hold.
Therefore, there exists 7] € L* such that ‘/’/ﬂ,z (@, cly) < (¢L2.Ci77), and ‘/’/ﬂ,z (p,cln) < (¢, cl p)
, which means that [/ 5 7] and 77,5 P. Hence, (P5) is also fulfilled. Consequently, O is L-proximity on X .
Conversely, E’Fz € ¢1,2C (X ) such that Fl ﬁF2 = . Then, Fl - FZ, and therefore ZF] S,i’;z ZZFZ
. Hence because of Lemma 3.1 part (1) we have ./wa2 (Xr,) SZ;] . Since Fj,F, € ¢,C(X), then
5 5 s/ 1 ’ S A .
‘/V%2 (¢)12 'CI(SZFZ) = ,/V(/,L2 (ZFZ)S ZF] =(¢)L2 .Cl(;ZF]) and therefore ZE5ZF2 . From (P5), there exists
pPE L* such that ‘/V(:2 (ZFz )= ‘/Vcoi (F,)< p and ,/V(pf2 (p) < Z;l = F, are hold. Because of Lemma
) ./ o r) . .’
3.1 part (1), we have ,/V(IJL2 (F,) < p’. Hence, ‘/V(A,z (F)(u) /\,/Vﬂ2 (F,)(n) = p(u) A p'(1) holds for
all 4,me L* . Consider 7]=ZF2 VX, =pand U :(;{Fz \/xl),=,0/ for all x € Ff\F , then we get
sup(t An) =0 and %:52 (F)(u) /\‘/Vq):s2 (F,)(n) 2 0 are fulfilled. Hence, there exist {,7] € L¥ such
that ./wa2 (F)(u) /\./wa2 (F,)(n7) = sup(i A7) , that is, the infimum ./V(pf2 (Fl)/\./V(/,f2 (F,) does not
exists. Consequently, (X ,¢L2.int 5) is characterized
FR,-space. O

4. Characterized Compact L-spaces

The notion of @), , -compactness of the L-filters and of the topological L-spaces are introduced in [6] by means

of the @, L-convergence in the characterized L-spaces. Moreover, the compactness in the characterized L-
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spaces is also introduced by means of the @, , -compactness of the L-filters and therefore it will be suitable to

study here the relation between the characterized compact L-spaces and some of our classes of
separation axioms in the characterized L-spaces.

Let (X ,7) be a topological L-space, F* C X and @,, @, € O(LX 5 Then x € X is said to be @, -
adherence point for the L-filter M on X ([6]), if the infimum S /\,/I/m(x) exists for all @, L-
neighborhood filters /Vﬂz (x)at x € X . As shown in [6], the point x € X is said to be @, , -adherence

point for the L-filter ./ on X if and only if there exists an L-filter KX e ¢7LX finer than A and
‘%W x , that is, X <M and K < ‘/V(/,L2 (x) are hold for some K € yZX . The ordinary
subset F is said to be @, , -closed with respect to (Dl’z.int if M < ‘/V(/,L2 (x) implies x € F for some
M e ¢7LX . The subset F' is said to be @, , -compact subset ([6]), if every L-filter on F’ has a finer @, , L-
converging L-filter, that is, every L-filter on F' has a @, , -adherence point in F . Moreover, the topological L-
space (X ,7) is said to be ), -compact if X is ¢, -compact. Generally, the characterized L-space
X, ﬂyz.int) is said to be compact L-space if the related topological L-space (X ,7) is @), , -compact.

In the following proposition, we show that in the characterized FT2 -space (X, ﬂ’z.int) , every @ , -compact

subset is @, , -closed with respect to the @, , -interior operator @ , .Ant.

Proposition 4.1 Let a topological L-space (X ,7) be fixed and @, @, € O(LX 5" Then every @, , -compact
subset of a characterized FT2 -space is @, , -closed.

Proof. Let (X, (01’2.i1’1'[) is characterized FT2 -space and let F'is a @, , -compact subset of X . Then, for all

Me FF there exists A € ZF such that X < M and KS%IZ(X) are hold for some x € F.

Since K € FF<FX and (X ,(01’2.i1’1'[) is characterized FT2 -space, then Then A < /%Z(x) and
X < ‘/’/%2 (y ) imply that x =y . Therefore, y € F for some KX e ¢7LF . Hence, F'is @, -closed. O
In the following proposition we give new property for the characterized FT2 -spaces by using the @), L-

neighborhood filters for the L-subsets.

Proposition 4.2 Let (X ,7) be a topological L-space and @, @, € O o Then in the characterized FT2 -
space (X ,q’z.int) , every disjoint @), , -compact subsets F, and F, of X have the @, , L-neighborhood
filters ‘/’/ﬂy2 (Fl) and ‘/’/0’1,2 (F2) such that the infimum ‘/’/ﬂ,z (Fl) A ‘/V%2 (Fz) does not exists.

Proof. Let F| and F, are two @, , -compact subsets of the characterized FT2 -space (X ,ﬂ’z.int) such that
F,NF,=¢ . Then, for all M € ZF, there exists K, € FF, such that K, <M and
.7(; < ,/I/m(xi) for some X, € F,, where i € {1,2}.Since £F, <ZX forall i € {1,2}, then we can
say that K, < /V,M (x,)< /V%Z (F,) and therefore there is KA =(K, AK,)€ FX such that
K < ‘/’/ﬂ,z (xi ) for some X; € Fl . Since (X ,q)l’z.int) is FT2 -space, then X, =X, which contradicts
F, NF, =@. Hence, for every £ € X we get L % /Vq)]z (F) or L £ /V%z (F,) which means that

the infimum ,/V(/,L2 (F1 )A ./V(/,L2 (Fz) does not exists. Hence, E and F2 can be separated by two
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disjoint @, , L-neighborhood filters. O

The notion of compactness for the characterized L-spaces fulfills the following property which will be used in
the prove of the important result given in Proposition 4.3.

Lemma 4.1 Let (X ,7) be a topological L-space and ¢, @, € O o Then every @), , -closed subset of a
characterized compact L-space (X ,ﬂ’z.int) is @, , -compact.

Proof. Let F' is @, -closed subset of a characterized compact L-space X ,ﬂyz.int) and let M € ¢7LF .
Then, S < ,/V%2 (x ) implies that x € F.. Since “'/ZF < “'IZX , then M € “'IZX and hence there exists
K e ZX such that A <M and .7(3‘/’/%2 (x) are hold. Since M € FF and K <M , then
KX e “'/ZF Thus, for all M € ‘?ZF we get K < M such that X < ,/V%2 (X). Therefore, x € F is

@, , -adherence point of M thatis, Fis @, , -compact. O

The following proposition give an important relation between the characterized compact FT2 -spaces and the
characterized FT 4 ~spaces.

Proposition 4.3  Let (X ,7) be a topological L-space and @, @, € O(LX o Then every characterized

compact FT2 -space (X ,ﬂyz.int) is characterized FT 4 ~Space.

Proof. Follows directly from Lemma 4.1 and Proposition 4.2. O

Lemma 4.2 Let (X ,7) and (X ,0) are two topological L-spaces such that 7 is finer than O . If
@, ¢2€O(Lx o and Y, WZEO(LX o and (X,Q//m.il’lt) is characterized compact L-space, then

(X, D, .int) is also characterized compact L-space.
Proof. Let ,/V(/,'2 (x) and /I/,/,] , (x) are the @, , L-neighborhood and ¥/, , L-neighborhood at x € X with
respect to ﬂ’z.int and l//l’z.int respectively. Since T is finer than O, then /’/¢,]2 x)< ‘/Vl//lz (x) for all

x € X . Because of (X ,l//l’z.int) is characterized compact L-space, then for all J € ..(/ZX , there exists
K e ZX such that X < Mand X < ,/V%Z(x) are hold for all x € X , therefore K < ‘/Vm(x)

holds for all X € X . Thus, (X ,ﬂ’z.int) is characterized compact L-space. O

Proposition 4.4 [2] If (X ,q’z.int) is characterized FT2 -space and ¢1’2.il’1t is finer than l//l’z.int, then
X ,%72.int) is also characterized FT2 -space.

Proposition 4.5 Let (X ,7) and (X ,0) are two topological L-spaces such that 7 is finer than O,
IS O(LX . and ¥, ¥, € O(LX o - I (X ,y,,.Int) is characterized compact L-space and
(X ,(Dl’z.il’lt) is characterized FT2 -space, then (Dl’z.int and Q/fl’z.int are isomorphic.

Proof. Since T is finer than O, then l/fl’z.int < ﬂ’z.il’lt . Hence, because of Proposition 4.4, X, Q//m.il’lt) is
characterized FT2 -space. From Lemma 4.2, we have (X s (Dl’z.il’lt) is characterized compact L-space. Hence,
we can find the identity mapping idX (X ,(Dl’z.int) —> (X ,l//l’z.int) which is bijective @, , L-
continuous and its inverse is ¥/, , L-continuous, that is, @,/ , L-isomorphism. Consequently, ﬂﬁz.int

and l/fl’z.il’lt are isomorphic. O
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5. Characterized Uniform L-spaces
In this section, we go to investigate the notion of characterized uniform L-space by the notion of uniform L-
spaces introduced in [17]. Moreover, the relation between the separated uniform L-spaces, the associated

characterized uniform FT -spaces and the F (01’2 - TO spaces which introduced in [2] are investigated.

By an L-relation on a set X we mean a mapping R : X XX — L, that is, an L-subset of X XX . For each

L-relation R on X , the inverse R ' of R is the L-relation on X defined by R ™'(x,y)=R(y,x) for all

x,y € X . Let ©/ be anL-fileron X XX . Theinverse 7/ ~' of ¢/ isanL-filteron X XX defined by:
U'(R)=UR™)

forall R € LX™* .

The composition R1 0R2 of two L-relations R , and R2 onaset X isthe L-relation on X defined by:

(R oR,)x.y) = V (R, (x.2) AR (2.Y))

for all x,y € X . For each pair (x,y )of elements X and y of X , the mapping (X, ): L > L
defined by:

(x,y)R)=R(x,y)
forall R € L™ is a homogeneous L-fileron X XX .
Let 7/ and )V are L-filers on X XX such that (x,y) <%/ and (y,z)< YV hold for some
X,y ,z € X . Then the composition V ol of V and U/ is an L-filter ([17]) on X XX defined by:
VolhR)= NV (UR)ANV(R,)
forall R € L¥™ .

By the uniform L-structure 1/ on a set X , we mean an L-filter ([17]) on X XX such that the following
axioms are fulfilled:

WUl (x,x)<U forall xe X .
) U =U".

w3y U-U<LU.
The pair (X ,7/) is called uniform L-space.

A uniform L-structure 7/ on a set X is called separated if for all x y € X with X #Y there is

R e L™ such that ZZ(R)=1and R (x,y)=0. In this case the uniform L-space (X ,7/) is called
separated uniform L-space.

To each uniform L-structure 7/ on a set X is associated a stratified L-topology 7;, . Consider
o, p,e0 F 1) then the set of all ) , -open L-subsets of X related to 7, forms a characterized stratified
L-topology on X generated by the @, , -interior operator with respect to 7;, denoted by ﬂ’z.inty and
X ,(Dl’z.inty) is a characterized stratified L-space. The characterized stratified L-space X ,(Dl’z.inty) will
be called associated characterized uniform L-space which is stratified. The related ¢, , -interior operator
ﬂ’z.inty is given by:

@-int, (1) = TG (W) 5.
forall x € X and e L~ .
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Proposition 5.1 Let X be non-empty set, 1/ is a uniform L-structure on X and o, € O(LX ) Then the

Ty

uniform L-space (X ,7/) is separated if and only if the associated characterized uniform L-space

(X ,¢,.int,,) is FT,, -space.

L% such that

Proof. Let (X ,7/) is separated and let x ,y € X suchthat X # Y . Then, there exists R €
“(R)=1and R(x,y)=0.Consider U =R[y1] for which

ﬂ(X)=R[y1](X)=)XR(Z,X)/\y1(Z)=0
and

(@-inty, ) = U= NV UR) A=
for all 7€ L . Hence, there exists € L* and @€ L such that u(x) < a < (@,,.int,, ()(y), that
is, (X, @,,.int,,) is FT, -space.
Conversely, let (X ,¢,.int,,) is FT, -space and let X # y in X . Then, there exists € L* and
@€ Ly such that pu(x) < a < (@,.inty, ()(y). This means that R(\m/gﬂ UR)AT(Y) > (X ) holds

forall 7€ L* . Hence, there is R € L** for which

R(x,y)=(@,.int, u)(y) if x =y and R(x,y)=pu(x)if x#y
such that R (x ,y) =0 and Z/(R) =1. Thus, (X ,7/) is separated. O
Corollary 5.1 Let X be non-empty set, 1/ is a uniform L-structure on X and (/S 0] Ko Then the
Ty

uniform L-space (X ,7/) is separated if and only if the associated stratified topological L-space (X , TZ/) is F
¢1,2 - TO space.

Proof. Immediate from Proposition 5.1 and Theorem 2.1 in [2]. O

In Table(1), we give some special choices for the operations ¢, and ¢, to obtained some special classes of the

®, , -open L-sets, (), L-neighborhood filters, characterized proximity L-spaces, characterized compact L-

spaces and the characterized uniform L-spaces.
6. Conclusion

In this paper, we introduced and studied three new types of spaces which are named characterized proximity L-
spaces, characterized compact L-spaces and characterized uniform L-spaces. The relation between such spaces

with the characterized FT -spaces F ) 5 - T spaces, characterized FR, -spaces and F (), 5 -spaces are
s ) s )
investigated for s € {0,2,4}and k e {2,3}. Some new properties for the characterized FT -spaces, F@, ;-
Ky >

T spaces, characterized FR, -spaces and F @, , -spaces will be added by applied these new spaces. Many new
S s

special classes from the ¢, -open L-sets, ¢, L-neighborhood filters, characterized proximity L-spaces,

characterized compact L-spaces and the characterized uniform L-spaces are listed in Table (1).
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Operations @, , -pen @, , L-nbd Charac.ter.ized Characterized Charaf:terized
’ o Proximity Comact Uniform
L-sets filters L-spaces L-spaces L-spaces
1 @ =int T Fuzzy nbd. Proximity Compact Uniform
! [13,18] filter [16] L-space [11] L-space [11] L-space [11]
¢2 = le
2 @ =int T o-fuzzy 6 -proximity #-compact 6 -uniform
1 6 .
nbd.filter L-space L-space L-space
@, =cl [25]
3 @ =int T s -fuzzy S -proximity & -compact & -uniform
1 o .
. nbd. filter L-space L-space L-space
@, =intocl [19]
2
4 @ =cloint SOF (X ) Semi fuzzy Semi -proximity Semi-compact Semi -uniform
! [10] nbd. filter L-space L-space L-space
¢2 = le
5 @ = cloint Toys (8.5) -fuzzy (8.5 ) -proximity (8.5 ) -compact (6.5) -uniform
@5) nbd. filter L-space L-space L-space
@, =cl
6 @ = cloint Toss (6.8) -fuzzy (8.5) -proximity (6.5 ) -compact (6.5) -uniform
) ©5) nbd. filter L-space L-space L-space
@, =intocl
7 @ =intocl POF (X)) Pre fuzzy Pre proximity Pre compact Pre uniform
1 .
[14] nbd. filter L-space L-space L-space
¢2 = le
8 @ = cloint Ty (s.0) -fuzzy (8 .6) -proximity (8.6) -compact (5.6) -uniform
-0 nbd. filter L-space L-space L-space
@, =scl
9 @ = cloint T s (s.6) -fuzzy (8.6) -proximity (8.6) -compact (8.6) -uniform
-9 nbd. filter L-space L-space L-space
@, =S§.inte S.cl
10 @ =clointocl BOF (X ) B -fuzzy [ -proximity [ -compact [ -uniform
[9] nbd. filter L-space L-space L-space
¢2 = le
11 @, =intocloint AOF (X ) A -fuzzy A -proximity A -compact A -uniform
[14] nbd. filter L-space L-space L-space
¢2 = le
12 @ =scloint fOF (X ) | Feebly-fuzzy | Feebly proximity | Feebly compact | Feebly uniform
! nbd. filter L-space L-space L-space
¢2 = le
Table (1) : Some special classes of @, , -open L-sets, @) , L-neighborhood filters, characterized
proximity L-spaces, characterized compact L-spaces, characterized uniform L-spaces.
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