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Abstract 

  In this article, we presented an improved formulations based on Bernstein polynomial in calculate the 

weighting coefficients of DQM and alternating direction implicit-differential quadrature method (ADI-

DQM) that is presented by (Al-Saif and Al-Kanani (2012-2013)), for solving convection-diffusion 

equations with appropriate initial and boundary conditions. Using the exact same proof for stability 

analysis as in (Al-Saif and Al-Kanani 2012-2013), the new scheme has reasonable stability. The 

improved ADI-DQM is then tested by numerical examples. Results show that the convergence of the 

new scheme is faster and the solutions are much more accurate than those obtained in literature. 

Keywords: Differential quadrature method, Convection-diffusion, Bernstein polynomial, ADI, 

Accuracy. 

1- Introduction 

  The convection-diffusion equations are widely used in various fields such as petroleum reservoir 

simulation, subsurface contaminant remediation, heat conduction, shock waves, acoustic waves, gas 

dynamics, elasticity [2,13,16]. The studies conducted for solving the convection-diffusion equations in 

the last half century are still in an active area of research to develop some better numerical methods to 

approximate its solution. Extensive researches have been carried out to handle different types of 

convection-diffusion equation by different numerical methods [2,4,9,11,12,19,28]. The best oldest 

known approximation techniques are the finite difference (FD) and finite element (FE) methods. A 

relatively new numerical technique is the differential quadrature method (DQM). Despite being a 

domain discretization method, the differential quadrature method gives accurate results using less 

discretization points than all the above mentioned methods (FD&FE). DQM depends on the idea of 

integral quadrature and approximate a spatial partial derivatives as a linear weighted sum of all 

functional values of the solution at all mesh points [16]. This method was proposed by Bellman and 

Casti [5] in 1971. One of important keys to DQM lies in the determination of weighting coefficients 

for the discretization of a spatial derivative of any order, where it play the important role in the 

accuracy of numerical solutions. Initially, Bellman et al.[6](1972), suggested two methods to 

determine the weighting coefficients of the first order derivative. The first method solves an algebraic 

equation system. The second use a simple algebraic formulation, but with the coordinates of grid 

points chosen as the roots of the Legendre polynomial. Quan and Chang [20] (1989a) and Shu and 

Richards [25] (1992), derived a recursive formula to obtain these coefficients directly and irrespective 

of the number and positions of the sampling points. In their approach, they used the Lagrange 

polynomials as the trial functions and found a simple recurrence formula for the weighting 

coefficients, and used by Meral [16] (2013) and  Jiwari [13] (2013). Bert et al.[7](1993) and Striz et 

al.[27] (1995) developed the differential quadrature method, which uses harmonic functions instead of 

polynomial as test function in the quadrature method to handle periodic problems efficiently, and also 

circumvented the limitation for the number of grid point in the conventional DQM  based on 

polynomial test function. Their study shows that the proper test functions are essential for the 

computational efficiency and reliability of the DQM. Shu et al.[23] (2001) presented a numerical study 

of natural convection in an eccentric annulus between a square outer cylinder and a circular inner 

cylinder using DQM, by using Fourier series expansion as the trial functions to compute weighting 

coefficients. Krowiak[15] (2008) studied the methods that based on the differential quadrature in 

vibration analysis of plates, and using the spline functions as the trial functions to compute weighting 

coefficients. Korkmaz et al.[14] (2011) used the quartic B-spline differential quadrature method, and 

applied it on  the one-dimensional Burger’s equation, by using the quartic B-spline functions as the 

trial functions to compute weighting coefficients. 
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  The motivations to introduce the current work are: Firstly, Attempt of all the above researchers to 

develop the DQM by using different test functions in computing weighted coefficients of DQM 

motivating us to research about polynomial has good properties and suitable with application of DQM. 

Therefore, we noticed that Bernstein polynomials are incredibly useful mathematical tools as they are 

simply defined. They can be calculated quickly on computer systems and represent a tremendous 

variety of functions. They can be differentiated and integrated easily, and can be pieced together to 

form spline curves that can approximate any function to any accuracy desired. One of important 

properties to Bernstein polynomials is surely convergence. Secondly, Most recently, Al-Saif and Al-

Kanani [3,4] (2012-2013) proposed a new  improvement for DQM that is resulting from applied ADI 

into DQM for convection-diffusion problems, and the results of ADI-DQM with Lagrange polynomial 

and Fourier series expansion as the test functions to computing the weighted coefficients show the 

efficiency of the proposed method to handle the problems under consideration. Moreover, we wanted 

to be extending the application of our new suggestion in [2] to improve ADI-DQM.  

  Depending on these reasons and according to our humble knowledge that the Bernstein polynomials 

are not yet used to calculate weighting coefficients, in this article, we suggest Bernstein polynomials as 

test functions to compute the weighting coefficients of the spatial derivatives, in order to introduce a 

new development to the differential quadrature method that is called alternating direction implicit 

formulation of the Bernstein differential quadrature method (ADI-BDQM). Using the ADI-BDQM for 

solving convection-diffusion problems excellent numerical results are obtained. ADI-DQM is then 

tested by numerical examples. Results show that the convergence of the new scheme is faster and the 

solutions are much more accurate than those in literature [3,4,11,12] and has reasonable stability.  

2- Bernstein Differential quadrature method (BDQM)  

  The differential quadrature is a numerical technique used to solve the initial and boundary value 

problems. This method was proposed by Bellman and Casti[5] in (1971). The DQM is based on the 

idea that the partial derivative of a field variable at the    discrete points in the computational domain 

is approximated by a weighted linear sum of the values of the field variable along the line that passes 

though that point, which is parallel with coordinate direction of the derivative as following[2]: 

   

   
     

 ∑   
   

 

   

                                                                                               

where    are the discrete points in the variable,   
   

 is the     order derivative of the function,       

are the function values at these points, and    
   

 are the weighting coefficients for the     order 

derivative of the function with respect to   and   is the number of the grid points. There are two key 

points in the successful application of the DQM: how the weighting coefficients are determined and 

how the grid points are selected [17]. Many researchers have obtained weighting coefficients 

implicitly or explicitly using various test functions [2,3,13,14,21,23].  

Here, we use the exact same manner in (Quan and Chang [20] (1989a) and Shu and Richards[25] 

(1992)) to determine the weighting coefficients, but with employing the Bernstein polynomials as the 

test function. A Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the 

Bernstein form, that is a linear combination of  Bernstein basis polynomials. The Bernstein basis 

polynomials of    -degree are defined on the interval [   ] by Singh et al.[26]: 

        (
 
 
)                                                                                                                                

The general form of Bernstein polynomials of   -degree that used to solve differential equation [8,18] 

are defined on the interval [   ] as: 

        (
 
 
)
          

  
                                                                                                                    

were binomial coefficients are given by : 

(
 
 
)  

  

         
                                                                                                                                                      

There are        -degree Bernstein polynomials. For mathematical convenience, we usually set, 

          , if       or     . These polynomials are quite  easy to write down the coefficients 

that can  be obtained from Pascal’s triangle. It can easily be shown that each of the Bernstein 
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polynomials is positive and also the sum of all the Bernstein polynomials is unity for all real    
[   ], i.e 

∑                  [   ]

 

   

 

The Bernstein polynomials can be written to any interval as following[26]: 

                  ∑ (
 

 
)                                                                                                                    

 

   

 

where  (
 

 
) is arbitrary function, for                  Similar to Lagrange differential 

quadrature method LDQM to determined weighting coefficients, we can derive the explicit 

formulationto compute the weighting coefficients    
   

 by using Bernstein polynomial as a test 

functions, which are listed below: 
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The weighted coefficients of the second order derivative by using Bernstein polynomial as a test 

functions can be obtained as 

[   
   

]  [   
   

][   
   

]  [   
   

]
 
                                                                                                                             

The same technique can be used to obtained the weighting coefficients    
   

. 

3- Alternating direction implicit technique - BDQM 

  To illustrate the application of the technique of ADI to the formula of DQM, we consider the 

following partial differential equation in two dimensions as; 

  

  
                                                                                                                                                                  

where            are the differential operators with respect to          respectively. 

The alternating direction implicit technique was introduced in the mid-50s by Peaceman and Rachford 

for solving equations, which result from finite difference discretization of partial differential equations 

(PDEs). From iterative method’s perspective, ADI method can be considered as special relaxation 

method, where a big system is simplified into a number of smaller systems such that each of them can 

be solved efficiently and the solution of the whole system is got from the solutions of the sub-systems 

in an iterative way. Using alternating direction implicit method to approximate equation    , we get 

the systems of algebraic equations in the form [3,4]: 
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where (    )   and (    )    are the BDQM quantities that  including the weighting coefficients for 

the differential operators     and   , respectively. 

Equation     is used to compute function values at all interval mesh points along rows and known as 

horizontal traverse or   sweep. While, Equation      is used to compute function values at all 

interval mesh points along columns and known as vertical traverse or    sweep. 
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4- Numerical examples and discussion 

  In this section, we apply ADI-BDQM on two test problems to demonstrate the efficiency of the ADI-

BDQM. These examples are chosen such that their exact solutions are known. 

 

Problem 1 (Dehghan and Mohebbi[12]) 

  Consider the unsteady state linear two-dimensional convection-diffusion equation: 

  

  
   

  

  
   

  

  
   

   

   
   

   

   
            [   ]  [   ]  [   ]                                     

where          is a transported variable,    and    are arbitrary constants which show the speed of 

convection and the diffusion coefficients    and    are positive constants. The initial condition of 

Equation (11) has the following form: 

                                                                                                                                      

where    
    √  

      

   
              

    √  
      

   
   

 

and the boundary conditions are given by: 

                                                    

                                                    
        }                                               

The exact solution is given as: 

                                                                                                                            

Equation (11) can be approximated by using ADI-BDQM, equations (9 and 10), such that (    )   

     
         

     and (    )      ̃  
       ̃  

   
, where the    

   
    

   
  ̃  

   
 and   ̃  

   
 are the 

weighted coefficients of the  first and the second order derivatives with respect to   and     
respectively. In this problem, we take          ,         and      , and use equally 

spaced grid points. Tables 1 and 2 are shows the errors obtained from solving problem 1 by using 

LDQM, ADI-LDQM and ADI-BDQM at                 and for different values of      
  . Fig. 1 clarifies a comparison between exact solution and numerical solutions for       

     and     respectively. The results confirm that the ADI-BDQM is more accurate and less CPU 

time than the LDQM and ADI-LDQM. 

 

Table 1  Errors obtained for problem 1 with                  

  h Max |     | of      

LDQM 

CPU Max |     | of 

ADI-LDQM 

CPU Max |     | of   

    ADI-BDQM 

CPU 

0.25 2.912711E-08 0.514 4.879633E-09 0.548 3.   7.335061E-10 0.522 

0.17 2.108340E-08 0.615 2.073938E-09 0.668 6.280813E-10 0.644 

0.125 1.371521E-08 0.770 1.262915E-09 0.960 5.741963E-10 0.907 

0.1 7.726773E-09 1.105 9.595748E-10 1.522 4.953427E-10 1.443 

 

Table 2  Errors obtained for problem 1 with                 

  h Max |     | of      

LDQM 
CPU   Max |     | of   

ADI-LDQM 

CPU Max |     | of 

    ADI-BDQM 
CPU 

0.25 2.572117E-06 0.509 2.844328E-06 0.540 3.   1.832912E-07 0.528 

0.17 1.379575E-05 0.619 1.437375E-05 0.624 2.033508E-06 0.595 

0.125 3.223357E-05 0.772 3.292829E-05 0.874 3.652773E-06 0.859 

0.1 5.348801E-05 1.047 5.434319E-05 1.415 4.038135E-06 1.282 
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We choose the arbitrary function  (
 

 
)     (  

 

 
  )            and   is the arbitrary constant. 

In this problem, we take                and     for Table 2. and              and     for 

Table 3. respectively at the number of grid points             and     Notice that in the next 

example, we choose the same above arbitrary function with different values of  . 
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Fig. 1 Exact and approximate solutions of the problem 1 with,                     and       

 

Problem 2 (Al-Saif and Al-kanani[4]) 

  Consider the nonlinear two-dimensional convection-diffusion equations that are called Burger's 

Equations:     
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where          and          are the velocity components to be determined,   is constant and    is 

the Reynolds number,         [   ]  [   ]  [   ]  

    In this problem, we take          ,       and the initial conditions of Equations      and 

     have the following form: 

         
 

 
 

   

     
                          

 

 
 

   

     
                                                                 

The exact solutions are given by: 

         
 

 
 

     

       
           

 

 
 

     

       
                                                          

The boundary conditions can be achieved easily from (18) by using           

Equations (15-16) can be approximated by using ADI-BDQM (( Equations(9 and 10)), such that 

(    )   
 

  
   

        
    

     and  (    )   
 

  
 ̃  

        
  ̃  

   
, where the    

   
    

   
  ̃  

   
 and 

  ̃  
   

 are the weighted coefficients of the  first and the second order derivatives with respect to   and 

  , respectively. For the above problem, we found numerical solutions for   and   and use equally 

spaced grid points. Tables 3 and 4 are shows the errors obtained from solving problem 2 by LDQM, 

ADI-LDQM and ADI-BDQM at         and               and   and    [   ] for different 

values of          Fig. 2 clarifies a comparison between  exact solution and numerical solutions 

of the problem 2. The results show that the ADI-BDQM has a high accuracy, good convergence and 

less CPU time compared with the LDQM and ADI-LDQM.  

Table 3 Errors obtained ADI-LDQM and ADI-BDQM for problem 2 with             of    

  
 h 

Max |     |of    

LDQM 

CPU Max |     |of    

ADI-LDQM 

CPU Max |     | of  

  ADI-BDQM 

CPU 

0.25 1.943390E-05 0.098 1.441773E-05 0.102 3.   9.541987E-06 0.097 

0.17 3.109294E-05 0.106 1.970786E-05 0.115 1.386325E-05 0.100 

0.125 4.022089E-05 0.122 2.122300E-05 0.138 1.610371E-05 0.119 

0.1 4.733133E-05 0.151 2.021087E-05 0.163 6.885246E-06 0.126 

Table 4 Errors obtained ADI-LDQM and ADI-BDQM for problem 2 with             of    

   
h 

Max |     |of               

LDQM 

CPU  Max |     | of 

ADI-LDQM 

CPU Max |     | of  

  ADI-BDQM 

CPU 

0.25 1.943416E-05 0.100 9.237709E-06 0.105 3.   3.091749E-08 0.100 

0.17 3.109260E-05 0.110 9.286324E-06 0.124 7.134462E-07 0.101 

0.125 4.022089E-05 0.122 6.145820E-06 0.135 1.674942E-06 0.122 

0.1 4.733010E-05 0.137 2.454387E-06 0.160 5.610121E-06 0.136 

 

  In this problem, we take            and     respectively at the number of grid     
        and      
5- Comparison with the other methods 

  We compare the numerical results of ADI-BDQM for problems 1 and 2  with the results of other 

numerical methods such as ADI-LDQM, High-order compact boundary value method 

(HOCBVM)[12]and Radial basis function based meshless method(RBFBMM)[11]. The error 

measurements resulted from the ADI-BDQM is more accurate than the methods, HOCBVM[12], 

RBFBMM[11] and ADI-LDQM. Moreover, the number of grid points by using ADI-BDQM and ADI-

LDQM are less than the other methods. 

6- Stability analysis of BDQM 

  The stability of numerical schemes is closely related to numerical error. A solution is said to be 

unstable if errors appear at some stage in the calculations (for example, from erroneous initial 

conditions or local truncation or round-off errors) are propagated without bound throughout 

subsequent calculations. Thus a method is stable if small changes in the initial data produce 

correspondingly small changes in the final results, that is, the difference between the theoretical and 

numerical solutions remains bounded at a given time  , as time and space steps tend to zero or time 

step remains fixed at every level and    [1]. So stability, means that the numerical solution must be 
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close to the exact solution, meaning that whenever was the error a little  the deviation in derivatives, 

however, this error may accumulate at each time step and affects to the stability of the solution. 
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Fig. 2 Exact and approximate solutions of the problem 2 with, t=0.01 and  t=0.0001 

 

Table 5. Comparison of the numerical results of the problem 1 for different methods at    
              

Method Number grid  

    points 
Max|     |of u, 

           

Max|     |of u, 

          

 

ADI-BDQM       4.953427E-10 4.083296E-06 

ADI-LDQM       9.595748E-10 5.434319E-05 

HOCBVM[  ]       1.1826E-01 2.4170E-05 

RBFBMM[  ]       4.97E-02 4.25E-02 

Table 6. Comparison of the numerical results of the problem 2 for different methods at     
                  . 

Method  Number grid points Max|     | of u  Max|     | of v 

ADI-BDQM     9.486005E-06 1.230419E-08 

ADI-LDQM      1.532977E-05 9.154925E-06 

BDQM      1.877131E-05 1.877144E-05 

LDQM     1.943390E-05 1.943416E-05 

Theorem[22] 

  The system of ODE  ̂     with a constant coefficient matrix   is, 

(1) Stable if the roots of the characteristic polynomial are purely imaginary. 

(2) Asymptotically stable if the roots have negative real parts. 
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(3) Unstable if a root has positive real part. 

From application of BDQM to the any convection-diffusion equation in this work, we obtained the set 

ordinary differential equations: 

[ ] { }  { }  { }                                                                                                                                                   

where { } is a vector of unknown functional values at all the interior points given by { }  
[                                                    ]

 
 

and { } is a known vector which is made up of the non-homogeneous part and the boundary conditions 

given by 

{ }  [                                                    ]
 
 

and [ ] is the coefficient matrix containing the weighting coefficients, the dimension of the matrix [ ] 
is            by           . For the multi-dimensional case, the matrix [ ] contains many 

zero elements, which are irregularly  distributed in the matrix. 

    The stability analysis of the Equation (19) is based on the eigenvalue distribution of the BDQM 

discretization matrix [ ]. If [ ]has eigenvalues     and corresponding eigenvector   ,              

being the size of the matrix[ ], the similarity transformation reduces the system (19) of the 

form[10,24].  
 { }

  
 [ ]{ }  { }                                                                                                                                               

    Here the diagonal matrix [D] is formed from the eigenvalues and from a nonsingular matrix [P] 

containing the eigenvectors as columns 

[ ]  [ ]  [ ][ ]                                                                                                                                                    

Pre-multiplying by the matrix [ ]   on the both sides Equation (20) and setting 

{ }  [ ]  [ ]                                                                                                                                                          

{ }  [ ]  [ ]                                                                                                                                                           

Since [ ] is a diagonal matrix, Equation (20) is an uncoupled set of  ordinary differential equations. 

Considering the     equation of (20) 
   

  
                                                                                                                                                                 

If    is time-independent, then the solution of Equation (24) can be written as 

   (      
  

  

)      
  

  

                                                                                                                                  

For this case, using Equations (22) and (23), the solution { } can be obtained as 

{ }  [ ][ ]  ∑  

 

   

   ∑[      
    

  

  

        ]    

 

   

                                                                    

Clearly, the stable solution of { } when     requires 

               for all                                                                                                                                             

where          denotes the real part of   . This is the stability condition 

for the system (19).  

  In this section, we can applied the stability condition (27) on the problems that mentioned in the 

previous section by using ADI-BDQM.  
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Problem 1.  

 From the application of ADI-BDQM to the Equation (11) and using         , and      , 

Equation (11) can be rewritten as: 

∑(     
         

   )   
 

 

   

 ∑(   ̃  
       ̃  

   )   
 

 

   

 { }  { }                                                                                                                                 
where                 

From Equation (28), we can obtain a system of algebraic equations (19). 

This system has the solution (26), and this solution { } is stable as     and the real parts of the 

eigenvalues of the matrix [ ] for                respectively, are: 

                                                            

                                                          

                                                            

and 

                                                            

                                                            

                                                               

This means that the stability condition (27) is hold. 

Problem 2.  

 From the application of ADI-BDQM to the Equation (15) and using     ,      and       

Equation (15) can be rewritten as: 

∑(
 

  
   

         
    

   )

 

   

   
  ∑(

 

  
 ̃  

         
  ̃  

   )

 

   

   
 

 { }  { }                                                                                                                                 
where                

From Equation (29), we can obtain a system of algebraic equations (19). 

This system has the solution (26), and this solution { } is stable as     and the real parts of the 

eigenvalues of the matrix [ ]are:  

                                                             

                                                             

                                                               

This means that the stability condition (27) is hold. When using the equation (22), we will find the 

same eigenvalues mentioned above of the matrix [A]. 

Finally, the numerical results of the above problems confirm that the newly developed method ADI-

BDQM is stable for the grid points       . In this work, with the help of symbolic computation 

software Maple 13, the eigenvalues are computed. 

 

7- Conclusions 

  In this work, we employed a new technique ADI-BDQM to solve convection-diffusion equations 

successfully. The weighting coefficients for spatial derivatives are computing by use Bernstein 

polynomials as test functions. The numerical results show that the new method has higher accuracy, 

good convergence and reasonable stability as well as a less computation workload by using few grid 

points. Moreover, the results show that the application of our new suggestion in [2] to improve ADI- 

DQM is successful and can be applied on more general problems. 
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