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Abstract  

In this paper, 3 – stage Implicit Rational Runge – Kutta methods are derived using Taylor and Binomial series 

expansion for the direct solution of general second order initial value problems of ordinary differential equations 

with constant step length. The basic properties of the developed method were investigated and found to be 

consistent and convergent. The efficiency of the method were tested on some numerical examples and found to 

give better approximations than the existing methods. 
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1. Introduction  

Runge-Kutta schemes are important family of implicit and explicit iterative methods for approximation of 

solution of ordinary differential equations. Consider the numerical approximation of second order initial value 

problems of the form: 

( ) ( ) ( ) 0000    ,          ,,, yxyyxyyyxfy =′=′=′′
 , bxa ≤≤     (1) 

The general � − stage Runge-Kutta scheme for general second order initial value problems of ordinary 

differential equations of the form (1) as defined by Jain (1984) is 
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where �� , ��� ,  	�� , �
 , �
�   are constants to be determined. The derivative of suitable parameters requires extremely 

lengthy algebraic manipulations, except for small values of s (Sharp and Fine (1992) and Dormand et al (1987)). 

The fourth order Runge-Kutta method for the solution of (1) is given in Jain (1984). 

 It should be noted that the methods considered above were Runge-Kutta method of second order 

ordinary differential equations but Much attention have not been given to Runge – Kutta method for the solution 

of general second order ODEs of the form (1), Lambert (1973). Much work was done in Runge-Kutta-Nystrom 

method of Special Second Order ODE of the form 

 
( ) ( ) ( ) 0000    ,          ,, yxyyxyyxfy =′==′′

       (6) 

with numerical solution  
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where  
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  Runge-Kutta-Nystrom methods are direct extension of Runge-Kutta method to second order 

differential equations in (6). Work such as Sharp and Fine (1992), Dormand et al. (1987), Fudziah (2003), 

Fudziah (2009), Senu et al. (2011), more recently Okunuga et al. (2012) discussed the general techniques for 

solving equation of the form (6) directly without first reducing it to systems of first order ODEs. The above 

authors observed that the direct solution of second order equations is of greater advantage over reduction to 

systems of first order equations to increase efficiency and reduced storage requirement. 

 Hong (1982) proposed the use of rational function of Runge – Kutta method and adapted by Okunbor 

(1987) which investigated the use of the rational function of the Runge-Kutta scheme of first order initial value 

problems 
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where  

 �� = ���� + ��ℎ, �� + ℎ ∑ �����
��� ���, � = 1�1��       (11) 

and 

 �� =  ��� + !�ℎ, "� + ℎ ∑ 	������
��� �, � = 1�1��       (12) 

in which  

  ��� , "�� = −"�#���� , ���  and  "� = �
$%

 

where �� ,��� , 	�� , !�  are arbitrary constants to be determined. Since then many new rational Runge – Kutta 

schemes have been developed for the solution of first order initial value problems and found out to give better 

estimates. Among these authors are: Ademuluyi and Babatola (2000), Odekunle (2001), Odekunle et al. (2004), 

Bolarinwa (2005), Babatola et al. (2007), Bolarinwa et al. (2012) and Abhulimen and Uluko (2012) The 

schemes are absolutely stable, consistent and convergent and was used to approximate a variety of first order 

differential equations. However, the methods are presently receiving more attention as efficient schemes for the 

solutions of various types of first order initial value problems are considered. 

2. Derivation of the Scheme 

 The rational form of (2) and (3) can be defined as  
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in which  

 ��� , "�, "′�� = −"�#���� , �� , �′��     �'! "� = 1
��

                            
The constraint equations are to ensure consistency of the method, ℎ is the step size and the parameters 

��� , 	�� , �� , !�,(�� , )�� are constants called the parameters of the method. 

Following Abhulimen and Uloku (2012) and Bolarinwa etal (2012), the following procedures are adapted. 

i. Obtain the Taylor series expansion of rK
 and rH

 about the point  
( )nnn yyx ′,,

 and binomial series 

expansion of right side of (2.1) and (2.2). 

ii. Insert the Taylor series expansion into (2.1) and (2.2) respectively. 

iii. Compare the final expansion of rK
 and rH

 about the point
( )nnn yyx ′,,

 to the Taylor series expansion of 

1+ny
and 1+′ny

 about 
( )nnn yyx ′,,

in the powers of h . 

Normally the numbers of parameters exceed the number of equations, these parameters are chosen to ensure 

that (one or more of the following conditions are satisfied. 

i. Minimum bound of local truncation error exists. 

ii. The method has maximized interval of absolute stability. 

iii. Minimized computer storage facilities are utilized. 

In this paper, we shall consider the implicit scheme where all the ���  and 	�� ≠ 0 for at least one , > � . In 

equations (2.1), (2.2), (2.3) and (2.4) setting 3=s  we have 
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with constraints  

 �� = ��� + ��# + ��. = �
# �	�� + 	�# + 	�.�  

 �# = �#� + �## + �#. = �
# �	#� + 	## + 	#.� 

 �. = �.� + �.# + �.. = �
# �	.� + 	.# + 	..�  

 !� = (�� + (�# + (�. = �
# �)�� + )�# + )�.�  

 !# = (#� + (## + (#. = �
# �)#� + )## + )#.�  

 !. = (.� + (.# + (.. = �
# �).� + ).# + )..� 

Now by adopting a binomial expansion on equations (2.5) gives  

��/� = �� + ℎ�′� + 0�1� + 0#1# + 0.1. − ��#�2��� + 2#�# + 2.�.� − ℎ����� �2��� + 2#�# + 2.�.� −
��3�0�1� + 0#1# + 0.1.��2��� + 2#�# + 2.�.�4       (2.9) 

Similarly the binomial expansion of (2.6) gives 
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�′�/� = �′� − 1
ℎ �′�# �2′��� + 2′#�# + 2.� 1.� + 1

ℎ �0′�1� + 0′#1# + 0.� 1.�
− 1

ℎ# ��� �0��1� + 0#� 1# + 0.� 1.��2�� �� + 2#� �# + 2.� 1.�                                                      �2.10� 

 

Now, expanding (2.7) using Taylor series of function of three variables gives 

1�

= ℎ#

2 7�� + ����1� + ��#1# + ��.1.��$ + 2���	��1� + 	�#1# + 	�.1.��8$� + ����1� + ��#1# + ��.1.�#�$$
+ 2����� �	��1� + 	�#1# + 	�.1.��$$�9
+ ℎ.

2 7���8 + ����� �$ + ������1� + ��#1# + ��.1.��8$ + �����  ����1� + ��#1# + ��.1.��$$9
+ ℎ:

4 7��#�88 + 2����� �8$ + ��#���#�$$9 + ℎ����1� + ��#1# + ��.1.��	��1� + 	�#1# + 	�.1.��$$�

+ ℎ
2 �	��1� + 	�#1# + 	�.1.��$� + 1

2 �	��1� + 	�#1# + 	�.1.�#�$�$�
+ 0�ℎ<�                                                                                                                                                                          �2.11� 

Equation (2.11) is implicit, which cannot be proceed by successive substitutions. We assume a solution for 1� 
which may be expressed as 

1� = ℎ#=� + ℎ.>� + ℎ:?� + 0�ℎ<�                                                                                                                             �2.12� 

Substituting the values of 1� of (2.12) into equation (2.11) expand and re – arranging in powers of ℎ gives  

1� = ℎ#

2  �� + ℎ.

2 @���8 + ����� �$ + 1
2 �	��=� + 	�#=# + 	�.=.��$�A

+ ℎ:

4 7��#�88 + 2����� �8$� + ��#���#�$$ + 2�	��=� + 	�#=# + 	�.=.�#�$$�
+ 2���	��=� + 	�#=# + 	�.=.��8$� + ����� �	��=� + 	�#=# + 	�.=.��$$�
+ 2�	��=� + 	�#=# + 	�.=.��$ + 2�	��>� + 	�#># + 	�.>.��$�9
+ 0�ℎ<�                                                                                                                                          �2.13� 

On equating powers of ℎ from equation (2.12) and (2.13), gives  

=� = �
# ��  

>� = �
# ����8 + ����� �$ + �	��=� + 	�#=# + 	�.=.��$�� = �

# ��∆��               (2.14) 

?� = �
: ���#∆#�� + �	��>� + 	�#># + 	�.>.�∆���$� + �����$�        

then  

1� = ℎ#

2 �� + ℎ.

2 ��∆�� + ℎ:

4 ���#∆#�� + �	��>� + 	�#># + 	�.>.�∆���$� + �����$�
+ 0�ℎ<�                                                                                                                                        �2.15� 

In a similar manner 

�� = ℎ#E� + ℎ.F� + ℎ:G� + 0�ℎ<�                                                                                                                        �2.16� 

Where  

E� = �
#  �   

F� = �
# !�∆ ��                    (2.17) 

G� = �
: �!�#∆# � + �)��!� + )�#!# + )�.!.�∆ � I� + !� � I�        

And also,  

��

= ℎ#

2  � + ℎ.

2 !�∆ �� + ℎ:

4 �!�#∆# � + �)��!� + )�#!# + )�.!.�∆ � I� + !� � I�
+ 0�ℎ<�                                                                                                                                                                   �2.18� 

Substituting equations (2.12) and (2.16) into equations (2.9) and (2.10) re – arranging and compare the resulting 

equation with the Taylor’s series expansion of 1+ny
 about nx

  

��/� = �� + ℎ�′� + ℎ#��′′
2! + ℎ.��′′′

3! + ℎ:���L

4! + …                                                                                             �2.19� 

and 
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�′�/� = �′� + ℎ�′′� + ℎ#��′′′
2! + ℎ.���L

3!+ …                                                                                                                        �2.20� 

where  

���� = ���� , �� , ��′� = ��  

����� = �8 + �′�$ + ���$� = ∆��  

���L = �88 + �′�# �$$ + �#�$�$� + 2�����$$O + 2���8$� + �$�∆��      (2.21) 

���L = ∆#�� + �$�∆�� + ���$  

 

 Since ∆= P
P8 + �′ P

P$ + ��
P

P$�         

gives the following 

0�=� + 0#=# + 0.=. − ��#�2�E� + 2#E# + 2.E.� = �
# ��  

0�>� + 0#># + 0.=. − ��#�2�F� + 2#F# + 2.F.� = �
Q ∆��  

0�?� + 0#?# + 0.?. − ��#�2�G� + 2#G# + 2.G.� = �
#: �∆#�� + ∆���$� + ���$�  

0��=� + 0#� =# + 0.� =. − ��#�2�� E� + 2#� E# + 2.� E.� = ��  

0��>� + 0#� ># + 0.� >. − ���#�2�� F� + 2#� F# + 2.� F.� = �
# ∆��  

0��?� + 0#� ?# + 0.� ?. − ���#�2�� G� + 2#� G# + 2.� G.� = �
Q �∆#�� + ∆���$� + ���$�   

Substituting the values of =�, =#, =., >�, >#, >., E�, E#, E., F�, F#, F., G�, G#, and G. in the above equation 

and re-arranging, we have the following sets of non – liner differential equations  

0� + 0# + 0. + 2� + 2# + 2. = 1  

0��� + 0#�# + 0.�. + 2�!� + 2#!# + 2.!. = �
.  

0���# + 0#�## + 0.�.# + 2�!�# + 2#!## + 2.!.# = �
Q  

0����	�� + �#	�# + �.	�.� + 0#���	#� + �#	## + �.	#.� + 0.���	.� + �#	.# + �.	..� + 2��)��!� + )�#!# +
)13!3+22)21!1+)22!2+)23!3+23)31!1+)32!2+)33!3=16  

0�� + 0#� + 0.� + 2�� + 2#� + 2.� = 2  

0���� + 0#� �# + 0.� �. + 2�� !� + 2#� !# + 2.� !. = 1  

0����# + 0#� �## + 0.� �.# + 2�� !�# + 2#� !## + 2.� !.# = #
.  

0�����	�� + �#	�# + �.	�.� + 0#� ���	#� + �#	## + �.	#.� + 0.� ���	.� + �#	.# + �.	..� + 2�� �)��!� + )�#!# +
)13!3+22′)21!1+)22!2+)23!3+23′)31!1+)32!2+)33!3=23  

with constraints 

 �� = ��� + ��# + ��. = �
# �	�� + 	�# + 	�.�  

 �# = �#� + �## + �#. = �
# �	#� + 	## + 	#.�  

 �. = �.� + �.# + �.. = �
# �	.� + 	.# + 	..�  

 !� = (�� + (�# + (�. = �
# �)�� + )�# + )�.�  

 !# = (#� + (## + (#. = �
# �)#� + )## + )#.�  

 !. = (.� + (.# + (.. = �
# �).� + ).# + )..�  

This is fourteen (14) equations with fifty-four (54) unknowns. That means the expected scheme it not unique; we 

can have a family of 3 – stage schemes. 

Choosing the Parameters  

0� = 0# = 0. = 0,   2� = 2# = 2. = �
. ,     �� = !� = ��� = 	�� = (�� = )�� = 0  

0�� = 0#� = �
# ,     0.� = 1,     2�� = 2#� = 2.� = 0,    �# =  �. = 	#� = 	.� = #

.  

!# = !. = ��# = 	�# = )�# = )#� = ).� = �
#  ,   �## = �#. = �.# = �.. = �

Q ,     
 �#� = �.� = 	## = 	#. = 	.# = 	.. = �

.  ,   (�# = (#� = (.� = )## = )#. = ).# = ).. = �
:  ,   ��. =

	�. = )�. = − �
#  ,      (�. = − �

:  ,     (## = (#. = (.# = (.. = �
R 

then equations (2.5) and (2.6) becomes 
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and 

 
( )211 3
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1
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h
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         (2.23) 

where  

 1� = ST
# ���� , �� , ��� � = ST

# ��   

 1# = ST
# � U�� + #

. ℎ, �� + #
. ℎ��� + �

. �1� + 1#�, ��� + #
.S �1� + 1#�V  

and  

 �� = ST
#  ��� ,  "�, "�� � = ST

#  �    

 �# = ST
#  U�� + �

# ℎ, "� + �
# ℎ"�� + �

: ��� + �#�, "�� + �
#S ��� + �#�V   

3. CONVERGENCE  

 A numerical method is said to be convergent if the numerical solution approaches the exact solution as 

the step size tends to zero.  

  Convergent = limS→[|����/�� − ��/�| 
In other words, if the discretiation error at ��/� tends to zero as ℎ → ∞, i.e if 

   ^�/� = |����/�� − ��/�| → 0 as ' → ∞     (3.1) 

From equation (14), 
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while the exact solution �����/�� seems to satisfy the equation of the form  
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Where _�/� is a local truncation error. 

Subtracting equation (3.3) from (3.2) gives 
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Adopting equation (3.4) gives 
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Expanding the brackets and re-arranging gives 
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This implies that  
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From equations (3.7), setting 
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and  _�/� = _ 

Then 

 ^�/� = `%
a%b%

^� + _          (3.8) 

Let = = max =� > 0,   > = max >� > 0 and e = max e� < 0 then (3.8) becomes, 

 ^�/� ≤ `
ab ^� + _  

Set 
`

ab = 1 < 1, then  

 ^�/� ≤ 1^� + _           (3.9) 

If ' = 0, then from (3.9), 

 ^� = 1^[ + _  

 ^# = 1^� + _ = 1#^[ + 1_ + _  by substituting the value of ^� 

 ^. = 1^# + _ = 1.^[ + 1#_ + _  
Continuing in this manner, we get the following   

 ^�/� = 1�/�^[ + ∑ 1h_�/�h�[          (3.10) 

Since 
`

ab = 1 < 1, then one can see that as ' → ∞, ^�/� → 0. This proves that the scheme converges. 

 

4. CONSISTENCY 

A scheme is said to be consistent, if the difference equation of the computation formula exactly 

approximates the differential equation it intends to solve as the step size ends to zero. To prove if equation (2.22) 

is consistent, subtract �� from both side of (2.22), then 

( )
n

n

nn
nn y

HHy

yhy
yy   

2
3

1
1

  

21

1 −
++

′+
=−+

        (4.1) 

( )

( )21

21

1

2
3

1
1

2
3

1
1

  

HHy

HHyyyhy

yy

n

nnnn

nn

++









++−′+

=−+

 
Simplifying gives 

( )

( )21

21

2

1

2
3

1
1

2
3

1

  

HHy

HHyyh

yy

n

nn

nn

++

+−′
=−+

        (4.2) 

But  

ng
h

H
2

2

1 =
 , and  

( ) ( )






 ++′++′++= 2121

2

2
2

1
,

4

1

2

1
,

2

1

2
HH

h
zHHzhzhxf

h
H nnnn

 
Substituting H1 and H2 in equation (4.2), gives  
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Dividing all through by ℎ and taking the limit as ℎ tends to zero on both sides gives 
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Hence, the scheme in (2.22) is consistent. 

Numerical Problems 

Example  1. 

 Consider the equation 
( ) ( ) ( ) [ ]1,0  ,00  ,10     ,1 2 ∈=′=+=′′ xyyyxy

 

The exact solution is  

 

[Sources: Jain 1984] 

Example  2. 

 Consider a non-linear ordinary differential equation 
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The exact solution is  
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 [Sources: Jacob (2010), Taiwo and Osilagun (2011)]  

 

5. Discussions  

 Table 1 is the results obtained by applying the schemes to example 1, the variable coefficient 

differential equation. The result performed well and approximate the exact solution better as the step size goes to 

h = 0.001. 

 Example 2 is a non-linear ordinary differential equation which is also well approximated with results in 

table 2. The results show superiority over the results of Optimal Order Method of Jacob (2010) highlighted in 

table 3. 

 

6. Conclusion  

The new numerical schemes derived follows the techniques of rational form of Runge – Kutta methods proposed 

by Hong (1982) which was adopted by Okunbor (1987) and Ademiluyi and Babatola (2000) by using Taylor and 

Binomial expansion in stages evaluation. The order condition obtained in this research is up to five (5) and the 

stage is up to three (3). This is an improvement on the work of earlier authors.  

The new schemes are of high accuracy for direct numerical solution of general second order ordinary 

differential equations. The steps to the derivation of the new schemes are presented in the methodology while the 

analysis of the schemes proved to be consistent, convergent, the results proves to be good estimate of the exact 

equations. Thus, the scheme is effective and efficient, these suggest a wider application of the schemes for even 

more complicated physical problems; since the methods is used to solve equations of the form ��� = ��, �, �′� 

and ��� = ��, �� favorably.  Equations of variable coefficients is considered and the fact that is also used to solve 

non-linear problem. 
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PRESENTATION OF THE RESULTS  

 The results below are the exact and the approximate solution to each problem. 

(Note that. All results is in 10 decimal places)  

Table 1: Results of example 1 at h = 0.001 

 Exact Solutions Approximate Solutions Errors 

t ����� �′���� �� ���  �� ���  

0.001 1.000000500 0.001000001 1.000000500 0.001000000 0.00E-00 0.00E-00 

0.002 1.000002000 0.002000004 1.000002000 0.002000002 0.00E-00 2.28E-09 

0.003 1.000004500 0.003000014 1.000004500 0.003000006 0.00E-00 7.14E-09 

0.004 1.000008000 0.004000032 1.000008000 0.004000016 0.00E-00 1.58E-08 

0.005 1.000012500 0.005000063 1.000012500 0.005000033 0.00E-00 2.94E-08 

0.006 1.000018000 0.006000108 1.000018000 0.006000059 0.00E-00 4.87E-08 

0.007 1.000024500 0.007000172 1.000024500 0.007000097 0.00E-00 7.49E-08 

0.008 1.000032001 0.008000256 1.000032000 0.008000147 0.00E-00 1.09E-07 

0.009 1.000040501 0.009000365 1.000040500 0.009000213 0.00E-00 1.52E-07 

0.01 1.000050001 0.010000500 1.000050001 0.010000296 0.00E-00 2.05E-07 
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Table 2: Results of example 2 at h = 0.001 

 Exact Solutions Approximate Solutions Errors 

t ����� �′���� �� ���  �� ���  

0.001 1.000500000 0.500000125 1.000500000 0.500000251 0.00E-00 -1.26E-07 

0.002 1.001000000 0.500000500 1.001000000 0.500000752 0.00E-00 -2.52E-07 

0.003 1.001500001 0.500001125 1.001500001 0.500001505 0.00E-00 -3.80E-07 

0.004 1.002000003 0.500002000 1.002000003 0.500002509 0.00E-00 -5.09E-07 

0.005 1.002500005 0.500003125 1.002500006 0.500003763 0.00E-00 -6.38E-07 

0.006 1.003000009 0.500004500 1.003000010 0.500005269 -1.37E-09 -7.69E-07 

0.007 1.003500014 0.500006125 1.003500016 0.500007026 -1.90E-09 -9.01E-07 

0.008 1.004000021 0.500008000 1.004000024 0.500009033 -2.53E-09 -1.03E-06 

0.009 1.004500030 0.500010125 1.004500034 0.500011292 -3.24E-09 -1.17E-06 

0.01 1.005000042 0.500012500 1.005000046 0.500013802 -4.05E-09 -1.30E-06 

 

Table 3: Comparing errors of example 4, Jacob (2010) and new scheme at 
310125.3 −×=h  

 Exact Solutions Computed with 

New scheme 

Absolute Errors in  

Jacob (2010) 

Absolute error  

in new Scheme 

t ����� �� �� �� 

0.1 1.001562501 1.001562502 6.125E-08 4.41E-10 

0.2 1.003125010 1.003125014 1.211E-07 3.51E-09 

0.3 1.004687534 1.004687544 1.874E-07 9.31E-09 

0.4 1.006250081 1.006250099 2.616E-07 1.79E-08 

0.5 1.007812659 1.007812688 3.534E-07 2.95E-08 
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