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Absract 

Many real life problems require the use of multiple regression to characterize and solve. Sometimes however the 

independent variables come in forms that violate the assumptions of the parametric multiple regression. This 

paper developed a nonparametric approach which uses ranks of both the dependent and independent variables to 

achieve the objectives of multiple regression. This approach accommodates data as low as the ordinal scale and 

robust. A prediction procedure which is by interpolation, is also presented. 
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1.0 Introduction 

If one has sample observations on dependant variable Y and a set of independent variables X1, X2 … Xk, and the 

dependent variable satisfies the assumptions necessary for the application of parametric regression methods, then 

one may use these methods to estimate the regression parameters and test appropriate null hypotheses. Thus if yi 

is the ith observation independently made on the dependent variable Y and xi1, xi2…xik are respectively the ith 

observation made on the independent variables X1, X2…Xk, for i = 1, 2 … n then we may fit the multiple 

regression model 

yi = β0 + β1xi1 + β2xi2 + …+ βkxik + ei    -  -  - (1) 

Where βj’s are partial regression coefficients and ei’s are independent error terms with E(ei) = 0 for i = 1, 2 … n. 

Equation 1 may alternatively be expressed in matrix form as 

eXy += β     -   -   -  (2) 

Where y  is an n x 1 column vector of observations on the dependent variable Y.  X is an n x r = n x (k + 1) 

design matrix of observations on the independent variables with full column rank r, the number of parameters in 

the model and k = r – 1, the number of independent variables in the model; β  is an r x 1 = (k + 1) x 1 column 

vector of partial regression coefficients, and e  is an n x 1 column vector of error terms, with E ( e ) = 0 [2]. 

Under these assumptions the usual least squares method may be used with Equation 1 or 2 to obtain unbiased 

estimates of the regression parameters β , from the normal equations [2]. 

bXXYX ′=′    -   -   - (3) 

in matrix form, which when solved yields  

( ) yXXXb ′′== −1β̂    -   -  - (4)  

Where (X'X)
-1

 is the matrix inverse of X'X.  

If in addition Y can be assumed to be normally distributed with constant variance, then the usual parametric F 

test may be used to test the null hypothesis that Equation 1 or 2 fits [2][3], and other desired hypotheses.  

However, if these assumptions cannot be satisfied then the parametric tests may not be validly performed. A 

non-parametric approach such as the following proposed method would then be indicated. 

 

2.0 The Proposed Method 

Let yi, xi1, xi2, … xiK be as defined above for i = 1, 2 … n, where populations Y, X1, X2…Xk may now be 

measurements on as low as the ordinal scale and need not be continuous. Furthermore population Y need no 

longer be normally distributed for desired hypotheses to be tested. 

Now instead of using the raw observations or scores in a regression model, these scores are now converted into 

ranks before being fitted in a regression model. 

Thus let riy be the rank assigned to yi, the ith observation for population Y, and rij be the rank assigned to xij the 

ith observation from population: Xij for i = 1, 2 … n; j = 1, 2 …k. All tied observations in each variable are, as 

usual, assigned their mean ranks. With these ranks we now set up a nonparametric multiple regression model of 
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the ranks assigned to observations from population Y regressing on the ranks assigned to observations from the 

independent variables Xj’s obtaining 

riy = β0 + βi ri1 + β2ri2 + … + βk rik + ei   -  -  -   (5) 

where the ei’s are independent error terms with E(ei) = 0. Or expressed in matrix notation 

eRr y += β    -   -   -  (6) 

r'y = (riy, r2y…rny) is an nx1 column vector of the ranks of Y 
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is an n x r = n x (k + 1) design matrix of ranks; ( )kβββββ ...,, 210=′
 is an r x 1 = (k + 1) x 1 column vector 

of partial regression coefficients, not necessarily the same as those in equation 2; and e  is an n x 1 column 

vector of independent error terms with ( ) 0=eE
 
 . Notice that it is now no longer required that e  is normally 

distributed. 

The method of least squares [2][1] may now be applied to either equation 5 or 6 to obtain an unbiased estimate 

b of the regression parameters β  from the normal equations. 

bRRrR y
′=′    -   -   -  (7) 

Solving equation 7 for b we obtain the estimated partial regression coefficient as 

( ) yrRRRb ′′= −1
  -   -   -  (8) 

Where ( ) 1−′RR is the matrix inverse of the matrix RR′    

Using this estimate we have that the fitted or predicted nonparametric multiple regression equation is 

bRry =ˆ    -   -   -  (9) 

Note that equation 7 may be expressed in terms of the ranks of the sample observations as  
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To evaluate equation 10, we note that riy and rij’s are each ranks and values of the first n positive integers 

Hence 
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Also if  ρjl is the Spearman’s rank correlation coefficient [4] between Xj and Xl whose ith observations have 

ranks rij and ril respectively, then 
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Using equations 11 – 13 in equation 10 yields, after simplification, 
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Application of a few elementary operations on the above equation further reduces the normal equations to the 

simpler form 
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Where kjlforiljllj ,...3,2,1,;1; === ρρρ  

 

Equations 14 and 15 may be solved simultaneously or by the use of appropriate statistical package to obtain the 

results in equation 8, the required estimated partial regression coefficients b.
 
Although the regression coefficients 

are now easily obtained using these statistical packages, because nonparametric regression is a relatively novel 

concept, it may be instructive, for clearer understanding, to illustrate these calculations for cases in which k = 1, 

2 and 3. 

Thus for k = 1 we have from Equation 14 that  
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Solving (a) and (b) simultaneously yields 
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Using these values in equation 9 yields the fitted or predicted nonparametric simple linear regression line in 

terms of ranks as 
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For k = 2 the following normal equation from equation 14 may be used to obtain the required estimates of the 

regression coefficients; 
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Solving these three equations simultaneously we obtain the estimates of the regression coefficients as 
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Substituting these values into (c) yields 
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With these estimated regression coefficients, the fitted or estimated nonparametric bivariate regression model 

becomes 
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For i = 1, 2…n 

As a last illustrative example, if there are k = 3 independent variables, then the normal equations (equation 14) 

may be represented as 
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Expectedly as k, the number of independent variables in the model increases, manual computations become 

increasingly cumbersome. However, a few algebraic manipulations of the above set of four equations readily 

yield the estimated regression coefficients. 
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The remaining coefficient b0 and b1 may similarly be obtained by substitution. Thus 
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Using the estimated regression coefficients from Equations 4 – 24 we have the resulting fitted non parametric 

trivariate regression model as 
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3322110ˆ iiiiy rbrbrbbr ++++=                                        -  -  - (25) 

For i = 1, 2…n 

In all cases, interest is usually in testing whether the hypothesized regression model is adequate. In other words, 

interest is in testing the null hypothesis that the population regression coefficients are all equal to zero with the 

hope of the null hypothesis being rejected. That is interest is in the null hypothesis. 

OHversusOH ≠= ββ :: 10
                                    -  -  -  (26) 

If Ho is rejected then further interest may be in making pair-wise comparisons of the regression coefficients to 

determine whether they are statistically different. The adequacy of the regression model is tested using the Fisher 

F test which is fairly robust while the pair-wise comparisons are conducted using the student t test. 

Note that in terms of ranks the total sum of squares SST for a multiple regression model is 
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with n – 1 degrees of freedom 

The regression sum of squares SSR is 
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where 1' = (1, 1,…1) is a 1 x n row vector. 
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With r – 1 = k degrees of freedom 

The error sum of squares, SSE is the difference between the above two sums of squares, namely 
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These results are summarized in the following analysis of variance table (Table 1) 

 

Table 1: Analysis of Variance Table for Nonparametric Multiple Regression 

Source of 

Variation 
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The results of table 1 may be used to test the null hypothesis of equation 26 that is to determine whether the 

hypothesized regression model is an adequate representation of the relationship between the dependent variable 

Y and the set of independent variables X1, X2,…Xk, represented by ranks. 
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As noted above, the F test is robust under fairly general conditions. Hence the null hypothesis Ho of equation 26 

is rejected at a specified significance level α if the F-ratio in table 1 is greater than or equal to the tabulated F-

value, that is if 

( )rnrFF −−−≥ ,1;1 α                                  -                    -                       -                                     (30) 

Otherwise Ho is accepted. 

If Ho is rejected in which case not all the βj’s are equal to zero, then one may proceed to use the usual student t 

test to further determine which pairs of these parameters may be statistically different. 

Finally one may be interested in predicting values of a dependent variable on the basis of predicted or estimated 

ranks riy of equation 9. To do this, we may use the method of interpolation. Thus suppose Ys and Yz are the 

observed samples value s of the dependent variable Y with assigned ranks rsy and rzy respectively. Furthermore 
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tŷ of the dependent variable Y is 
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closer in value to rs than to rz, then the predicted or estimated value of Y at point or condition t namely
tŷ is 

calculated as 

z

zysy

tysy

s

zysy

zyty

t y
rr

rr
y

rr

rr
y 





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




−

−
+











−

−
=

ˆˆ
ˆ     -                  -                  - (31) 

For t = 1, 2 … 

Provided the ranks specified for the observations from the independent variables for which the corresponding 

value of the dependent variable to be estimated or predicted are within or close to the range of the ranks assigned 

to the original observations for respective independent variables used in the model. 

 

3.0 Illustrative Example  

A researcher is interested in determining the effects age, body weight, blood pressure and packed cell volume 

(PCV) level have on the heartbeat of postpartum mothers, obtaining the data shown in Table 2 on a random 

sample of 38 postpartum mothers in a certain hospital maternity. 
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Table 2: Heartbeat, Age, Body weight, Blood Pressure and PCV Level of a Random Sample of Post 

Partion Mothers 

S/N Pulse 

Rate 

yi 

Rank 

of yi 

(riy) 

Mothers 

Age xi1 

Rank 

of xi1 

(ri1) 

Mother 

weight 

xi2 

Ranks 

of xi2 

(ri2) 

Systolic 

BP xi3 

Rank 

of xi3 

(ri3) 

Diastolic 

BP xi4 

Rank 

of xi4 

(ri4) 

PCV 

xi5 

Rank 

of xi5 

(ri5) 

1.  80 15.5 31 24 75 26.5 110 10.5 65 12.5 34 26.5 

2.  86 32.5 30 22.5 55 1 103 3.5 63 7 31 10 

3.  90 37 28 18 90 37 170 35.5 80 32 30 4.5 

4.  82 24 24 10.5 60 5 102 1.5 68 20 38 33.5 

5.  80 15.5 36 32.5 76 29.5 110 10.5 70 25.5 48 38 

6.  86 32.5 20 5 59 3.5 110 10.5 60 2.5 35 29.5 

7.  90 37 34 30 73 23.5 110 10.5 60 2.5 32 18 

8.  88 36 25 12.5 83 34 110 10.5 60 2.5 37 32 

9.  74 8 30 22.5 75 26.5 112 17 60 2.5 28 32 

10.  82 24 24 10.5 68 10 168 33 80 32 32 18 

11.  81 19 21 7 72 20.5 128 26.5 75 28 34 26.5 

12.  80 15.5 26 14 78 31.5 110 10.5 65 12.5 30 45 

13.  83 28 22 9 72 20.5 120 22.5 70 25.5 31 10 

14.  82 24 28 18 68 10 122 24 68 20 40 35 

15.  74 8 39 35 65 7 108 5 68 20 32 18 

16.  82 24 28 18 61 6 103 3.5 63 7 35 29.5 

17.  78 12 28 18 70 15.5 110 10.5 65 12.5 36 31 

18.  74 8 18 3 72 20.5 110 10.5 65 12.5 34 26.5 

19.  82 24 19 4 73 23.5 110 10.5 63 7 30 4.5 

20.  90 37 21 7 78 31.5 110 10.5 65 12.5 32 18 

21.  82 34 28 18 75 26.5 170 35.5 85 36.5 32 18 

22.  86 32.5 28 18 68 10 112 17 63 7 31 10 

23.  85 30 21 7 76 29.5 120 22.5 68 20 41 36 

24.  79 13 16 2 90 37 130 28 75 28 43 37 

25.  74 8 36 32.5 75 26.5 125 25 68 20 32 18 

26.  72 3 38 34 70 15.5 102 1.5 68 20 38 33.5 

27.  70 1 41 38 69 13 118 20.5 68 20 31 10 

28.  72 3 40 36.5 59 3.5 138 30 80 32 33 24 

29.  72 3 32 25.5 58 2 128 26.5 68 20 34 26.5 

30.  80 15.5 33 28 70 15.5 140 31 80 32 32 18 

31.  81 19 28 18 68 10 170 35.5 85 36.5 31 10 

32.  73 5 32 25.5 72 20.5 150 32 80 32 30 4.5 

33.  82 24 15 1 70 15.5 112 17 68 20 32 18 

34.  81 19 25 12.5 82 33 170 35.5 85 36.5 30 45 

35.  74 8 33 28 68 10 172 38 85 36.5 32 18 

36.  77 11 33 28 88 35 118 20.5 65 12.5 30 4.5 

37.  86 32.5 35 31 90 37 116 19 63 7 32 18 

38.  84 29 40 36.5 71 18 133 29 75 28 32 18 

 

We have analysed the data of Table 2 using the proposed nonparametric multiple regression method in this paper, 

this approach makes the analysis more general and avoids the often restrictive assumptions of parametric 

regression. 

Thus we first rank the observations for each of the five variables from the smallest value ranked 1, to the largest 

value ranked 38. Tied values in each variable are assigned their mean ranks. The results of the ranking for each 

variable are shown beside the observations for that variable in Table 2. Pair-wise cross products of these ranks 

may now be taken to set up the normal equations (Equation 7) which may be solved simultaneously to obtain 

required estimates of the regression coefficients (equation 8) and hence the desired fitted nonparametric model 

(equation 9). However, manual computations are relatively difficult and cumbersome. Hence, using SPSS yields 

the model 

54321 137.0357.0152.0103.0376.0866.31ˆ iiiiiiy rrrrrr −−++−=                         - -- (32) 

The corresponding analysis of variance table is 
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Table 3: Analysis of Variance (ANOVA) table for the data of Table 2. 

SV SS df MS F P-Value 

Regression 

Error 

1205.743 

3497.126 

5 

32 

241.149 

109.285 

2.207 0.078 

Total 4702.868 37    

 

The ANOVA table shows that the hypothesized regression model is adequate for a significance level of 0.1 
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