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Abstract 

The ranks and subdegrees of the symmetric group nS
 acting on 

[ ]r
X ,  the set of all ordered  r-element subsets 

from X have been studied (See Rimberia [4]). In this paper, we examine some properties of suborbits and 

suborbital graphs of nS
 acting on 

[ ]r
X .  
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1. Introduction 

Suppose G is a group acting transitively on the set X and let 
Gx  be the stabilizer in G of a point 

x X∈
. The 

orbits 
{ }0 1 2 1, , , , kx −∆ = ∆ ∆ ∆K

 of xG
 on X are known as suborbits of G.  

 

Now, let 
( ),G X

 be a transitive permutation group. Then G acts on 
X X×

 by 

( ) ( ) ( )( ), , , ,   ,g x y g x g y g G x y X= ∈ ∈
. 

The orbits of this action are called suborbitals of G. The orbit containing 
( ),x y

 is denoted by 
( ),x yΟ

. Now, if 

X XΟ ⊆ ×
 is a G-orbit, then for any 

( ){ }, ,x X y X x y∈ ∆ = ∈ ∈Ο
 is a xG

-orbit on X. Conversely, if 

X∆ ⊆
 is a xG

-orbit, then 
( ){ }, ,gx gy g G yΟ = ∈ ∈∆

 is G-orbit on 
X X×

 (Neumann [3]). 

 

From 
( ),x yΟ

 we can form a suborbital graph 
( ),G x y

: its vertices are elements of X, and there is a directed 

edge from 
  to   x y

 if and only if 
( ) ( ), ,x y x y∈Ο

. Clearly 
( ),y xΟ

 is also a suborbital, and it is either equal 

to or disjoint from 
( ),x yΟ

. In the former case, 
( ) ( ), ,G x y G y x=

 and the graph consists of pairs of oppositely 

directed edges. It is convenient to replace each such pair by a single undirected edge, so that we have an 

undirected graph which we call self-paired. In the latter case, 
( ),G x y

 is just 
( ),G y x

 with arrows reversed, 

and we call 
( ),G x y

 and 
( ),G y x

 paired suborbital graphs. 

 

The above ideas were first introduced by Sims [5], and are also described in a paper by Neumann [3] and in 

books by Tsuzuku [6] and Biggs and White [1], the emphasis being on applications to finite groups. 

 

If 
x y=

, then 
( ) ( ){ }, ,x x x x x XΟ = ∈

 is the diagonal of 
X X×

. The corresponding suborbital graph 

( ),G x x
, called the trivial suborbital graph, is self-paired and consists of a loop based at each vertex 

x X∈
.  

 

2. Notations and Preliminary Results 

Notation 2.1 

Throughout this paper, G is the symmetric group nS
 while 

[ ]r
X  and G  denotes the set of all ordered r-element 

subsets from 
{ }1, 2, ,X n= K

 and a suborbital graph respectively. 
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Definition 2.1 

If nSσ ∈
 has 1α  cycles of length 1, 2α  cycles of length 2, …, nα  cycles of length n, then the cycle type of σ  is 

the n-tuple 
( )1 2, , , nα α αK

. 

Definition 2.2 

Let G act transitively on a set X and let ∆  be an orbit of xG
 on X. Define 

{ },gx g G x g∗∆ = ∈ ∈ ∆
, then 

∗∆  is 

also an orbit of xG
 and is called the xG

-orbit (or G-suborbit) paired with ∆  (Wielandt [7]). Clearly 
∗∗∆ = ∆

 

and 
∗∆ = ∆

. If 
∗∆ = ∆

, then ∆  is said to be self-paired.  

Definition 2.3 

Let G act on a set X, then the character π  of permutation representation of G on X is defined by 

  
( ) ( ) ,  for all g Gg Fix gπ = ∈

. 

Theorem 2.1 (Cameron [2]) 

Let G act transitively on a set X, and let 
g G∈

. Suppose π  is the character of the permutation representation of 

G on X, then the number of self-paired suborbits of G is given by 

  

( )21

g G

n g
G

π π
∈

= ∑
. 

Theorem 2.2 (Sims [5]) 

Let G be transitive on X and let xG
 be the stabilizer of the point 

x X∈
. Suppose 

{ }0 1 2 1, , , , kx −∆ = ∆ ∆ ∆K

 are 

the orbits of xG
 on X  and let 

, 0, 1, , 1i X X i kΟ ⊆ × = −K

 be the suborbital corresponding to 

, 0, 1, , 1i i k∆ = −K

. Then G is primitive if and only if each suborbital graph 
,  1, 2, , 1iG i k= −K

 is connected.  

 

3. Properties of Suborbits of G acting on
[ ]r

X  

Theorem 3.1 

Let G act on 
[ ]r

X . Suppose 
[ ]1 2, , , ra a a∆ = K

 is an orbit of [ ]1, 2, ... , r
G

 on 
[ ]r

X  of length 1, where 

{ }1, 2, ,ia r∈ K

, 
1, 2, ,i r= K

. Then ∆  is self-paired if and only if the permutation 1 2

1 2 ...

... r

r

a a a
σ

 
=  
   is such 

that 
2 1.σ =

 

Proof 

Let ∆  be self-paired. Then there exists 
g G∈

 such that  

[ ] [ ]1 2, , , 1, 2, ,rg a a a r=K K

, that is  

( ) ( ) ( ) [ ]1 2, , , 1, 2, ,rg a g a g a r=  K K

. 

⇒ ( ) ( ) ( )1 21, 2, ..., rg a g a g a r= = =
. 

Since ∆  is self-paired, then by Definition 2.2 

( ) ( ) ( )1 21 , 2 , ..., rg a g a g r a= = =
. 

⇒  g exchanges ia
 and i  if ia i≠

 or fixes i . Thus the permutation 

1 2

1 2 ...

... r

r

a a a
σ

 
=  
   is such that 

2 1.σ =
 Conversely, let 

2 1σ =
, then 

1σ σ −=
. Now, 

g G∈
 such that 

1 2

1 2 ... ...

... ... nr

nr
g

aa a a

 
=  
   takes 

[ ]1 2, , , ra a aK

 to 
[ ]1, 2, , rK

 and 
[ ]1, 2, , rK

 to 
[ ]1 2, , , ra a aK

. Therefore ∆  is 

self-paired.             

Theorem 3.2 

Let G act on 
[ ]r

X  and suppose 
[ ]1 2, , ,i ra a a∆ = K

 and 
[ ]1 2, , ,j rb b b∆ = K

, where 
{ }, 1, 2, ,i ia b r∈ K

, 
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1, 2, ,i r= K

 are orbits of [ ]1, 2, ... , r
G

 on 
[ ]r

X  of length 1. Then i∆  and j∆
 are paired if and only if the 

permutations  

1 2

1 2 ...

...
i

r

r

b b b
σ

 
=  
   and 1 2

1 2 ...

...
j

r

r

a a a
σ

 
=  
   are inverses of each other. 

Proof 

Suppose i∆  and j∆
 are paired. Then there exist 

,i jg g G∈
 such that  

[ ] [ ]1 2, , , 1, 2, ,i rg a a a r=K K

 and 
[ ] [ ]1 2, , , 1, 2, ,j rg b b b r=K K

. 

That is, 

( ) ( ) ( ) [ ]1 2, , , 1, 2, ,i i i rg a g a g a r=  K K

 and 
( ) ( ) ( ) [ ]1 2, , ..., 1, 2, ,j j j rg b g b g b r  =  K

 . 

⇒ ( ) ( ) ( )1 21, 2, ,i i i rg a g a g a r= = =K

 and 
( ) ( ) ( )1 21, 2, ,

jj j rg b g b g b r= = =K

. 

Since i∆  and j∆
 are paired, then by Definition 2.2  

( ) ( ) ( )1 21 , 2 , ,i i i rg b g b g r b= = =K

 and 
( ) ( ) ( )1 21 , 2 , ,j j j rg a g a g r a= = =K

. 

⇒ ( ) ( ) ( ) ( ) ( ) ( )1 1, 2 2, ,i j i j i jg g g g g g r r= = =K

. 

Similarly,  

( ) ( ) ( ) ( ) ( ) ( )1 1, 2 2, ,j i j i j ig g g g g g r r= = =K

. 

Hence the permutations 1 2

1 2 ...

...
i

r

r

b b b
σ

 
=  
   and 1 2

1 2 ...

...
j

r

r

a a a
σ

 
=  
   are inverses of each other. Conversely, 

suppose 1 2

1 2 ...

...
i

r

r

b b b
σ

 
=  
   and 1 2

1 2 ...

...
j

r

r

a a a
σ

 
=  
   are inverses of each other. Now, if 

,i jg g G∈
 where 

1 2

1 2 ... ...

... ...
i

nr

nr
g

bb b b

 
=  
   and 1 2

1 2 ... ...

... ...
j

nr

nr
g

aa a a

 
=  
  , then ig

 takes 
[ ]1 2, , , ra a aK

 to 
[ ]1, 2, , rK

 and 

[ ]1, 2, , rK

 to 
[ ]1 2, , , rb b bK

. Similarly, jg
 takes 

[ ]1 2, , , rb b bK

 to 
[ ]1, 2, , rK

 and 
[ ]1, 2, , rK

 to 

[ ]1 2, , , ra a aK

. Hence i∆  and j∆
 are paired.        

Lemma 3.1 

Let the cycle type of 
g G∈

 be 
( )1 2, , , nα α αK

. If 1 rα ≥
, then the number of elements in 

[ ]r
X  fixed by g is 

given by 

  

( ) 1
!Fix g r

r

α 
=  

  .       3.1) 

Proof 

Let 
[ ] [ ]

1 2, , ,
r

ra a a X∈K

 and 
g G∈

. Then g fixes 
[ ] [ ]

1 2, , ,
r

ra a a X∈K

 if and only if 1 2, , .., ra a a
 are mapped 

onto themselves by g. That is 

[ ] ( ) ( ) ( ) [ ]1 2 1 2 1 2, , , , , , , , ,     implying   that r r rg a a a g a g a g a a a a= =  K K K

 

( ) ( ) ( )1 1 2 2, , , r rg a a g a a g a a= = =K

. Therefore each of the elements 1 2, , , ra a aK

 comes from a 1-cycle in 

g. Hence the number of unordered r-element subsets fixed by ng S∈
 is 

1

r

α 
 
  . But an unordered r-element 

subset say, 
{ }1 2, , , ra a aK

 can be rearranged to give !r  distinct ordered r-element subsets. Hence 

  

( ) 1
!Fix g r

r

α 
=  

  .         

Theorem 3.3 

Let G act on 
[ ]r

X  and suppose 
g G∈

 has cycle type 
( )1 2, , , nα α αK

, then the number of self-paired suborbits 
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of G on 
[ ]r

X  is given by 

  

1 22!

! g

r
n

rn
π

α α+ 
=  

 
∑

.       (3.2) 

Proof 

Let the cycle type of 
g G∈

 be 
( )1 2, , , nα α αK

,, then 
2g

has 
( )1 22α α+

 cycles of length 1. Hence by Lemma 

3.1, the number of elements in 
[ ]r

X  fixed by 
2g

 is given by 

  

( ) 1 22
2

!Fix g r
r

α α+ 
=  

  . 

By using this together with Theorem 2.1 we see that the number of self-paired suborbits of G on 
[ ]r

X  is equal to 

  

( )21

g G

n g
G

π π
∈

= ∑ 1 221
!

! g

r
rn

α α+ 
=  

 
∑

 

1 22!

! g

r

rn

α α+ 
=  

 
∑

.      

 

4. Suborbital Graphs of G acting on 
[ ]r

X  

4.1 Construction of Suborbital Graphs of G acting on 
[ ]r

X  

Let G act on 
[ ]r

X  and let ∆  be an orbit of [ ]1, 2, ... , r
G

 on 
[ ]r

X . Suppose 
[ ]1 2, , , ra a a ∈∆K

, where 

{ }1, 2, ,ia n∈ K

, 
1, 2, ,i r= K

. Then the suborbital Ο  corresponding to ∆  is given by 

[ ] [ ]( ) [ ]{ }1 2 1 21, 2, , , , , , , , , ,r rg r g a a a g G a a aΟ = ∈ ∈ ∆K K K

. 

We form the suborbital graph G  corresponding to suborbital Ο  by taking 
[ ]r

X  as the vertex set and by 

including an edge from 
[ ]1 2, , , rb b bK

 to 
[ ]1 2, , , rc c cK

 if and only if 
[ ] [ ]( )1 2 1 2, , , , , , ,r rb b b c c c ∈ΟK K

. 

Now, if the coordinates of 
[ ]1, 2, , rK

 in positions 
, , ,i j k K

 are respectively identical to the coordinates of 

[ ]1 2, , , ra a aK

 in positions 
, , ,x y z K

., then 
[ ] [ ]( )1 2 1 2, , , , , , ,r rb b b c c c ∈ΟK K

 if and only if the 

coordinates of 
[ ]1 2, , , rb b bK

 in positions 
, , ,i j k K

 are respectively identical to the coordinates of 

[ ]1 2, , , rc c cK

 in positions
, , ,x y z K

. Consequently we have an edge from 
[ ]1 2, , , rb b bK

 to 
[ ]1 2, , , rc c cK

 in 
G . 

4.2 Properties of Suborbital Graphs of G acting on 
[ ]r

X  

Lemma 4.2.1 (Rimberia [4]) 

The action of G on 
[ ]r

X is imprimitive if 1n r> + . 

Theorem 4.2.1 

If 
1n r> +

, then all the suborbital graphs corresponding to the action of G on 
[ ]r

X  are disconnected.  

Proof 

By Lemma 4.2.1, G acts imprimitively on 
[ ]r

X  if 
1n r> +

 hence by Theorem 2.2 all the corresponding 

suborbital graphs are disconnected provided 
1.n r> +

       

 

Next, we consider the other two cases: 

Case 1 

If 
n r=

, then each orbit of [ ]1, 2,..., r
G

 on 
[ ]r

X  is of length 1. Thus the suborbital graphs corresponding to the self-

paired suborbits are regular of degree 1 and so must be disconnected. On other hand, the suborbital graphs 

corresponding to the paired suborbits have vertices each of which has indegree 1 and outdegree 1. Furthermore, 

any two consecutive vertices S and T in these graphs need not be adjacent since for there to be a directed edge, 

say from S to T, the coordinates of S and T must satisfy the rule defining the corresponding suborbital. Therefore 
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such a graph cannot have a directed cycle containing every vertex, and so must be disconnected. 

 

Case 2 

If 
1n r= +

, then [ ]1, 2,..., r
G

 has orbits with exactly r and 
( )1r −

 elements from 
{ }1, 2, ,A r= K

. Now, the 

former orbits have length 1 while the latter have length 
( )1 1n r r r− = + − =

 (Rimberia [4]). Thus the 

corresponding suborbital graphs have vertices each of which has degree 1 or indegree 1 and outdegree 1. 

Similarly, these graphs must be disconnected.  

Theorem 4.2.2 

Let G act on 
[ ]r

X . Then the number of connected components in the suborbital graph i
G

 corresponding to a self-

paired orbit of 
[ ]1,2,...,r

G
 on 

[ ]r
X  with exactly r elements from 

{ }1, 2,...,A r=
 is equal to 

( )
( )

!

2 !
i

n
n

n r
=

−
G

.        4.1) 

Proof 

Let i
G

 be the suborbital graph corresponding to a self-paired orbit of [ ]1, 2, , r
G

K

 on 
[ ]r

X  with exactly r elements 

from 
{ }1, 2, ,A r= K

. Since each vertex of i
G

 has degree 1, then the connected components in i
G

 are trees with 

two vertices and one edge. Hence the number of connected components in i
G

 is equal to 

  
( )

[ ]
Number of vertices in  

22

i

i

r
X

n = =
G

G

!

2

n
r

r

 
 
 = ( )

!

2 !

n

n r
=

−
.    

Theorem 4.2.3 

Let G act on 
[ ]r

X . Then the number of connected components in the suborbital graph j
G

 corresponding to a 

paired orbit of 
[ ]1,2,...,r

G
 on 

[ ]r
X  with exactly r elements from 

{ }1, 2,...,A r=
 is equal to 

( ) ( )
!

3 !
j

n
n

n r
=

−
G

.        4.2) 

Proof 

Let jG  be the suborbital graph corresponding to a paired orbit of [ ]1 ,2, , r
G

K

 on 
[ ]r

X  with exactly r elements from 

{ }1, 2, ,A r= K

. Then each vertex of j
G

 has indegree 1 and outdegree 1. Moreover, construction shows that the 

connected components of j
G

 are directed triangles. Hence the number of connected components in j
G

 is equal to 

  
( )

[ ]
Number of vertices in 

33

j

j

r
X

n = =
G

G

!

3

n
r

r

 
 
 = ( )

!

3 !

n

n r
=

−
.    

Corollary 4.2.1 

Let G act on 
[ ]r

X  and let i
G

 be the suborbital graph corresponding to a self-paired orbit of [ ]1, 2, , r
G

K

 on 
[ ]r

X  

with exactly r elements from 
{ }1, 2, ,A r= K

. Then i
G

 has girth equal to zero. 

Proof 

By Theorem 4.2.2, the connected components in i
G

 are trees with two vertices and one edge. Hence i
G

 cannot 

have a cycle which implies that its girth is equal to zero.        

Corollary 4.2.2 

Let G act on 
[ ]r

X  and let j
G

 be the suborbital graph corresponding to a paired orbit of [ ]1, 2, , r
G

K

 on 
[ ]r

X  with 

exactly r elements from 
{ }1, 2, ,A r= K

. Then j
G

 has girth 3. 

Proof 

By Theorem 4.2.3, the connected components in j
G

 are directed triangles, that is, directed cycles of length 3. 

Hence the girth of j
G

 is equal to 3.           
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Theorem 4.2.4 

Let G act on 
[ ]r

X  and let G  be the suborbital graph corresponding to the orbit of [ ]1, 2, , r
G

K

 on 
[ ]r

X  with no 

element from 
{ }1, 2,...,A r=

. Then G  has girth 3 provided 
3n r≥

. 

Proof 

Let ∆  be the orbit of [ ]1, 2, , r
G

K

 on 
[ ]r

X  with no element from 
{ }1, 2, ,A r= K

 and suppose 

[ ]1 2, , , rd d d ∈∆K

. Then the suborbital Ο  corresponding to ∆  is given by 

 
[ ] [ ]( ) [ ]{ }1 2 1 21, 2, , , , , , , , , ,r rg r g d d d g G d d dΟ = ∈ ∈ ∆K K K

. 

Therefore the corresponding suborbital graph G  has 
[ ]r

X  as the vertex set and has an edge from 

[ ]1 2, , , re e eK

 to 
[ ]

1 2

, , ,
r

f f fK

 if and only if 
{ } { }1 2 1 2, , , , , ,r re e e f f f φ∩ =K K

. Hence the cycle in Figure 

4.1 below exists in G  if and only if the sets 
{ } { } { }1 2 1 2 1 2, , , , , , ,  and , , ,r r rd d d e e e f f fK K K

 are mutually 

disjoint. But clearly this is possible if 
3n r≥

. 

 

 
Figure 4.1: A cycle in GGGG  


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