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1. Introduction and Preliminaries: 
 The concept of fuzzy set was introduced initially by Zadesh [23] in 1965.Which are a generalization of 

fuzzy metric and intuitionist fuzzy metric space. Various concepts of fuzzy metric space were considered in [7, 8, 

13, 14].In this sequel we shall adopt the usual terminology. 

Definition 1.1:  [11] ( ), LLet L L= ≤  be a complete lattice, and U a non-empty set called a universe. An L -

fuzzy set A  on U is defined a mapping :A U L→ . For each u inU , ( )A u  represents the degree ( )in L  to 

which u  satisfies A . 

Lemma 1.1:  [5, 6] consider the set *L  and the operation *L≤  defined by: 

  ( ) ( ) [ ]{ }2

1, 2 1, 2 1 2* : 0,1 1 ,L x x x x and x x= ∈ + ≤   

( ) ( )1, 2 * 1, 2 1 1 2 2 ,Lx x y y x y and x y≤ ⇔ ≤  for every ( ) ( )1, 2 1, 2, *x x y y L∈ .  Then ( )**, LL ≤  is a 

complete lattice and convention of L- fuzzy metric spaces introduced by saadatiel. [19] 

 Classically, a triangular norm T  on [ ]( )0,1 ,≤  is defined as an increasing, commutative, associative 

mapping  [ ] [ ]2
: 0,1 0,1T →  satisfying ( )1, ,T x x=  for all [ ]0,1x∈ . 

 These definitions can be straightforwardly extended to any lattice ( ), LL L= ≤ . Define first 

0 infL L=  and 1 supL L= . 

Definition 1.2:  A triangular norm ( )t norm−  on L  is a mapping 
2:T L L→  satisfying the following 

conditions: 

 1. ( ) ( )( ),1 ;Lx L T x x∀ ∈ =   (Boundary condition) 

 2. ( )( ) ( ) ( )( )2, , , ;x y L T x y T y x∀ ∈ =   (Commutativity) 

 3. ( )( ) ( )( ) ( )( )( )3, , , , , , ;x y z L T x T y z T T x y z∀ ∈ =   (Associativity) 

 4. ( )( ) ( ) ( )( )4, ' , ' ' ' , ', ' .L L Lx x y y L x x and y y T x y T x y∀ ∈ ≤ ≤ ⇒ ≤     

 (Monotonicity) 

 

 A t–norm T  on L  is said to be continuous if for any ,x y L∈  and any sequences { }nx  and { }ny  

which converge x  to and y  we have 

    ( ) ( )lim , ,n n
n

T x y T x y=  

For example, ( ) ( ), min ,T x y x y=  and ( ),T x y xy=  are two continuous t -norms on [ ]0,1 . A t –norm 

can also be defined recursively as an ( )1n + –ary operation ( )n N∈  by 
1T T=  and 

   ( ) ( )( )1

1 1 1 1,..., ,..., ,n n

n n nT x x T T x x x−
+ +=  
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for 2n ≥  and ix L∈ . 

Definition 1.3:  A negation on L  is any decreasing mapping :N L L→  satisfying ( )0 1L LN =
  

 and  

( )1 0L LN =  . It ( ( ))N N x x x L= ∀ ∈ Then N is called an involutive negation. 

Definition 1.4:  The 3-tuple ( , , )X M T  is said to be an L –fuzzy metric space if X  is an arbitrary (non-

empty) set, T  is a continuous t-norm on L  and M  is an L -fuzzy set on 
2 ]0, [X × +∞  satisfying the 

following conditions for every x, y,z  in X  and , ]0, [:t s in +∞ . 

a) ( ) 0 ;L Lx,y,t >M  

b) ( ) 1x, y,t = LM  for all t > 0  if and only if x = y;  

c) ( ) ( );x, y,t x, y,t=M M  

d)  ( ) ( )( ) ( ), ;Lx, y,t y,z,s x,z,t +s≤T M M M  

e) ( ) :]0, [x, y,. L∞ →M  is continuous and ( ) 1tlim x, y,t→∞ =l M L   

 Let ( , , )X M T  be an L –fuzzy metric space. For ]0, [,t∈ +∞ , we define the open ball 

( )B x,r,t A⊆  with center x X∈  and a fixed radius { },1r L\ 0∈ L L  as 

   ( ) ( ) ( ){ }: , , LB x,r,t y X x y t r= ∈ >M N  

A subset A X⊆  is called open if for each x A∈ , there exist t > 0  and { }0 ,1r L\∈ L L  such that 

( )B x,r,t A⊆ . Let MT  denote the family of all open subsets of X . Then MT  is called the topology induced 

by the L –fuzzy metric M . 

Example 1.1:  [21] Let ( )X,d  be a metric space. Denote ( ) ( )( )1 1 2 2,min ,1a,b a b a b= +T  for all 

( )2,1a = a a  and ( )2,1b = b b  in L*  and let M  and N  be fuzzy sets on ]0, [2X × +∞  be defined as 

follows: 

   ( ) ( )( ) ( )
( )
( )
,

, ,
, ,

M,N

d x yt
x, y,t M x y t

t d x y t d x y

 
= =   + + 

M  

Then ( )M,NX, ,M T  is an intuitionistic fuzzy metric space. 

Example 1.2:  [1] Let ( )X,d  be a metric space. Denote ( ) ( )( )1 1 2 2,min ,1a,b a b a b= +T  for all 

( )2,1a = a a  and ( )2,1b = b b  in L*  and let M  and N  be fuzzy sets on ( )0,2X × ∞  defined as follows: 

  ( ) ( ) ( )( ) ( )
( )

( )
,

, , , , , ,
, ,

n

M,N n n

d x yht
x, y,t M x y t N x y t

ht md x y ht md x y

 
= =   + + 

M  

for all , , ,t h m n R+∈ . Then ( )M,NX, ,M T  is an intuitionistic fuzzy metric space.  

Lemma 1.2:  [10] Let ( )X, ,M T  be an L -fuzzy metric space. Then, ( )x, y,tM  is nondecreasing   with 

respect to ,t  for all ,x y  in X . 

Definition 1.5:  A sequence { }n n
x

∈N
 in an L -fuzzy metric space ( )X, ,M T  is called a Cauchy sequence, if 

for each { }\ 0Lε ∈ L  and 0t >  there exists 0n ∈N  such that for all ( )0 0m n n m n≥ ≥ ≥ ,  

   ( ) ( )m n Lx ,x ,t ε>M N  
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 The sequence { }n n
x

∈N
 is said to be convergent to x X∈  in the L -fuzzy metric space ( )X, ,M T  

(denoted by nx x→M
) if ( ) ( ) 1n nx ,x,t x,x ,t= → LM M  whenever n +→ ∞  for every t > 0 . A L -

fuzzy metric space is said to be complete if and only if every Cauchy sequence is convergent. 

 Henceforth, we assume that T  is a continuous t-norm on the lattice L  such that for every

{ },1L\ 0µ∈ L L , there is a { },1L\ 0λ∈ L L  such that 

   ( ) ( )( ) ( )1 ,...,n

Lλ λ µ− >T N N N  

For more information see [19].   

Definition 1.6:  Let ( , , )X M T  be an L –fuzzy metric space. M  is said to be continuous on 

]0, [X X× × ∞  if 

   ( ) ( )lim , , , ,n n n
n

x y t x y t
→∞

=M M  

Whenever a sequence ( ){ }, ,n n nx y t  in ]0, [X X× × ∞  converges to a point ( ), ,x y t ∈ ]0, [X X× × ∞  i.e., 

( ) ( )lim , , lim , , 1n n n nx x t y y t= = LM M  and ( )lim , ,n nx y t =M ( ), ,x y tM  . 

Lemma 1.3:  Let ( )X, ,M T  be an L -fuzzy metric space. Then, M  is a continuous function on 

]0, [X X× × ∞ .  

Proof:  The proof is the same as that for fuzzy spaces (see Proposition 1 of [15]). 

Definition 1.7:  Let A
 
and S  be mappings from an L –fuzzy metric space into itself. Then the mappings are 

said to be weak compatible if they commute at their coincidence point, that is, Ax Sx=  implies that

ASx SAx= . 

Definition 1.8:  Let A
 
and S  be mappings from an L –fuzzy metric space into itself. Then the mappings are 

said to be weak compatible if  

   ( )lim , , 1 0n n
n

ASx SAx t t
→∞

= ∀ >LM  

Whenever { }nx  is a sequence in X  such that 

   lim limn n
n n

Ax Sx x X
→∞ →∞

= = ∈  

Proposition 1.1:  [22] If self-mappings A  and S  of an L –fuzzy metric space ( )X, ,M T
 
are compatible, 

then they are weak compatible. 

Lemma 1.4:  [1,19] Let ( )X, ,M T  be an L –fuzzy metric space. Define 
, :Eλ M  

 

{ }2 0X → +∪R
 
by 

   ( ) ( ) ( ){ }, , inf 0 : , , LE x y t x y tλ λ= > >M N  

 For each { }\ 0 :1Lλ∈ L L  and ,x y X∈ . Then we have 

i) For any { }\ 0 :1Lµ∈ L L  there exists { }\ 0 :1Lλ∈ L L  such that 

 ( ) ( ) ( ) ( ), 1 , 1 , 2 3 , 1, , , ... ,n n n nE x x E x x E x x E x xµ λ λ λ −≤ + + +M M M M  

 for any 1,..., ;nx x X∈  

ii) The sequence { }n n
x

∈N
 is convergent to x  w.r.t. L -fuzzy metric M  if and only if  

( ), , 0nE x xλ →M . 

Also the sequence { }n n
x

∈N
 is Cauchy w.r.t. L –fuzzy metric  M if an only if it is Cauchy with ,Eλ M . 

Lemma 1.5:  Let ( )X, ,M T  be an L –fuzzy metric space. If 

   ( ) ( )1 0 1, , , , n

n n Lx x t x x k t+ ≥M M  
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 for some 1k >  and n∈N . Then { }nx
 
is a Cauchy sequence. 

Definition 1.9:  [9] We say that the L –fuzzy metric space ( )X, ,M T  has property ( )C  , if it satisfies the 

following condition: 

   ( ), , ,x y t C=M
 
for 0t >  implies C = 1L  

2. Main Results:  Theorem 2.2:  

 Let , ,A B S  and T  be self-mappings of  a complete L-fuzzy metric space (X,M,T)which has property © 

satisfying  

i) ( ) ( ) ( ) ( ),A X T X B X S X⊆ ⊆  and ( )T X  or ( )S X  is a closed subset of X  . 

ii) The pair ( ),A S  and ( ),B T  are weakly compatible and ( ),A S  or ( ),B T  satisfy the property
(c)

. 

iii) 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

L

M Ax By Bz t

Sx Ty Tz kt Sx By Tz kt Sx Ty Bz kt Sx By By kt

Ty By Bz kt Ty Ty Bzkt Ty By By kt Ty Bz Bz kt

By Ty Tz kt By By Tz kt By Tz Tz kt Tz Bz Bz kt

φ

 
 

≥  
 
 

M M M M

M M M M

M M M M

 

 
The , ,A B S  and T  have a unique common fixed point in X . 

Proof:  Let the pair ( ),B T  satisfy in property ( )E , hence there exist a sequence { }nx  such that, 

  ( ) ( )lim , , , lim , , , 1n n
n n

Bx u u t Tx u u t
→∞ →∞

= =M M  

For some u X∈  and every 0t > . there exist a sequence { }ny  such that, n nBx Sy=  hence 

( )lim , , , 1n
n

Sy u u t
→∞

=M    

We prove that ( )lim , , , 1n
n

Ay u u t
→∞

=M . Since 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

1

1 1 1

1 1

1 1 1

1 1

, ,

, , , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , , ,

, , , , ,

n n

n n n n n n z n n n

n n n n n n n n

L

n n n n n n n n n

n n n n n n

Ay Bx t

Sy Tx Tx kt Sy Bx Tx kt Sy Tx Bx kt

Sy Bx Bx kt Tx Bx kt Tx Tx Bx kt

Tx Bx Bx kt Tx Bx Bx kt Bx Tx Tx kt

Bx Bx Tx kt Bx Tx Tx

φ

+

+ + +

+ +

+ + +

+ +

≥

M

M M M

M M M

M M M

M M ( ) ( )1 1 1 1, , , ,n z n nkt Tx Bx Bx kt+ + + +

 
 
 
 
 
 
 M

 

On making n →∞  the above inequality, we get 

 ( )1lim , , , 1n n n
n

Ay Bx Bx t+→∞
=M

 

( ) ( ) ( )( ), , , , , , ,..., , , , 1L u u u kt u u u kt u u u ktφ≥ =M M M  

   

Therefore  , ( )lim , , , 1n
n

Ay u u t
→∞

=M , hence 

 lim lim lim limn n n n
n n n n

Ay Sy Bx Tx u
→∞ →∞ →∞ →∞

= = = =  

Let ( )S x  be complete M –fuzzy metric space, then there exist x X∈ such that Sx u= . If Ax u≠  , then 

we have 
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( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

1

1 1 1

1 1

1 1 1

1 1

, , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , ,

n n

n n n n z n n

n n n n n n n n

L

n n n n n n n n n

n n n n n

Ax Bx Bx t

Sx Tx Tx kt Sx Bx Tx kt Sx Tx Bx kt

Sx Bx Bx kt Tx Bx Bx kt Tx Tx Bx kt

Tx Bx Bx kt Tx Bx Bx kt Bx Tx Tx kt

Bx Bx Tx kt Bx Tx

φ

+

+ + +

+ +

+ + +

+ +

≥

M

M M M

M M M

M M M

M M ( ) ( )1 1 1 1, , , , , ,n n z n nTx kt Tx Bx Bx kt+ + + +

 
 
 
 
 
 
 M

. 

On making n →∞  we get ( ), , , 1Ax u u t =M , hence Ax u Sx= = . By ( ),A S be weakly compatible, we 

have ,ASx SAx=  so 

 AAx ASx SAx SSX= = =   

as AX TX⊂ , there exist Xυ∈  such that Ax Tυ= . We prove that  T Bυ υ= . If T Bυ υ≠  then 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

Ax B B t

Sx T T kt Sx B T kt Sx T B kt Sx B B kt

T B B kt T T B kt T B B kt T B B kt
L

B T T kt B B T kt B T T kt T B B kt

υ υ

υ υ υ υ υ υ υ υ

φ υ υ υ υ υ υ υ υ υ υ υ υ

υ υ υ υ υ υ υ υ υ υ υ υ

 
 

≥  
  
 

M

M M M M

M M M M

M M M M

If  

B uυ ≠  then 

  ( ) ( ), , , , , ,Ax B B t Ax B B tυ υ υ υ>M M  

Is a contradiction. Thus T B uυ υ= = . By B  and T  be weakly compatible, we get 

TT TB BT BBυ υ υ υ= = = , so Tu Bu= . We prove Au u= , for  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

Au u u t Au B B t

Su T T kt Su B T kt Su T B kt Su B B kt

T B B kt T T B kt T B B kt T B B kt
L

B T T kt B B T kt B T T kt T B B kt

υ υ

υ υ υ υ υ υ υ υ

φ υ υ υ υ υ υ υ υ υ υ υ υ

υ υ υ υ υ υ υ υ υ υ υ υ

=

 
 

≥  
  
 

M M

M M M M

M M M M

M M M M

If  

Au u≠  then 

 ( ) ( ), , , , ,Au u u t Au u kt>M M  

Is a contradiction. Thus Au Su u= = . Now, we prove Bu u=  . For 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

u Bu Bu t Au Bu Bu t

Su Tu Tu kt Su Bu Tu kt Su Tu Bu kt Su Bu Bu kt

Tu Bu Bu kt Tu Tu Bu kt Tu Bu Bu kt Tu Bu Bu kt
L

Bu Tu Tu kt Bu Bu Tu kt Bu Tu Tu kt Tu Bu Bu kt

υ

φ

=

 
 

≥  
  
 

M M

M M M M

M M M M

M M M M

 If  

Bu u≠  then 

 ( ) ( ), , , , , ,u Bu Bu t u Bu Bu kt>M M  

Is a contradiction. Thus Au Bu Su Tu u= = = = . So, , ,A B S  and T  have a fixed common point u . 

Now to prove uniqueness, if possible uυ ≠  be another common fixed point of , ,A B S  and T . Then  



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.9, 2013-Special issue, International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

26 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

, , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , ,

u u t A Bu Bu t

S Tu Tu kt S Bu Tu kt S Tu Bu kt S Bu Bu kt

Tu Bu Bu kt Tu Tu Bu kt Tu Bu Bu kt Tu Bu Bu kt
L

Bu Tu Tu kt Bu Bu Tu kt Bu Tu Tu kt Tu Bu Bu kt

u u kt
L

υ υ

υ υ υ υ

φ

υ

=

 
 

≥  
  
 

>

M M

M M M M

M M M M

M M M M

M

 is 

contradiction. 

 

 

 

  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/journals/   The IISTE 

editorial team promises to the review and publish all the qualified submissions in a 

fast manner. All the journals articles are available online to the readers all over the 

world without financial, legal, or technical barriers other than those inseparable from 

gaining access to the internet itself. Printed version of the journals is also available 

upon request of readers and authors.  

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Recent conferences:  http://www.iiste.org/conference/ 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/

