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Abstract 

    In this paper, we consider semiparametric regression model where the mean function of this model has two 

part, the first is the parametric part is assumed to be linear function of p-dimensional covariates and 

nonparametric ( second part ) is assumed to be a smooth penalized spline. By using a convenient connection 

between penalized splines and mixed models, we can representation semiparametric regression model as mixed 

model. In this model, we investigate the large sample property of the Bayes factor for testing the polynomial 

component of spline model against the fully spline semiparametric alternative model. Under some conditions on 

the prior and design matrix, we identify the analytic form of the Bayes factor and show that the Bayes factor is 

consistent. 

Keywords: Mixed Models, Semiparametric Regression Model, Penalized Spline, Bayesian Model, Marginal 
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1. Introduction  

   In many applications in different fields, we need to use one of a collection of models for correlated data 

structures, for example, multivariate observations, clustered data, repeated measurements,  longitudinal data and 

spatially correlated data. Often random effects are used to describe the correlation structure in clustered data, 

repeated measurements and longitudinal data. Models with both fixed and random effects are called mixed 

models. The general form of a linear mixed model for the i
th

 subject (i = 1,…, n) is given as follows (see 

[10,13,15]), 

        ∑       
 
          ,        (    )                                           (1) 

where the vector    has length   ,    and     are, respectively, a      design matrix and a       design 

matrix of fixed and random effects.   is a p-vector of fixed effects and     are the   -vectors of random effects. 

The variance matrix    is a       matrix and    is a       matrix. 

   We assume that the random effects                                and the set of error terms           are 

independent. In matrix notation (see [13,15]), 

                                                        (2) 

Here               
   has length    ∑   

 
   ,      

      
    is a     design matrix of fixed effects, Z 

is a     block diagonal design matrix of random effects,    ∑   
 
    ,      

      
    is a q-vector of 

random effects,                   is a       matrix and                   is a       block diagonal 

matrix. In this paper, we consider semiparametric regression model (see [1,6,8,9,10,13,15]), for which the mean 

function has two part, the parametric ( first part ) is assumed to be linear function of p-dimensional covariates 

and nonparametric ( second part) is assumed to be a smooth penalized spline. By using a convenient connection 

between penalized splines and mixed models, we can representation semiparametric regression model as mixed 

model. In this model we  investigate large sample properties of the Bayes factor for testing the pure polynomial 

component of spline null model whose mean function consists of only the polynomial component against the 

fully spline semiparametric alternative model whose mean function comprises both the pure polynomial and the 

component spline basis functions. The asymptotic properties of the Bayes factor in nonparametric or 

semiparametric models have been studied mainly in nonparametric density estimation problems related to 

goodness of fit testing. These theoretical results include (see [4,7,12,14]). Compared to the previous approaches 

to density estimations problems for goodness of fit testing and model selection, little work has been done on 

nonparametric regression problems. Choi and et al 2009 studied the semiparametric additive regression models 

as the encompassing model with algebraic smoothing and obtained the closed form of the Bayes factor and 

studied the asymptotic behavior of the Bayes factor based on the closed form ( see [3] ).  
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  In this paper, we obtain the closed form and studied the asymptotic behavior of the Bayes factor in spline 

semiparametric regression model and we proved that the Bayes factor converges to infinity under the pure 

polynomial model and the Bayes factor converges to zero almost surely under the spline semiparametric 

regression alternative and we show that the Bayes factor is consistent.  

2. Semiparametric and Penalized Spline 
 

Consider the model: 

    ∑               
 
                                                   (3) 

  Where          response variables and the unobserved errors are          are known to be i.i.d. normal with 

mean 0 and covariance   
   with   

  known. 

  The mean function of the regression model in (3) has two parts. The parametric ( first part ) is assumed to be 

linear function of p-dimensional covariates     and nonparametric (second part)           is function defined on 

some index set     . 

  The model (3) can be expressed as a smooth penalized spline with q degree, then it's become as: 

    ∑       ∑           
  

   
 
    ∑              

 
     

 
                           (4) 

where         are inner knots                     . 

  By using a convenient connection between penalized splines and mixed models. Model (4) is rewritten as 

follows (see [13,15]) 

                                                                                                                            (5) 

where 

   [

  

 
  

]  ,      

[
 
 
 
 
 

  

 
  

    

 
    ]

 
 
 
 
 

   ,     [

  

 
  

] ,    [

            
 

             
 

   
            

 
             

 
] 

   

[
 
 
 
 
        

        

             
 

             
 

    
        

    
             

 
]
 
 
 
 

 

  We assume                            is integer number and greater than   ), and we 

assume that the design matrix is orthogonal in the following way:  

  
                                                                          (6) 

where: 

              and     be the                      matrix, and let         

  Based on the above setup for regression model (5) and the assumption of the orthogonal design matrix (6), we 

consider a Bayesian model selection problem in a spline semiparametric regression problem. Specifically, we 

would like to choose between a Bayesian spline semiparametric model and its pure polynomial counterpart by 

the criterion of the Bayes factor for two hypotheses,  

                    versus                                                            (7) 

As for the prior of         under   , we assume   and u are independent and  

        ∑       ,    ∑     
                                                        (8) 

        ∑       ,    ∑     
                                                           (9) 

 

3. Bayes factor and marginal distribution  

  The response    in (4) follows the normal distribution with mean    and variance   
  , where    ∑       

 
   

∑         
  

    ∑              
 
     

 
   for,          . Thus, given covariates and             

 , the n-

dimensional response vector                
  follows the n-dimensional normal  distribution with mean    

and covariance matrix   
    where    is the       identity matrix.   Also from the prior distributions specified 

in (8) and (9), we can deduce the joint distribution of    is the multivariate normal distribution       with 

mean zero and      covariance matrix  ∑  
   ∑  

 . 
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  In summary, we have the following:-                               

                  
     ,                     ∑  

   ∑  
                        (10) 

Result 1: 

Suppose the distribution of    and    are given by (10). Then the posterior distribution of P       is the 

multivariate normal with the following mean and variance. 

          
    ∑  ∑    

     
      

            
     ∑ 

      
     

      ∑  ∑    
     

    
    

Where  ∑     ∑  
   ∑  

 . Furthermore, marginally    follows       

                  
    ∑                                                           (11) 

  Note the      th element of ∑ , 

∑        ∑   
      

          ∑   
       

 
                                                (12) 

where                 
 

 

  Applications of the previous result yield that, the marginal distribution of    under    and    are respectively 

         and         , where  

     
     ∑  

  

     
     ∑  

   ∑  
  

  Hence, the Bayes factor for testing problem (7) is given by: 

     
       

       
  

 

√          
        

 
 
  

   
     

 

√          
        

 
 
  

   
     

 

                                
√        

√        
     

 

 
  

     
     

                                                        (13) 

4. Asymptotic behavior of Bayes factor 
 

  The Bayes factor is said to be consistent if ( see[3,14])  

                                          
  under the   ,                                   (14) 

                                           
  under the   ,                                   (15) 

We investigate the consistency of the Bayes factor, by establishing (14) and (15), under the spline 

semiparametric regression model described in the section 2. By truncating the regression up to the first   terms. 

We get     ∑       ∑           
  

   
 
    ∑              

         
     

 
     

 Now define      as the covariance matrix of the marginal distribution of    under    as:- 

       
     ∑  

    ∑     
  

                                               
          

                              (16) 

Where  ∑    is diagonal matrix with diagonal elements    
  from size                      and 

    [
∑    

   ∑   
] 

where    ,     are the matrices for zeros element with size                    and        

          , respectively.   

Then, we can rewrite (16) by using    as: 

        [ 
  

 

 
       ]   

                                                         (17) 

Let    be the covariance matrix of the marginal distribution of    under   , then    can be represented as: 

     
     ∑  

         
  

                                                                
          

  

where: 

    [
∑    

      
] 

where     is the matrix for zeros element with size                     , then we can rewrite    

as the following: 

      [ 
  

 

 
       ]   

                                                       (18) 
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  Then we can use the two matrices above (          for matrix inversions and calculating determinants as shown 

in following lemma. 

Lemma1: Let      and    be defined as in (17) and (18) respectively, and suppose    satisfied (6). Then, the 

following hold. 

i)      
    

         

ii)                 
  

 

 
   

          
            

  

iii)    (    )      
  

 

 
   

        
  

 

 
   

             

iv)   
    

 

       [ 
  

 

 
       ]

  

  
   

v)      
    

 

       [ 
  

 

 
       ]

  

  
   

Proof:- 

i) By multiplying    and   
  to equation (6) from right and left side, we have:-  

    
     

          
    

                                
  

                                
  

Multiplying      
     to the above equation from left side, we get:- 

    
     

      
           

      
     

    
       

ii)       [ 
  

 

 
       ]  

 , and by using (6), we get 

                [     ]
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Then  

                 
  

 

 
   

         
 
           

   

iii)         [ 
  

 

 
       ]  

  

                     [     ]
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[
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Then 

   (    )      
  

 

 
   

        
  

 

 
   

             

iv)   
       [ 

  
 

 
       ]  

      

                       
   

[ 
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       ]

  

  
      

   by lemma 1.i 

                     
 

       [ 
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v)   
       [ 
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       ]

  

  
      

  

                      
 

       [ 
  

 

 
       ]

  

  
  

Now let  

 ̃    
√          

√        
     

 

 
  

     
       

                                                  (19) 

Which an approximation of     with    replaced by      in (13)  

Thus, 

     ̃    
 

 
    

          

        
 

 

 
  

     
       

      

       ̃        
          

        
   

     
       

      

By results of lemma1 we have:- 

       ̃        
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  To establish the consistency of the Bayes factor we focus on   ̃   , first and the remaining terms will be 

considered later. Without loss of generality we assume   
     in the remainder of this paper.   

  Now let 

      ∑
   

 

      
  

 
     

    
 

      
  

                                                                  (20) 

      ∑          
   

               
                                            (21) 

      ∑  
   

 

     
  

  
        

  
 

     
  

                                                          (22) 

Lemma2: let               
  where      are independent normal random variable with mean ∑       

 
   

∑           
  

     and variance   
   , then there exist a positive constant    such that  

 

    
 [ ∑          

    
         
     

     ]      , with probability tending to 1. 

This implies that, under   . 

                   ̃  

   
→    , in probability.  

Proof: 

Let                  are independent standard normal random variables, Note that        
     and  

  
                         

                  
                    

               .  

  By the orthogonality of the design matrix 

             
 

    [
                   

     
]  

   .  

  Then     
        

     . 

  Using the expectation formula of the quadratic form given in (12), we obtain  

      
              ∑

   
 

      
  

 

   

      

  Note that  
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]  

   [
                   

     
]  

   

        
 

    [
                   

     
 ]  

  

and  

     
    

 

   ∑  
    

 

     
  

  
     ∑  

   
 

     
  

  
        . 

  Similarly, using the variance formula of the quadratic form of the multivariate normal variables, we have  

      
             

    ∑  
   

 

     
  

  
         . 

  Let     
         

     
. Then, 
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     ]        
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 ] 
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   (  
     )

 
         

     
  

  
     

           
   

   
→    , 

where the last statement holds from the Chebyshev inequality.  

  Then                    for some       and let          . 

  Hence, we conclude that there exists a positive constant          such that 
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 [ ∑          

     
         
     

     ]        with probability tending to 1. 

Consequently, it follows that 

       ̃   ∑          
     

         
     

       
   
→     in probability under    

     ̃  

   
→     

 

Lemma3  

Suppose we have the penalized spline smoothing, then  

 

    

  (     
      

   )  
   
→     

Proof: 

Since         is the covariance matrix of       ∑   
   
                  it is a positive definite matrix. 

Thus     
      

   is also a positive definite matrix. Thus,   (     
   )          

   , also from the matrix analogue 

of the Cauchy-Schwarz inequality, we have 

  (  
      

   )    √     
       (    

  )   ‖  ‖ ‖    
  ‖  

where 
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Thus, it follows that ‖    
  ‖  { (
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  ⁄

        ⁄  

Since      [   ]‖  ‖    from the distances between truncated power functions, it follows that ‖  ‖
  

 ∑    
     

 
      , where    

                  
 

 is element in      

Thus, 
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Thus 

 

    

  (     
      

   )    
       

  

  
 
   
→     

Theorem(1):  

  Consider the testing problem in (7), suppose that the true model is    ( pure polynomial model ) and let   
  

denote the true distribution of the whole data, with p.d.f                            , where      is the 

standard normal density, then, the Bayes factor is consistent under the null hypothesis   : 

               in     
  probability. 

Proof: 
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where  
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Since         is a positive definite matrix,                      , thus       

     
 (    

     
      )     

    (     
     

  )       (     
     

  )     

since     
     

  ,     
   and   

   are all nonnegative definite matrices, it follows that 

        (    
     

                   
       

By orthogonality of the design matrix (6), we have         
     (                   )  

Thus similarly to the proof of lemma (3), we get: 
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Let     , by the Markov inequality when r = 1 and lemma (3), we have: 
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→    . 

Note that     
      

   is nonnegative definite and thus,   
      

     
      is nonnegative random variable. 

Therefore,      (    )  

The above results with lemma (2) imply there exists a constant    such that 

 

    

         
 

    

     ̃         

                                  

That is,  

                          
   
→      in   

  probability. 

This completes the proof. 

  Now we consider asymptotic behavior of the Bayes factor under    and assuming that the true model for    is 

in   . 

Lemma(4): 

  Let                where      are independent normal random variables with mean ∑       
 
   

∑           
  

    ∑    
         
      and variance   

    and let            
            .  

Then,       
 

  
   

         in   
  probability. 

Proof: 

  From the moment formula of the quadratic form of normal random variables, the expectation and variance of 

quadratic form   
      are given by: 

    
                         

              

                        ∑
   

 

      
  

         
           

              

                                , and  

      
            (   

  )          
    

           

Note  
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since            , we have 

          
  ∑

   
 

     
 

 
     (       ). 

On the other hand, consider a fixed positive integer     such that   
    and a sufficiently large   with 

   
 

     
    

 

 
. For such   and  . 

    ∑
    

   
 

     
 

         

   

 
    

 

     
 
   

  

                                             
   

 

     
    

      
  

 

 
. 

Further, similarly to the previous calculation, we have  
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 ∑
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As in case of        
             

       
   

           ∑
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 )

 
 
             

 ∑
    

 

(     
 )

 
 
              . 

Consider a fixed positive integer     such that   
    and a sufficiently large n with 

   
 

     
    

 

 
 . Again, for 

such n and N, 

       
    

           ∑
    

   
 

(     
 )

  
         
        

 (
   

 

     
 )

 

   
  

 

 
  . 

By combining value of      and the previous result, we have  

      
          (       ). 

Furthermore, note that        
                      

    
           

Let    , by the Chebshev inequality. 

  { |
 

  
  

      
 (  

     )

  
|     }   

   (  
     )

  
             

   
→    . 

Since       
 (  

     )

  
        (

    

  
 

  

  
 )     

      
 

  
  

        , in probability 

This completes the proof. 

 

Lemma(5): 

Suppose we have the penalized spline smoothing, then  

   
   

 

  

   
       

         
   

 

Proof: 

  From a property of the determinant of the positive definite matrix, we have  
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where         is the k th element of       respectively. 

  From lemma (1), we have: 
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 )]                . 

Therefore, it follows that 
 

  
   

       

         
 
   
→      

Theorem(2): 

  Consider the testing problem in (7), suppose that the true model is in    ( the penalized spline semiparametric 

model ) and let   
  denote the true distribution of the whole data, with p.d.f.                   

               , where      is the standard normal density. Then the Bayes factor is consistent under the 

alternative hypothesis   : 

               in     
  probability. 

Proof: 
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where  
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First, by lemma (1), 

  
          

        
  

    
  
 

 
   

        
  
 

 
   

           

       
  
 

 
   

          
            

 
          (

  
 

 
   

 )

         

  
             (

  
     

 

  
 )

         

  

                 =(  
   

 

  
 )

         

         (  
   

 

  
 )

         

     . 

And from lemma (4)          . Then  
 

  
   

          

        
        

   
→    . 

Therefore,  
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   (    )

       
 

 

 
  

     
       

     ) 

Since    
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    ̃  
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    ̃   

   
→   

  

 
 , in the   

  probability. 

And from lemma (5), 
 

  
  

   
→    , finally, note that    is nonpositive random variable since      

     
   is a nonnegative definite 

matrix. 

Therefore, by combining the above results, there exist      such that 

         
 

  
        

   

 
 , with probability tending to 1. 

Hence,    

   
→    , in   

  probability. 

This completes the proof. 

5.Conclusion 
   

1- The Bayes factor for testing problem              versus                is given by: 

     
√        

√        
     

 

 
  

     
     

         

2- If               
  where      are independent normal random variable with mean 

∑       
 
   ∑           

  
     and variance   

   , then there exist a positive constant    such that 

 

    
 [ ∑          

    
         
     

     ]      , with probability tending to 1.  

      This implies that, under   .       ̃  

   
→    , in probability.  

3- If the true model is    ( the pure polynomial model ), then, the Bayes factor is consistent under the null 

hypothesis   . This implies that,                 in     
  probability. 

4- If                where      are independent normal random variables with mean ∑       
 
   

∑           
  

    ∑    
         
      and variance   

    and if         
        . Then, 

      
 

  
   

         in   
  probability. 

5- If the true model is in    ( the penalized spline semiparametric model ) ,then the Bayes factor is 

consistent under the alternative hypothesis   . This implies that,                 in     
  probability. 
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