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Abstract 

In this paper, we apply the notion of qpI-open sets and qpI-continuous functions to present and study a new class 

of functions called contra qpI-continuous functions in ideal bitopological spaces. 
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1. Preliminaries  

In 1961 Kelly [6] introduced the concept of bitopological spaces as an extension of topological spaces. A 

bitopological space (X, τ1, τ2) is a nonempty set X equipped with two topologies τ1 and τ2 [6]. The study of quasi 

open sets in bitopological spaces was initiated by Dutta [1] in 1971. In a bitopological space (X, τ1, τ2) a set A of 

X is said to be quasi open [1] if it is a union of a τ1-open set and a τ2-open set. Complement of a quasi open set is 

termed quasi closed. Every τ1-open (resp. τ2-open) set is quasi open but the converse may not be true. Any union 

of quasi open sets of X is quasi open in X. The intersection of all quasi closed sets which contains A is called 

quasi closure of A. It is denoted by qcl(A) [9]. The union of quasi open subsets of A is called quasi interior of A. 

It is denoted by qInt(A) [9]. 

Mashhour [10] introduced the concept of preopen sets in topology. A subset A of a topological space (X, 

τ) is called preopen if  A ⊂ Int(Cl(A)) . Every open set is preopen but the converse may not be true.  In 1995, 

Tapi [12] introduced the concept of quasi preopen sets in bitopological spaces. A set A in a bitopological space 

(X, τ1, τ2) is called quasi preopen [12] if it is a union of a τ1-preopen set and a τ2-preopen set. Complement of a 

quasi preopen set is called quasi pre closed. Every τ1-preopen (τ2-preopen, quasi open) set is quasi preopen but 

the converse may not be true. Any union of quasi preopen sets of X is a quasi preopen set in X. The intersection 

of all quasi pre closed sets which contains A is called quasi pre closure of A. It is denoted by qpcl(A). The union 

of quasi preopen subsets of A is called quasi pre interior of A. It is denoted by qpInt(A). 

The concept of ideal topological spaces was initiated Kuratowski [8] and Vaidyanathaswamy [13].  An 

Ideal I on a topological space (X, τ) is a non empty collection of subsets of  X which satisfies: i)A  I and B ⊂ 

A ⇒ B  I and ii) A  I and B  I ⇒ A∪B  I  If  � (X)  is the set of all subsets of X, in a topological space 

(X, τ) a set operator (.)
*
:� (X) → � (X) called the local function [3] of A with respect to τ and I and is defined 

as follows:      

                         A∗(τ, I) = {x∈XU ∩ A ∉ I, ∀ U∈ τ(x)}, where τ(x) =U∈ τ  x∈U}.  

Given an ideal bitopological space (X,τ1,τ2I)  the quasi local function [3] of A with respect to τ1, τ2 and I denoted 

by A�
∗  (τ1,τ2,I) ( in short A�

∗ )  is defined as follows:  

     A�
∗ (τ1,τ2, I) = {x∈XU ∩ A ∉ I,∀ quasi open set U containing x}.  

 A subset A of an ideal bitopological space (X, τ1, τ2) is said to be qI- open [3] if A ⊂ qInt A�
∗ .    A mapping  f: 

(X,τ1,τ2I) → (Y,σ1,σ2) is called  qI-continuous [3]   if  f 
-1

(V) is qI-open in X for every quasi open set V of Y .  

        In 1996 Dontchev [2] introduced a new class of functions called contra-continuous functions. A function f: 

X → Y to be contra continuous if the pre image of every open set of Y is closed in X. 

 Recently the authors of this paper [4 & 5] defined quasi pre local functions, qpI- open sets and qpI- 

continuous mappings, qpI- irresolute mappings in ideal bitopological spaces. 

Definition1.1. [4]  Given an ideal bitopological space (X, τ1, τ2 I)  the quasi pre local mapping of A with respect 

to τ1, τ2 and I denoted by A��
∗ (τ1, τ2, I) (more generally as A��

∗ ) is defined as follows:  A��
∗ (τ1, τ2 ,I) = {x∈XU ∩ 

A ∉ I ,∀ quasi pre-open set U containing x} 

Definition1.2. [4]  A subset A of an ideal bitopological space (X, τ1, τ2, I ) is qpI- open if  A ⊂ qpInt(A��
∗ ). 

Complement of a qpI- open set is qpI- closed. If the set A is qpI-open and qpI-closed, then it is called qpI-clopen 

Definition1.3. [4] A mapping  f: (X, τ1, τ2, I) → (Y, σ1 ,σ2) is called a  qpI- continuous if  f 
-1

(V) is a qpI- open set 

in X for every quasi open set V of Y 

Definition1.4. [5] A mapping  f: (X,τ1,τ2,I) → (Y,σ1,σ2) is called  qI- irresolute if  f 
-1

(V) is a qI- open set in X for 

every quasi open set V of Y. 
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Definition1.5. [5] A mapping  f: (X,τ1,τ2,I) → (Y,σ1,σ2) is called  qpI- irresolute if  f 
-1

(V) is a  qpI- open set in X 

for every quasi semi open set V of Y. 

 

2. Contra qpI-continuous  functions 
Definition 2.1. A function f: (X, τ1, τ2, I) → (Y, σ1, σ2) is called contra qpI- continuous if f−

1
 (V) is qpI-closed in 

X for each quasi open set V in Y. 

Theorem 2.1.  For a function f: (X, τ1, τ2, I) → (Y, σ1, σ2), the following are equivalent: 

a) f  is contra qpI-continuous . 

b) For every quasi closed subset F of Y, f−
1 
(F) is qpI-open in X. 

c) For each x  X and each quasi closed subset F of Y with f(x)  F, there exists a qpI-open subset U of X 

with x  U such that f (U) ⊂ F. 

Proof: (a) ⇒ (b) and (b) ⇒ (c) are obvious. 

(c) ⇒ (b) Let F be any quasi closed subset of Y. If x  f−
1 
(F) then f(x)  F, and there exists a qpI- open subset 

Ux  of  X  with x   Ux such that f(Ux) ⊂ F. Therefore, f
-1

(F) = ∪ {Ux: x ∈         f
-1

 (F)}. Hence we get f−
1 
(F) is 

qpI-open. [4] 

Remark 2.1.  .  Every contra qpI-continuous function is contra qI-continuous, but the converse need not be true  

Example2.1.  Let X ={ a, b, c } and I = {φ,{a}} be an ideal on X. Let τ1 = {X, φ,{c}},              τ2 = {X, φ, {a, 

b}}, σ1 = {X, φ,{b}}and  σ2 ={ φ, X} be topologies on X. Then the identity mapping  f: (X,τ1, τ2 ,I) → (X,σ1,σ2) is 

contra qI- continuous but not contra qpI- continuous  as A= {b} is  qI- open but not qpI-open in (X, τ1, τ2, I).
  

Theorem 2.2.  If a function f: (X, τ1, τ2, I) →(Y, σ1, σ2) is contra qpI-continuous and Y is regular, then f is qpI-

continuous 

Proof: Let x  X and let V be a quasi open subset of Y with f(x)  V Since Y is regular, there exists an quasi 

open set W in Y such that f (x)  W ⊂ cl(W) ⊂  V. Since f is contra qpI-continuous, by Theorem 2.1.there 

exists a qpI-open set U in X with x  U such that f (U) ⊆ Cl (W). Then f (U) ⊆ Cl (W) ⊆ V. Hence f is qpI-

continuous [4].  

Definition 2.2. A topological space (X, τ1, τ2, I) is said to be qpI -connected if  X is not the union of two 

disjoint non-empty qp I-open subsets of  X.  

Theorem 2.3.  If f: (X, τ1, τ2, I) → (Y, σ1, σ2) is a contra qpI-continuous function from a qpI-connected space X 

onto any space Y , then Y is not a discrete space. 

Proof:  Suppose that Y is discrete. Let A be a proper non-empty quasi clopen set in Y. Then f
−1

(A) is a proper 

non-empty qpI- clopen subset of X, which contradicts the fact that X is qpI-connected.  

Theorem 2.4. A contra qpI-continuous image of a qpI-connected space is connected. 

Proof:  Let f: (X, τ1, τ2, I) → (Y, σ1, σ2) be a contra qpI- continuous  function from a qpI-connected space X 

onto a space Y . Assume that Y is disconnected. Then Y = A ∪ B, where A and B are non-empty quasi clopen 

sets in Y with A ∩ B = ∅. Since f is contra qpI-continuous , we have that f
−1

(A) and f
−1

(B) are qpI-open non-

empty sets in X with f
−1

 (A) ∪ f
−1

 (B) = f
−1

 (A ∪ B) = f
−1

 (Y ) = X and f
−1

 (A) ∩ f
−1

 (B) = f
−1

 (A ∩ B) = f
−1

 (∅) 

= ∅. This means that X is not semi-I-connected, which is a contradiction. Then Y is connected.  

Definition 2.6. A mapping f: (X, τ1, τ2, I) → (Y, σ1, σ2) is called  contra qpI- irresolute if  f 
-1

(V) is a qpI- closed 

set in X for every quasi semi open set V of Y. 

Theorem 2.8.  Let f: (X, τ1, τ2, I1) → (Y, σ1, σ2, I2) and g: (Y, σ1, σ2, I2) → (Z, ρ 1, ρ 2, I3) Then, 

gof is contra qpI- continuous if g is continuous and f is contra qpI- continuous. 

Proof: Obvious.  

 

3. Conclusion 

Ideal Bitopological Spaces is an extension for both Ideal Topological Spaces and Bitopological Spaces. It has 

opened new areas of research in Topology and in the study of topological concepts via Fuzzy ideals in Ideal 

Bitoplogical spaces. The application of the results obtained would be remarkable in other branches of Science 

too.  
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