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Abstract 

The effect of thermal diffusion and diffusion thermo on mixed convection MHD flow past a semi-infinite 

vertical porous plate embedded in a porous medium with viscous and Ohmic dissipation is investigated. The 

governing equations of the problem are transformed to ordinary differential equations using similarity variables 

and then solved numerically by the fourth-order Runge-Kutta-Fehlberg method with shooting technique. 

Numerical results showing the effects of various thermophysical parameters on the local skin-friction coefficient, 

the local Nusselt number and the local Sherwood numbers are presented in tables whilst graphical illustrations 

for the velocity, temperature and concentration profiles are presented and discussed quantitatively. 
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1. Introduction 

The combined effect of heat and mass transfer by free convection in porous media has attracted considerable 

attention in recent times due to its numerous engineering and geophysical applications. It is commonly observed 

in aerodynamic extrusion of plastic sheets, continuous filament extrusion from a dye, cooling of plates in water 

baths, and movement of fluid along threads traveling between feed and wind-up rolls. The pioneering works of 

Sakiadis (1961) attracted the interest of many researchers in the area of fluid dynamics. Crane (1970) 

investigated the two dimensional flow driven by stretching elastic flat sheets in their own plane with a velocity 

varying linearly from a fixed point.  

A comprehensive review can be found in Nield and Bejan (1999), Ingham and Pop (1998, 2002), and Ibrahim 

and Makinde (2010a, 2010b, 2011a, 2011b). These researchers restricted their analysis to axisymmetric flow 

induced by stretching surfaces. Seini and Makinde (2012, 2013) investigated the effects of MHD, radiation and 

chemical reaction due to exponential stretching surface and also near stagnation -points on a vertical surface with 

slip whilst Seini (2013) recently investigated the flow over unsteady stretching surface with chemical reaction 

and non-uniform heat source. Many of these research works had neglected the effects of Dufour and Soret on the 

heat and mass transfer under the assumption that they were of smaller magnitude than that prescribed by the 

Fourier’s and Fick’s laws. Recent advances in heat transfer shows that Dufour effect is important in transport 

problems while Soret effect is influential in mass transfer phenomenon. The Soret effect, for instance, has been 

utilized for isotope separation and in a mixture between gases with very light molecular weight (H2, He) and of 

medium molecular weight (H2, air). According to Eckert and Drake (1972), dufour effect is of considerable 

magnitude and should not be neglected. There has been many investigations in hydrodynamics over the years 

focusing on this problem. Kafoussias and Williams (1995), Anghel et al. (2000), Postelnicu (2004), Alam et al. 

(2006) and the references there in, are readily cited for their contributions to the subject.  

Alam et al. (2006) for instance, studied the Dufour and Soret effects on steady free convection and mass transfer 

past a semi-infinite vertical porous plate in a porous medium while Bég et al. (2009) numerically analyzed the 

Soret and Dufour effects on free convection MHD heat and mass transfer from a stretching surface to a saturated 

porous medium. Similarly, Tsai and Huang (2009) investigated the heat and mass transfer for Soret and Dufour 

effects on Hiemenz flow through a porous medium on stretching surfaces. Afify (2009) presented similarity 

solutions for MHD thermal-diffusion and diffusion-thermo on free convective heat and mass transfer over a 

stretching surface in relation to suction or injection. The hydromagnetic mixed convection flow with Soret and 

Dufour effects past a vertical plate embedded in a porous medium was investigated by Makinde (2011). 

Olanrewaju and Makinde (2011) then analysed the effect of thermal-diffusion and diffusion-thermo on 

chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical plate with 

suction/injection.   

In this paper, the hydromagnetic mixed convection heat and mass transfer past a semi-infinite vertical porous 

plate with Soret and Dufour effects is investigated. The flow is embedded in a fluid-saturated porous medium in 

the presence of Viscous and Ohmic heating since these parameters have significant contribution to convective 
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transport processes. The nonlinearity of the basic equations modelling the flow and the additional mathematical 

difficulties associated with it requires the use of numerical methods. In the solution process, the systems of 

partial differential equations describing the flow are transformed to ordinary differential equations using 

similarity variables. The transformed dimensionless governing equations are solved numerically using the 

fourth-order Runge-Kutta-Fehlberg method with shooting technique. In section 2, the problem is formulated and 

similarity analysis presented. Section 3 presents the results and discussions while Section 4 concludes the paper.  

 

2. Problem Formulation  

Consider a two dimensional flow of an electrically conducting fluid past a vertical moving porous plate in a 

porous medium. A uniform transverse magnetic field (B0) is applied along the y-axis. The magnetic Reynolds 

number is assumed to be small such that the induced magnetic field is neglected. The x-axis is taken in the 

direction of the main flow along the plate and the y-axis is normal to the plate. The velocity components in the x 

and y – axes are respectively u and v. The physical configuration of the problem is depicted in Fig 1. 

Under the usual boundary layer assumptions together with Boussinesq’s approximations, the governing 

equations describing the problem are: 
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where u and v are the velocity components in the x and y directions respectively, υ is the kinematic viscosity, g is 

the acceleration due to gravity, ρ is the density, 0B  is the magnetic parameter, Tβ  is the coefficient of volume 

expansion, Cβ  is the volumetric coefficient of expansion with concentration.  T, wT and ∞T are the temperature 

of the fluid inside the boundary layer, the plate temperature and the fluid temperature in the free stream, 

respectively. Similarly, C, wC and ∞C  are the corresponding concentrations. Also, K′  is the permeability of a 

porous medium, α  is the thermal diffusivity, mD
 
is the coefficient of mass diffusivity, pc is the specific heat 

at constant pressure, Tm is the mean fluid temperature, Tk  is the thermal diffusion ratio and sc
 
is the 

concentration susceptibility. The boundary conditions for the problem are given as: 
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where U0 is the plate uniform velocity and V(x) is the suction/injection velocity at the plate surface. The variable 

plate surface suction/injection velocity is prescribed as  
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where fw is a constant with fw > 0 representing the transpiration (suction) at the plate surface, fw < 0 corresponds to 

injection and fw = 0 for an impermeable surface. The stream function ψ  satisfies the continuity equation (1) 
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We introduce the following similarity and dimensionless variables into equations (1) - (5); 
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The quantities of practical importance in this study with respect to engineering and industrial applications are the 

local skin friction coefficient, local Nusselt number and the local Sherwood number which are defined as follows: 
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where τw is the plate surface shear stress, qw is the surface heat flux and qm is the surface mass flux, which are 

given by; 
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Substituting equation (14) into equation (13), we obtain 

),0(Re  ),0(Re   ),0(Re 2/12/12/1 φθ ′−=′−=′′= −− ShNufC xxfx   (15) 

where Rex = U0x/υ is the local Reynolds number. The set of equations (9) - (11) subject to the boundary 

conditions (12) were solved numerically by the Runge–Kutta–Fehlberg method with the shooting technique. 

Both the velocity, temperature and concentration profiles were obtained and used to compute the local skin-

friction coefficient, the local Nusselt number and the local Sherwood number from equation (15). 
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3. Results and Discussions 

In solving the problem, the value of Prandtl number (Pr) is taken equal to 0.71, which corresponds physically to 

air. The value of Schmidt number (Sc) is chosen as 0.22, which represents hydrogen at approximately 

CTm

025=  at a pressure of 1 atm, whilst the value of Eckert number (Ec) is taken to be 0.1. Furthermore, the 

values of Dufour number (Du) and Soret number (Sr) are chosen in such a way that their product is a constant 

provided that the mean temperature Tm is kept constant as well. Finally, the values of thermal Grashof number 

( TG ), concentration Grashof number ( CG ), suction/injection parameter ( wf ) and permeability parameter K are 

chosen arbitrarily.  

Table 1 presents a comparison of computational results from our study with similar results obtain by Alam et al. 

(2006) for the local skin friction coefficient, local Nusselt number and the local Sherwood number. The table 

shows a perfect agreement between our results and that reported earlier, thus validating the numerical procedure.  

Table 2 presents numerical results for various controlling parameters on the local skin friction co-efficient, the 

local Nusselt number and the local Sherwood number. It is clear that increasing the magnetic field parameter has 

the effect of increasing the local skin friction co-efficient due to the presence of Lorenz force induced by the 

magnetic field. The rate of heat transfer, which is proportional to the local Nusselt number is observed to 

decrease whilst the rate of mass transfer increase with increasing magnetic field parameter. A similar observation 

is made for the permeability parameter (K).  

The suction parameter is observed to increase the local skin friction co-efficient and the local Nusselt number but 

decrease the local Sherwood number. It is further observed that both the thermal and solutal Grashof numbers 

have similar effects on the local skin friction coefficient as well as the local Nusselt and Sherwood numbers. 

Both parameters decrease the local skin friction co-efficient but increase the local Nusselt numbers and the local 

Sherwood numbers. Finally, increasing the Dufour number (Du) which is inversely related to the Soret number 

(Sr) has the effect of increasing both the local skin friction coefficient and the local Sherwood numbers but 

decreases the local Nusselt numbers.  

Graphical results depicting the effects of various thermophysical parameters involved in the problem are 

presented in fig (2) - (22). 

A) Velocity Profiles   

The effect of varying the magnetic parameter on the velocity profile is illustrated in Fig 2. It is clear that the 

presence of the magnetic field results in a reduction of the velocity profiles in the boundary layer region as a 

consequence of the induced force, the Lorenz force, caused by the magnetic field. The Prandtl number is 

observed to have the same effect as the magnetic parameter, (see Fig 3). In Figs 4 and 5, the effect of both 

thermal and concentration Grashof numbers are illustrated. It is observed that increasing either of these 

parameters increases the velocity profiles particularly near the surface where a high overshoot is recorded. 

Fig 6 depicts the effect of decreasing the Dufour number (Du) whilst increasing the Soret number (Sr) on the 

velocity profile. The velocity profiles are observed to increase with decreasing Dufour number but increasing 

Soret number, and vice versa. Conversely, suction and permeability parameters have the effect of decreasing the 

velocity profiles for obvious reasons as shown in Fig 7 and 8.  

B) Temperature Profiles  

Figs 9 – 15 illustrate the temperature profiles for various parameter variations. It is clear from these figures that 

apart from the magnetic parameter (Fig 9) and the permeability parameter (Fig 15), which increase the thermal 

boundary layer, all other parameters including the Prandtl number (Fig 10), the thermal Grashof number (Fig 11), 

the concentration Grashof number (Fig 12), the Dufour and Soret numbers (Fig 13) and suction parameter (Fig 

14) reduces the thermal boundary layer. 

C. Concentration Profiles 

The effect of parameter variation on the concentration profiles are depicted in Figs 16 to 22. It is observed that 

the magnetic parameter (Fig 16), the Prandtl number (Fig 17), Soret and Dufour numbers (Fig 20) as well as 

permeability parameter (Fig 22) increases the concentration boundary layer. The thermal and concentration 

Grashof numbers (Figs 18 and 19) as well as the suction parameters (Fig 21) are observed to decrease the 

concentration boundary layer. 

 

4. Conclusion 

The Dufour and Soret effect on a hydromagnetic flow with heat and mass transfer past a continuously moving 

semi-infinite vertical porous plate in a porous medium permeated by a transverse magnetic field have been 

investigated. The study numerically considered the hydrogen-air mixture as a non-chemical reacting fluid pair. 

The results show that the velocity, temperature and the concentration fields are appreciably influenced by the 

Dufour and Soret numbers. It is noted that both permeability of the medium and the magnetic field together with 
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fluid suction influence the flow structure. We conclude that for fluids with medium molecular weight (H2, air), 

the Dufour and Soret effects should not be neglected.  
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Table 1: Comparison of Skin-friction coefficient, Nusselt number and Sherwood number for GT = 10, Gc = 4, fw 

= 0.5, K = 0.3, Pr = 0.71, Mx = 0, Ec = 0 and Sc = 0.22 

 )0(f ′′  )0(θ ′−  )0(φ ′−  

Alam et al. 

(2006) 

Present  

Study 

Alam et al. 

(2006) 

Present  

Study 

Alam et al. 

(2006) 

Present  

Study Du Sr 

0.030 2 6.2285 6.22933 1.1565 1.15640 0.1531 0.153205 

0.037 1.6 6.1491 6.15001 1.1501 1.15001 0.2283 0.228403 

0.05 1.2 6.0720 6.07293 1.1428 1.14265 0.3033 0.303335 

0.075 0.8 6.0006 6.00160 1.1333 1.13316 0.3781 0.378167 

0.150 0.4 5.9553 5.95636 1.1157 1.11555 0.4540 0.454027 

 

Table 2: Effects of parameter variation on the local skin-friction coefficient, local Nusselt number and local 

Sherwood number when Pr = 0.71, Ec = 0.1 and Sc = 0.22 

xM  K  
wf

 
GT Gc Du Sr )0(f ′′−  )0(θ ′−  )0(φ ′−  

0 0.1 0.1 0.1 0.1 0.03 2 0.5225365 0.5666191 0.0653688 

1 0.1 0.1 0.1 0.1 0.03 2 1.1033257 0.4339862 0.0681926 

2 0.1 0.1 0.1 0.1 0.03 2 1.4933974 0.3511663 0.0794370 

1 0.5 0.1 0.1 0.1 0.03 2 1.2731642 0.4071620 0.0678918 

1 1.0 0.1 0.1 0.1 0.03 2 1.4590866 0.3786500 0.0693253 

1 0.1 0.5 0.1 0.1 0.03 2 1.3296735 0.6304819 0.0283776 

1 0.1 1.0 0.1 0.1 0.03 2 1.6553486 0.9036972 0.0239712 

1 0.1 0.1 1 0.1 0.03 2 0.5878207 0.5109070 0.0773490 

1 0.1 0.1 2 0.1 0.03 2 0.0666503 0.5565948 0.0905220 

1 0.1 0.1 0.1 1 0.03 2 0.3605773 0.5641660 0.1181872 

1 0.1 0.1 0.1 2 0.03 2 -0.3663646 0.6102922 0.1606354 

1 0.1 0.1 0.1 0.1 0.05 1.2 1.10772199 0.4296848 0.1277673 

1 0.1 0.1 0.1 0.1 0.15 0.4 1.11163430 0.4184908 0.1869470 

 

 
Fig. 1: Physical Configuration of the problem 
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          Fig. 2: Velocity Profiles for varying values of Mx 

          
Fig. 3: Velocity Profiles for varying values of Prandtl number 

Increasing magnetic parameter (Mx = 

0, 1, 2, 3) 

Pr = 0.71, Sc = 0.22, Ec = 0.1, GT = 1, Gc =1, 

fw = 0.5, K = 0.3 

Increasing Prandtl number (Pr = 

0.71, 2.71, 5.71, 7.1) 

Pr = 0.71, Sc = 0.22, Ec = 0.1, GT = 0.10, Gc 

=0.10, fw = 0.5, K = 0.3 
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Fig. 4: Velocity Profiles for varying values of Thermal Grashof number 

 
Fig. 5: Velocity Profiles for varying values of concentration Grashof number 

  

Increasing thermal Grashof  

number (Gr = 1, 3, 5, 10) 

Increasing values of concentration Grashof 

number (Gc = 1, 2, 4, 6) 

Mx = 1, Pr = 0.71, Sc = 0.22, Ec = 0.1, GT = 

0.10, fw = 0.5, K = 0.3 

Mx = 1, Pr = 0.71, Sc = 0.22, Ec = 0.1, GT = 

0.10, fw = 0.5, K = 0.3 
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Fig. 6: Velocity Profiles for varying values of Dufour and Soret numbers  

 
Fig. 7: Velocity Profiles for varying values of suction parameter 

Increasing suction parameter (fw = 

0.5, 1.5, 2, 2.5) 

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc 

= 0.1, Du = 0.030, Sr = 2, K=0.3 
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Fig. 8: Velocity Profiles for varying values of permeability parameter 

 
Fig. 9: Temperature Profile for varying Magnetic parameter 

 

Increasing permeability parameter (K = 

0.5, 1.5, 2, 2.5) 

 Mx = 1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc = 

0.1, Du = 0.030, Sr = 2, fw = 0.5 

 Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 1, Gc = 1, 

Du = 0.03, Sr = 2, fw = 0.5, K=0.3 

Increasing magnetic parameter (Mx = 

0, 1, 2, 3) 
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Fig. 10: Temperature profiles for varying Prandtl numbers 

 
Fig. 11: Temperature Profiles for varying thermal Grashof number 

Increasing Prandtl number (Pr = 

0.71, 2.71, 5, 7.1) 

 Mx = 0.1, Sc = 0.22, Ec = 0.1, Gr = 10, Gc = 0.1, Du 

= 0.03, Sr = 2, fw = 0.5, K=0.3 

Increasing thermal Grashof number (Gr = 

0.1, 3, 5, 10) 

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gc = 0.1, 

Du = 0.03, Sr = 2, fw = 0.5, K=0.3 
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Fig. 12: Temperature Profiles for varying concentration Grashof  number 

 
Fig. 13: Temperature Profiles for varying values of Dufour and Soret numbers 

Increasing concentration Grashof 

number (Gc = 1, 3, 5, 10) 

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Du 

= 0.03, Sr = 2, fw = 0.5, K=0.3 

Increasing Soret number, (Sr = 2, 4, 8, 10)  

and Decreasing Dufour number  

(Du = 0.03, 0.015, 0.0075, 0.006),  

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc 

= 0.1, fw = 0.5, K=0.3 
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Fig. 14: Temperature Profiles for varying values of suction parameter 

 
Fig. 15: Temperature Profiles for varying values of the permeability parameter 

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc 

= 0.1, Du = 0.030, Sr = 2, K=0.3 

Increasing suction parameter (fw =0.5, 

1.5, 2, 2.5) 

Increasing permeability parameter (K = 0.3, 

0.5, 1, 1.5) 
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Fig. 16: Concentration Profiles for varying magnetic parameter 

 
Fig. 17: Concentration Profiles for varying values of the Prandtl number 

Pr = 0.71, Sc = 0.22, Ec = 0.1,Gr = 0.1, Gc =0.1, 

Du = 0.03, Sr = 2, fw = 0.5 

Increasing magnetic parameter (Mx = 

0, 1, 2, 3) 

Increasing Prandtl number (Pr = 

0.71, 2.71, 5, 7.1) 

Mx= 0.1, Sc = 0.22, Ec = 0.1,Gr = 10, Gc =0.1, 

Du = 0.03, Sr = 2, fw = 0.5 
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Fig. 18: Concentration Profiles for varying values of thermal Grashof number 

 
       Fig. 19: Concentration Profiles for varying values of concentration Grashof number 

Increasing thermal Grashof 

number (Gr = 0.1, 3, 5, 10) 

Mx= 0.1, Sc = 0.22, Ec = 0.1, Gc =0.1, Du = 

0.03, Sr = 2, fw = 0.5, K = 0.3 

Increasing concentration Grashof 

number (Gr = 0.1, 3, 5, 10) 

Mx= 0.1, Sc = 0.22, Ec = 0.1, Gr =0.1, Du = 

0.03, Sr = 2, fw = 0.5, K = 0.3 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.12, 2013 

 

62 

               
Fig. 20: Concentration Profiles for varying values of Dufour and Soret numbers 

 
 Fig. 21: Concentration Profiles for varying values of suction parameter 

Increasing Soret number,  

(Sr = 2, 4, 8, 10)  

 Decreasing Dufour number  

(Du = 0.03, 0.015, 0.0075, 0.006),  

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc 

= 0.1, fw = 0.5, K=0.3 

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc 

= 0.1, Du = 0.030, Sr = 2, K=0.3 

Increasing suction parameter (fw = 

0.5, 1.5, 2, 2.5) 
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    Fig. 22: Concentration Profiles for varying values of the Permeability parameter 

Nomenclature: 

x, y   Cartesian Coordinates variables 

u, v   Velocity components in the x- and y- coordinate axes 

g        Acceleration due to gravity,  

0B       Magnetic parameter 

Tβ        Volumetric coefficient of expansion with temperature,  

Cβ        Volumetric coefficient of expansion with concentration, 

T         Fluid temperature, 

wT        Plate surface temperature,   

∞T
       

Temperature of fluid medium far away from the plate surface,  

C      Fluid concentration,   

wC        Plate surface concentration,  

∞C        Concentration of the fluid medium far away from the plate surface,   

K ′        Permeability of the porous medium, 

mD
       

Coefficient of mass diffusivity,  

pc
        

Specific heat capacity at constant pressure,  

Tm        Mean fluid temperature,  

Tk         Thermal diffusion ratio,   

sc
        

Concentration susceptibility,  

U        Plate uniform velocity,  

V(x)    Suction/injection velocity at the plate, 

TG       Thermal Grashof number, 

Gc       Concentration Grashof number, 

K        Permeability parameter, 

Pr        Prandtl number, 

Sc        Schmidt number, 

Increasing permeability parameter (K = 0.5, 

1.5, 2, 2.5) 

 Mx = 0.1, Pr = 0.71, Sc = 0.22, Ec = 0.1, Gr = 0.1, Gc 

= 0.1, Du = 0.030, Sr = 2, fw = 0.5 
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Sr        Soret number, 

  Du         Dufour number,  

  cE         Eckert Number, 

  wq         Surface heat flux, 

 mq          Surface mass flux,  

 Mx       Magnetic parameter 

 Rex          Local Reynolds number, 

 fC          Local skin friction coefficient,  

 xNu         Local Nusselt number,  

 xSh          Local Sherwood number,  

 

Greek Symbols 

η   Dimensionless coordinate variable  

ρ          Fluid density,  

υ   Kinematic viscosity,     

α          Thermal diffusivity,  

wτ      Plate surface shear stress,  

ψ          Dimensionless stream function 

φ       Dimensionless concentration, 

θ          Dimensionless temperature, 

 

Subscribes 

w         Wall conditions 

∞         Conditions at infinity 
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