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Abstract 

This paper deals with the estimation of population mean of the variable under study by improved ratio-product 

type exponential estimator using qualitative auxiliary information. The expression for the bias and mean squared 

error (MSE) of the proposed estimators has been derived to the first order of approximation. A comparative 

approach has been adopted to study the efficiency of proposed and previous estimators. The present estimators 

provide us significant improvement over previous estimators leading to the better perspective of application in 

various applied areas. The numerical demonstration has been presented to elucidate the novelty of paper.  
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1. Introduction 

The use of supplementary (auxiliary) information has been widely discussed in sampling theory. Auxiliary 

variables are in use in survey sampling to obtain improved sampling designs and to achieve higher precision in 

the estimates of some population parameters such as the mean or the variance of the variable under study. This 

information may be used at both the stage of designing (leading for instance, to stratification, systematic or 

probability proportional to size sampling designs) and estimation stage. It is well established that when the 

auxiliary information is to be used at the estimation stage, the ratio, product and regression methods of 

estimation are widely used in many situations. 

The estimation of the population mean is a burning issue in sampling theory and many efforts have been 

made to improve the precision of the estimates. In survey sampling literature, a great variety of techniques for 

using auxiliary information by means of ratio, product and regression methods has been used. Particularly, in 

the presence of multi-auxiliary variables, a wide variety of estimators have been proposed, following different 

ideas, and linking together ratio, product or regression estimators, each one exploiting the variables one at a time. 

The first attempt was made by Cochran (1940) to investigate the problem of estimation of population 

mean when auxiliary variables are present and he proposed the usual ratio estimator of population mean. Robson 

(1957) and Murthy (1964) worked out independently on usual product estimator of population mean. Olkin 

(1958) also used auxiliary variables to estimate population mean of variable under study. He considered the 

linear combination of ratio estimators based on each auxiliary variable separately making use of information 

related to the supplementary characteristics having positive correlation with the variable under consideration. 

Singh (1967a) dwelt upon a multivariate expression of Murthy’s (1964) product estimator. Further, the 

multi-auxiliary variables through a linear combination of single difference estimators were attempted by Raj 

(1965). In next bid of investigation Singh (1967b) extended the ratio-cum-product estimators to multi-

supplementary variables. An innovative idea of weighted sum of single ratio and product estimators leading to 

multivariate was developed by Rao and Mudholkar (1967). Much versatile effort was made by John (1969) by 

considering a general ratio-type Estimator that, in turn, presented n unified class of estimators obtaing various 

particular estimators suggested by previous authors such as Olkin’s (1958) and Singh’s (1967a). Srivastava 

(1971) dealt with a general ratio-type estimator unifying previously developed estimators by eminent authors 

engaged in this area of investigation. Searls (1964) and Sisodia & Dwivedi (1981) used coefficient of variation 

of study and auxiliary variables respectively to estimate population mean of study variable.  

Srivenkataramana (1980) first proposed the dual to ratio estimator for estimating population mean. 

Kadilar and Cingi (2004, 2005) analyzed combinations of regression type estimators in the case of two auxiliary 

variables. In the same situation, Perri (2005) proposed some new estimators obtained from Singh’s (1965, 1967b) 

ones.   Singh and Tailor (2005), Tailor and Sharma (2009) worked on ratio-cum-product estimators. Sharma and 

Tailor (2010) proposed a ratio-cum-dual to ratio estimator for the estimation of finite population mean of the 

study variable y. In the series of improvement Das and Tripathi (1978), Srivastava and Jhajj (1980), Singh et.al 

(1988), Prasad and Singh (1990, 1992), Naik and Gupta (1991), Ceccon and Diana (1996), Agarwal et al. (1997), 

Upadhyay and Singh (1999, 2001), Abu-Dayyeh et al. (2003), Javid Shabbir (2006), Kadilar and Cingi (2006), 

Singh et.al (2007), Singh et.al (2009), Muhammad Hanif et.al (2010), Yadav (2011), Pandey et.al (2011), Shukla 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.11, 2013 

 

43 

et.al (2012), Onyeka (2012) etc have proposed many estimators utilizing auxiliary information. In the present 

study, we suggest a new estimator for estimating population mean of the variable under study. 

  The use of auxiliary information may increase the precision of an estimator when study variable Y is 

highly correlated with auxiliary variable X. When the variable under study Y is highly positively correlated 

with the auxiliary variable X, then the ratio type estimators are used to estimate the population parameter and 

product estimators are used when the variable under study Y is highly negatively correlated with the auxiliary 

variable X for improved estimation of parameters of variable under study. However there are situations when 

information on auxiliary variable is not available in quantitative form but in practice, the information regarding 

the population proportion possessing certain attribute 
ψ

 is easily available (see Jhajj et.al. [7]), which is 

highly associated with the study variable Y. For example (i) Y may be the use of drugs and 
ψ

 may be the 

gender (ii) Y may be the production of a crop and 
ψ

 may be the particular variety. (iii) Y may be the amount 

of milk produced and 
ψ

 a particular breed of cow. (iv) Y may be the yield of wheat crop and 
ψ

 a particular 

variety of wheat etc. (see Shabbir and Gupta [25]).  

Let there be N units in the population. Let
),( iiy ψ

, i = 1, 2, ….. , N be the corresponding observation 

values of the i
th 

unit of the population of the study variable Y and the auxiliary variable 
ψ

 respectively. 

Further we assume that iψ
= 1 and iψ

= 0, i = 1, 2, …. , N if it possesses a particular characteristic or does 

not possess it. Let 

∑
=

=
N

i

iA
1

ψ
 and 

∑
=

=
n

i

ia
1

ψ
denote the total number of units in the population and 

sample respectively possessing the attribute
ψ

. Let N

A
P =

 and n

a
p =

 denote the proportion of units in the 

population and sample respectively possessing the attribute
ψ

. Let a simple random sample of size n from this 

population is taken without replacement having sample values
),( iiy ψ

,    i = 1, 2,….., n. 

Naik and Gupta [15] defined the following ratio and product   estimators   of   population mean when   

the   prior   information   of   population proportion of units, possessing   the same attribute
ψ

 is available as  

                                                            

)(1
p

P
yt =

                                                                                             (1.1) 

                                                            

)(2
P

p
yt =

                                                                                            (1.2) 

The MSE of estimators 1t and 2t  up to the first order of approximation are  

                     
)]21([)( 222
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Singh et.al [27] defined the following ratio, product and ratio & product estimators respectively of 

population mean using qualitative auxiliary information as  
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Where α is a real constant to be determined such that the MSE of 5t  is minimum. For 1=α , 5t  reduces to the 
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estimator 3t  and for 0=α , it reduces to the estimator 4t . 

The MSE of the estimators 3t , 4t  and 5t   up to the first order of approximation are respectively as  
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                                                                             (1.8)      
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which is minimum for optimum value of α  as  
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and the minimum MSE of 5t  is  
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which is same as that of traditional linear regression estimator. 
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and   ψ

ψρ
SS

S

y

y

pb =
 is the point biserial correlation coefficient. 

 

2. Suggested Estimators 

                Motivated by Prasad [19] and Gandge et al. [6], we propose 

 

The exponential ratio type estimator as                      

                     

)exp(1
pP

pP
yk

+

−
=ξ

                                                                                                 (2.1)   

The exponential product type estimator as                      

                                 

)exp(2
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−
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                                                                                                    (2.2) 

The exponential dual to ratio type estimator as                      

                     









+

−
=

Pp

Pp
y

*

*

3 expξ
                                                                                                 (2.3) 

where 
)(

)(*

nN

nNP i
i −

−
=

ψ
ψ

 or
NigPg ii ......,,2,1,)1(* =−+= ψψ

, which usually gives 

gpPgp −+= )1(*

where nN

n
g

−
=

.  

The exponential ratio and dual to ratio type estimator as                      
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where α  is a real constant to be determined such that the MSE of 4ξ  is minimum. For 1=α , 4ξ   reduces to 

the estimator 3t  and for 0=α , it reduces to the estimator 3ξ . 

To obtain the bias and mean squared error (MSE) of the estimators, let 
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Expanding the right hand side of (2.5) and retaining terms up to second powers of e’s, and then subtracting Y
from both sides, we have 
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Taking expectations on both sides of (2.6), we get the bias of the estimator 1ξ  up to the first order of 

approximation, as 
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and now taking expectation, we get the MSE of the estimator 1ξ , to the first order of approximation as  
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Thus the minimum MSE of the estimator 1ξ  is obtained as  
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Following the same procedure as above, we get the bias and MSE of the estimator 2ξ  up to the first order of 

approximation, as                  
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The minimum MSE of the estimator 2ξ  is obtained for optimal value of k as  
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where the optimal value of k for the estimator 2ξ is       
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Expressing (2.3) in terms of e’s, we have 
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Expanding the right hand side of (2.14) and retaining terms up to second powers of  

e’s, and then subtracting Y from both sides, we have 
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Taking expectations on both sides of (2.15), we get the bias of the estimator 3ξ  up to the first order of 

approximation, as 

                         

)
4

(
2

)(

2

3 p

p
K

gC
fgYB +=ξ

                                                                                             (2.16) 

From equation (2.15), we have 
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Squaring both sides of (2.17) and then taking expectations, we get MSE of the estimator 3ξ , up to the first order 

of approximation as 
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Expressing (2.4) in terms of e’s, we have 
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Expanding the right hand side of (2.19) and retaining terms up to second powers of e’s, and then subtracting Y
from both sides, we have 
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Taking expectations on both sides of (2.20), we get the bias of the estimator 4ξ  up to the first order of 

approximation, as 
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From equation (2.20), we have 
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Squaring both sides of equation (2.22) gives  
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and now taking expectation, we get the MSE of the estimator 4ξ , to the first order of approximation as  
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which is minimum for optimum value of α  as  
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                    optpby MCYfMSE )()1()( 4

222

4min ξρξ =−=
                                                                     (2.25) 

which is same as that of traditional linear regression estimator and also equal to optt )( 5 . 

3. Efficiency comparisons 

            Following are the conditions for which the proposed estimator 4ξ  is better than the t  and 
ξ

 estimators. 

We know that the variance of the sample mean 
y

 is   

                               

22)( yCYfyV =
                                                                                                             (3.1)   

To compare the efficiency of the proposed estimator 4ξ  with the existing and proposed estimators, from (3.1) 

and (1.3), (1.4), (1.8), (1.9), (2.10), (2.13) and (2.18),  we have 
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4. Empirical Study 

To analyze the performance of various estimators of population mean Y of study variable y, we considered the 

following two data sets 

Data 1. [Source: Sukhatme & Sukhatme [33], page 305]  

Y = Area (in acres) under wheat crop in the circles and 
ψ

 = A circle consisting more than five villages. 

89=N , 23=n , 3.360=Y , 0.1236  P = , 
0.766  pb =ρ

, 
0.60400   Cy =

, 
2.19012   Cp =

   

Data 2. [Source: Mukhopadhyay [12], page 44]  

Y = Household size and 
ψ

 = A household that availed an agricultural loan from a bank. 

25  N = , 7=n , 9.44=Y , 0.400  P = , 
0.387-  pb =ρ

, 
0.17028   Cy =

, 
1.27478   Cp =

   

The percent relative efficiency (PRE) of the estimators
y

, proposed and mentioned existing estimators and 

opt)( 4ξ with respect to 
y

 usual unbiased estimator have been computed and given in table1.  

Table1: PRE of various estimators with respect to
y

 

Estimator PRE of . , with respect to
y

 

Population I Population II 

y
            100.00  100.00 

1t  
11.63     1.59 

2t  
   5.07      1.95 

3t  
66.25      5.58 

4t  
14.16      8.28 

1ξ  
67.84      6.23 

2ξ  
16.58      8.89 

3ξ  
 42.11    50.17 

opt)( 4ξ = optt )( 5  
241.99  117.62 

 

5. Conclusion 

From Table1 we see that the proposed   estimator   4ξ  under   optimum   condition   performs better than the 

usual sample mean estimator 
y

, Naik and Gupta estimators ( 1t  and 2t  ), Singh et.al estimators ( 3t and 4t ),  

proposed estimators ( 1ξ , 2ξ  and 3ξ ). The 
ξ

estimators are better than the corresponding t  estimators and under 

optimum conditions 4ξ  and 5t  both are equally efficient.  
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