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Abstract 

The notion of interval-valued intuitionistic fuzzy sets was first introduced by Atanassov and Gargov as a 

generalization of both interval-valued fuzzy sets and intuitionistic fuzzy sets. Satyanarayana et. al., applied the 

concept of interval-valued intuitionistic fuzzy ideals to BF-algebras. In this paper, we introduce the notion of 

interval-valued intuitionistic fuzzy homomorphism of BF-algebras and investigate some interesting properties. 
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1. Introduction and preliminaries 

For the first time Zadeh (1965) introduced the concept of fuzzy sets and also Zadeh (1975) introduced the 

concept of an interval-valued fuzzy sets, which is an extension of the concept of fuzzy set. Atanassov and 

Gargov, 1989 introduced the notion of interval-valued intuitionistic fuzzy sets, which is a generalization of both 

intuitionistic fuzzy sets and interval-valued fuzzy sets. On other hand, Satyanarayana et al., (2012) applied the 

concept of interval-valued intuitionistic fuzzy ideals. In this paper we introduce the notion of interval-valued 

intuitionistic fuzzy homomorphism of BF-algebras and investigate some interesting properties. 

 

 By a BF-algebra we mean an algebra satisfying the axioms: 

0x x(1). =∗ , 

x0 x(2). =∗ , 

xyy)(x0 (3). ∗=∗∗ , for all Xyx, ∈  

Throughout this paper, X  is a BF-algebra. 

 

Example 1.1 Let R be the set of real number and let 0) , (R,A ∗= be the algebra with the operation∗ defined 

by  









=

=

=∗

otherwise 0,

0 xif y,

0y if x,

yx  

Definition 1.2 The subset I of X is said to be an ideal of X , if I0  (i) ∈ and

IxIy and Iy x(ii) ∈⇒∈∈∗ . 

Definition 1.3 A mapping f : X Y→ of BF-algebra is called a homomorphism if f(x y) f(x) f(y)∗ = ∗ , for 

all Xyx, ∈ . Note that if f is a homomorphism of BF-algebras, then f(0)=0.  

      An intuitionistic fuzzy set (shortly IFS) in a non-empty set X  is an object having the form

( ){ }Xx:(x)λ (x),µ x,A AA ∈= , where the function 1] [0,X:µA → and 1] [0,X:λA →  denote the 

degree of membership (namely (x)µA ) and the degree of non membership (namely (x)λA ) of each element 

Xx ∈ .  For the sake of simplicity we use the symbol form )λ ,µ (X,A AA= or )λ ,µ (A AA=  

      By interval number D we mean an interval [a , a ]− +
 where 1aa0 ≤≤≤ +−

.  The set of all closed 

subintervals of 1] [0,  is denoted by 1] D[0, . For interval numbers 1 1 1D [a , b ]
− +=  , 2 2 2D [a , b ]

− +=  . 

 We define     

      • 2121 DD)D ,min(D ∩= =min 1 1 2 2([a ,  b ], [a ,  b ])
− + − +

  

                                                         = [min {
−−
21 a ,a }, min {

++
21 b ,b }] 
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      • 2121 DD)D,max(D ∪= =max 1 1 2 2([a ,  b ], [a ,  b ])
− + − +

 

                                                          = [max {
−−
21 a ,a }, max {

++
21 b ,b }] 

• ].bbbb ,.aaa[aDD 2121212121

++++−−−− −+−+=+  

And put  

   

• 
−− ≤⇔≤ 2121 aaDD  and 

++ ≤ 21 bb  

 

• 
−− =⇔= 2121 aaDD and 

++ = 21 bb , 

 

• 2121 DDDD ≤⇔< and 21 DD ≠  

 

• ]mb ,[ma]b ,m[amD 1111

+−+− == , where 1m0 ≤≤ . 

 

       Let L  be a given nonempty set. An interval-valued fuzzy set B  on L is defined by 

B B
B {(x, [µ (x), µ (x)]:x L}− += ∈ , Where 

B
µ (x)−

 and 
B

µ (x)+
  are fuzzy sets of L such that 

B
µ (x)− ≤

B
µ (x)+

 for all Lx ∈ .  Let 
Bµ (x)%  =

B B
[µ (x), µ (x)]− +

, then 
BB {(x, µ (x)):x L}= ∈%  

Where 
Bµ :L D[0, 1]→% . 

            A mapping A AA (µ , λ )= %% 1] D[0,1] D[0,L: ×→  is called an interval-valued intuitionistic fuzzy 

set (i-v IF set, in short) in L if
A A

0 µ (x) λ (x) 1+ +≤ + ≤  and 
A A

0 µ (x) λ (x) 1− −≤ + ≤  for all Lx ∈ ( that is, 

A A
A (X, µ , λ )+ + +=  and A AA (X, µ , λ )− −− =  are intuitionistic fuzzy sets), where the mappings 

1] D[0,L:(x)]
A

µ (x),
A

[µ(x)
A

µ~ →+−=   and 
A A A

λ (x) [λ (x), λ (x)]:L D[0, 1]− += →%  denote the 

degree of membership (namely 
Aµ (x)% )and degree of non-membership(namely Aλ (x)%  of each element 

Lx ∈  to A  respectively. 

 

2. MAIN RESUTS2. MAIN RESUTS2. MAIN RESUTS2. MAIN RESUTS 

Definition 2.1: An interval-valued IFS A AA (X,µ ,λ )= %%  is called interval-valued intuitionistic fuzzy ideal 

(shortly i-v IF ideal) of BF-algebra X if it satisfies  

(i-v IF1) (x)
A

µ~(0)
A

µ~ ≥  and (x)
A

λ
~

(0)
A

λ
~

≤  

(i-v IF2) ( ){ }(y)
A

µ~ ,yx
A

µ~ min(x)
A

µ~ ∗≥   

(i-v IF3) ( ){ }(y)Aλ
~
 ,yxAλ

~
 max(x)

A
λ
~

∗≤ , for all Xy x, ∈ . 
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Example 2.2 Consider a BF-algebra { }3 2, 1, 0,X =  with following table  

            

 

 

Let A be an interval-valued intuitionistic fuzzy set in X defined by [ ]0.7 0.6,(1)
A

µ~(0)
A

µ~ ==  and 

[ ]0.3 0.2,(3)
A

µ~(2)
A

µ~ == , [ ]0.2 0.1,(1)
A

λ
~

(0)
A

λ
~

== , [ ]0.7 0.5,(3)λ
~

(2)λ
~

AA == .  It is easy 

to verify that A is an interval-valued intuitionistic fuzzy ideal of X . 

 

Definition 2.3 Let XX:f ′→  be a homomorphism of BF-algebras. For any interval valued intuitionistic 

fuzzy set A AA (X , µ , λ )′= %%  in X′  we define a new interval valued intuitionistic fuzzy set 

)f
A

λ
~

,f
A

µ~ (X,fA =  in X, by (f(x))
A

µ~(x)f
A

µ~ = , (f(x))
A

λ
~

(x)f
A

λ
~
 = for all X.x∈   

 

Theorem 2.4 Let X  and X′  be BF-algebras and f is a homomorphism from X onto X′ . 

(i). If )
A

λ
~

,
A

µ~,X(A ′= is an i-v intuitionistic fuzzy ideal of X′ , then )f
A

λ
~

,f
A

µ~(X,fA =  is an i-v 

intuitionistic fuzzy ideal of X . 

(ii). If )f
A

λ
~

,f
A

µ~(X,fA =  is an i-v  intuitionistic fuzzy ideal of X , then )
A

λ
~

,
A

µ~,X(A ′= is an i-v 

intuitionistic fuzzy ideal of .X′  

 

Proof: (i) Suppose )
A

λ
~

,
A

µ~,X(A ′= is an i-v intuitionistic fuzzy ideal of X′ .  For Xx ′∈′  there exist 

Xx∈  such that xf(x) ′= , we have  











 += (0)
f
Aµ(0),

f
A

-µ(0)f
A

µ~                 and             
f f f
A A Aλ (0) λ (0),λ (0)− + =  
%  

              
+

A A= µ (f(0)), µ (f(0))− 
                                             A Aλ (f(0)), λ (f(0))− + =    

              



 ′+′= )0(Aµ ),0(-

Aµ                                                 A Aλ (0 ), λ (0 )− + ′ ′=    

              



 ′+′≥ )x(Aµ ),x(-

Aµ                                                 A Aλ (x ), λ (x )− + ′ ′≤    

              A Aµ (f(x)), µ (f(x))− + =                                              A Aλ (f(x)), λ (f(x))− + =    

              
f f
A Aµ (x), µ (x)− + =                                                   

f f
A Aλ (x),λ (x)− + =    

              (x)f
A

µ~=                                                                       (x)f
A

λ
~

=    

 ∗  0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 
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Let Xy X,zx, ′∈′∈  then there exists Xy∈  such that yf(y) ′= .  We have  (f(x))
A

µ~(x)f
A

µ~ =

)}(y'µ~),y'(f(x)µ~min{ AA ∗≥  

                              (f(y))}
A

µ~y)),(f(x
A

µ~min{ ∗=  

                              (y)}f
A

µ~y),(xf
A

µ~min{ ∗=      

        and (f(x))
A

λ
~

(x)f
A

λ
~

=  

                           { })y(Aλ),y(f(x)Aλ
~

max ′′∗≤  

                           (f(y)}
A

λ
~

f(y)),(f(x)
A

λ
~
 max{ ∗=  

                           (f(y)}
A

λ
~

y)),(f(x
A

λ
~
 max{ ∗=  

                            (y)}f
A

µ~y),(xf
A

µ~max{ ∗=  

Hence )f
A

λ
~

,f
A

µ~(X,fA =  is an i-v intuitionistic fuzzy ideal of X . 

(ii) Since XX:f ′→  is onto, for Xy x, ′∈ there exist Xba, ∈  such that yf(b) x,f(a) == . 

      Now (f(a))
A

µ~(x)
A

µ~ = = (a)f
A

µ~ { }(b)f
Aµ~b),((af

Aµ~min ∗≥  

                                                           { }(f(b))Aµ~b)),(f(aAµ~min ∗=  

                                                           { }(f(b))Aµ~f(b)),(f(a)Aµ~min ∗=  

                                                           { }(y)Aµ~y),(xAµ~min ∗=   

and    (f(a))
A

λ
~

(x)
A

λ
~

= (a)f
A

λ
~

= { }(b)f
Aλ

~
 b),(af

Aλ
~

max ∗≤  

                                                       { }(f(b))Aλ
~

b)),(f(aAλ
~

max ∗=  

                                                       { }(f(b))Aλ
~

f(b)),(f(a)Aλ
~

max ∗=  

                                                       { }(y)Aλ
~

y),(xAλ
~

max ∗=  

Hence )
A

λ
~

,
A

µ~,X(A ′= is an i-v intuitionistic fuzzy ideal .X′  

 

Definition 2.5 Let f be a mapping on set X and )
A

λ
~

,
A

µ~(X,A = be an i-v IFS in X.  Then the i-v fuzzy sets 

u~ and v~ on f(X)  is defined by (x)
A

µ~sup

(y)1fx

(y)u~

−∈

=  and (x)
A

λ
~

inf

(y)1fx

(y)ν~

−∈

=  for all

f(X)y∈ is called image of A under f .  If u~  and v~ are i-v fuzzy sets in f(X) , then the fuzzy set 

Aµ u f=% % o  and Aλ v f=% % o  is called the pre –image of u~ and v~  respectively under f. 

 

Definition 2.6 An i-v IFS )λ
~

,µ~(X,A AA= in X is said to satisfy the “sup-inf” property if for any sub –set 

XT ⊆ there exist Ty,x 00 ∈ such that (t)
A

µ~sup

Tt

)
0

(x
A

µ~

∈
= and (s)

A
λ
~

inf
Ts

)
0

(y
A

λ
~

∈
= . 
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Theorem 2.7 Let X'X:f →  be onto homomorphism of BF- algebras.  If )
A

λ
~

,
A

µ~(X,A =  is an i-v 

intuitionistic fuzzy ideal of X with “sup-inf” property.  Then the image of A under f is also an i-v intuitionistic 

fuzzy ideal of X ′ . 

 

Proof: For any Xx∈  we have (x)µ~(0)µ~ AA ≥ and (x)λ
~

(0)λ
~

AA ≤ . 

Suppose )
A

λ
~

,
A

µ~(X,A = is an i-v intuitionistic fuzzy ideal of X with “sup-inf” property. The image of A 

under f is defined by 

        [0,1]X:u~ →′  by (x)Aµ~sup

)y(1fx

)y(u~

′−∈

=′ for all Xy ′∈′   

and  

        [ ]0,1X:ν~ →′ by (x)Aλ
~

inf

)y(1fx

)y(ν~

′−∈

=′ for all Xy ′∈′ . 

Since )
A

λ
~

,
A

µ~(X,A = is an i-v intuitionistic fuzzy ideal of X. 

Thus ( )tAµ~sup

)0(1ft

)0(u~

′−∈

=′  = (x)Aµ~(0)Aµ~ ≥ , for all Xx∈ .   

 Therefore (x)µ~)0(u~ A≥′ for all Xx∈ .   

Further more we have  ( )tAµ~sup

)x(1ft

)x(u~

′−∈

=′  for all Xx ′∈′ .   

Hence ( ) ( )xu~tAµ~sup

)x(1ft

)0(u~ ′=

′−∈

≥′ .  Therefore )x(u~)0(u~ ′≥′  for all Xx ′∈′  

  And ( )tAλ
~

inf

)0(1ft

)0(ν~

′−∈

=′  = ( ) ( )x
A

λ
~

0
A

λ
~

≤  for all Xx∈ .  

Therefore ( ) ( )xλ
~

0v~ A≤′  for all Xx∈ .  Further more we have ( )tAλ
~

inf

)x(1ft

)x(ν~

′−∈

=′  for all .Xx ′∈′   

Hence ( ) ( ) Xx  ,xv~t
A

λ
~

inf

)x(1ft

)0(v~ ′∈′∀′=
′−∈

≤′ .  Thus ( ) ( ) Xx,xv~0v~ ′∈′∀′≤′ .  

Since f is onto mapping then for any Xy,x ′∈′′ .  Since ( ),XfX =′  then there exist Xyx, ∈  such that 

f(y)yf(x),x =′=′ .  Let ( )xfx 1

0
′∈ −

 be such that ( )t
A

µ~sup

)x(1ft

)
0

(x
A

µ~

′−∈

= and 

hence ( )( )xfu~)x(u~ =′  = ( )tAµ~sup

(f(x))1ft −∈

 

                                    µ ( )A 0x= %                              

                                    { }A 0 Amin  µ ((x y)), µ (y) ≥ ∗% %  

                                    { }0min u(f(x y)), u(f(y))= ∗% %   

                                    { }(f(y)u~f(y)),)0(f(xu~ min ∗=  

                                    { })y(u~ ),yx(u~ min ′′∗′=  

Therefore ( ) { })y(u~),yx(u~minxu~ ′′∗′≥′  for all Xy,x ∈′′ . 
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Let ( )xfx 1

0
′∈ −

 be such that ( ) ( )tλ
~

inf

)x(1ft
0x

A
λ
~

A

′−∈

= . 

Now ( )( )xfv~)x(v~ =′  = ( )tλ
~

inf

(f(x))1ft

A

−∈

 

                                 ( )A 0=λ x%                              

                                 { } (y)Aλ
~

y),0(xAλ
~
 max ∗≤  

                                 { }(f(y))v~y)),0(f(xv~max ∗=   

                                 { }(f(y)v~f(y)),)0(f(xv~ max ∗=  

                                 { })y(v~ ),yx(v~ max ′′∗′=  

Therefore ( ) { })y(v~),yx(v~maxxv~ ′′∗′≤′  for all Xy,x ∈′′  

Thus )
A

λ
~

,
A

µ~,X(A ′=  is an i-v intuitionistic fuzzy ideal of X′ . 

 

Definition 2.8 Let )
A

λ
~

,
A

µ~(X,A = be an i-v IFS in X and let 1] [0,β
~

,α~ ∈ be such that [ ]1,1β
~

α~ ≤+ .  

Then the set 
( ) { }β

~
(x)Aλ

~
 ,α~(x)Aµ~ / Xx

β
~
 ,α~

A
X ≤≥∈=  is called an ( )β

~
 ,α~ -level sub set of

)
A

λ
~

,
A

µ~(X,A = . 

 

Theorem 2.9 Let )
A

λ
~

,
A

µ~(X,A = be an interval-valued intuitionistic fuzzy ideal of X.  Then  
( )β

~
 ,α~

A
X  is 

an ideal of X, for every ( ) )
A

λ
~

Im()
A

µ~Im(β
~
 ,α~ ×∈ with [ ]1,1β

~
α~ ≤+  

 

Proof: Let
( )β

~
 ,α~

A
Xx ∈ ,  then β

~
(x)

A
λ
~
 and α~(x)

A
µ~ X,x ≤≥∈ ⇒  

β
~

(x)
A

λ
~

(0)
A

λ
~
 and α~(x)

A
µ~(0)

A
µ~X,x ≤≤≥≥∈ .  Therefore

( )β
~
 ,α~

A
X0∈ .  

Let Xyx, ∈  be such that 
( )β

~
 ,α~

A
Xy andy x ∈∗  then β

~
y)(x

A
λ
~

  ,α~y)(x
A

µ~ ≤∗≥∗  and α~(y)
A

µ~ ≥ ,

β
~

(y)
A

λ
~

≤ .  It follows from (i-v IF2) and (i-v IF3)  that 

                   { } { } α~α~,α~min(y)Aµ~y),(xAµ~min(x)
A

µ~ =≥∗≥  and          

                   { } β
~

}β
~
 ,β

~
max{(y)Aλ y),(xAλ

~
max(x)

A
λ
~

=≤∗≤  

So that
( )β

~
 ,α~

A
Xx ∈ .  Hence 

( )β
~
 ,α~

A
X  is an ideal of  X. 

Theorem 2.10 Let )
A

λ
~

,
A

µ~(X,A = be an i-v IFS in X such that 
( )β

~
 ,α~

A
X  is an ideal of X.  If  

( ) )
A

λ
~

Im()
A

µ~Im(β
~
 ,α~ ×∈ with [ ]1,1β

~
α~ ≤+ , then )

A
λ
~

,
A

µ~(X,A =  is an interval-valued IF ideal of X.  

 

Proof: Let ( )β
~
 ,α~A(x) =  for all Xx∈ , that is, α~(x)

A
µ~ =  and β

~
(x)

A
λ
~

=  for all Xx∈ . Since 

( )β
~
 ,α~

A
X0∈ , we have (x)

A
µ~α~(0)

A
µ~ =≥ and (x)

A
λ
~

β
~

(0)
A

λ
~

=≤  for all Xx∈ . Let Xyx, ∈   be 
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such that ( )1β
~

,1α~y)A(x =∗  and )
2

β
~

,
2

α~(A(y) = , that is, 11 β
~

y)(x
A

λ
~
 ,α~y)(x

A
µ~ =∗=∗   and 

2α~(y)
A

µ~ = , 2β
~

(y)
A

λ
~

= .  Then 
)1β

~
,1α~(

A
Xyx ∈∗  and

)2β
~

,2α~(

A
Xy ∈ .  We may assume that 

)
2

β
~

,
2

α~()
1

β
~

,
1

α~( ≤ , that is, 
2

α~
1

α~ ≤  and 
2

β
~

1
β
~

≥ , with out loss of generality.  It follows that 

)1β
~

,1α~(

A
X

)2β
~

,2α~(

A
X ⊆ .  So that 

)1β
~

,1α~(

A
Xyx ∈∗  and

)1β
~

,1α~(

A
Xy ∈ .  Since 

)1β
~

,1α~(

A
X  is an ideal 

of  X, we have 
)1β

~
,1α~(

A
Xx ∈ .  Thus (y)}

A
µ~y),(x

A
µ~min{α~(x)

A
µ~ 1 ∗=≥  

(y)}
A

λ
~

y),(x
A

λ
~

max{β
~

(x)
A

λ
~

1 ∗=≤ , for all Xyx, ∈ .  Consequently )
A

λ
~

,
A

µ~(X,A = is an i-v 

intuitionistic fuzzy ideal of  X.  

 

Note that: { }(α, β)
A AAX x x / µ (x) α,  λ (x) β= ∈ ≥ ≤

%% % %%% { }(x)Aµ~ / Xx∈= and{ }(x)Aλ
~

 / Xx∈  

                               =U(µ ;α) L(λ ;β)A A∩ % %%% . 

Hence we have the following corollary. 

 

Corollary 2.11 Let )
A

λ
~

,
A

µ~(X,A = be an i-v IFS in X. Then A is an i-v intuitionistic fuzzy ideal of X if and 

only if ( )α~ ;Aµ~U  and ( )β
~

;
A

λ
~

L  are ideals of X, for every (0)]
A

µ~[0,α ∈  and (0),1]
A

λ
~

[β ∈  with 

[ ].1 1,β
~

α~ ≤+ . 

 

Theorem 2.12 Let XI ⊆ and )
A

λ
~

,
A

µ~(X,A =  be an i-v IFS in X defined by  

                             



 ∈

=
otherwise 1α~

I xif 0α~

(x)
A

µ~    and    





 ∈

=
I xif 0β

~

otherwise 1β
~

(x)
A

λ
~

 

for all Xx∈  where 1010 β
~

β
~

0  ,α~α~0 <≤<≤  and 1β
~

α~ ii ≤+ for 1 0,i = .  

Then the following conditions are equivalent: 

(1). A is an i-v intuitionistic fuzzy ideal of X. 

(2). I is an ideal of X. 

 

Proof: Assume (1), that is, A is an i-v intuitionistic fuzzy ideal of X. 

 Let Iyx, ∈ .  Now 0α~(x)
A

µ~(0)
A

µ~ =≥  and so 0α~(0)
A

µ~ ≥  implies I0∈ . 

Let Xyx, ∈  be such that Iy andy x ∈∗ .  We have (y)}
A

µ~y),(x
A

µ~min{(x)
A

µ~ ∗≥  { } 0α~0α~,0α~min ==  

and so Ix∈ .  Hence I is an ideal of X. 

Assume (2), Let Xx ∈ .  If Ix∈  implies 0α~(x)
A

µ~ = , since I0∈  we have 0α~(0)
A

µ~ =  and so 

)(x
A

µ~(0)
A

µ~ = .  Also 0β
~

(x)
A

λ
~

=  and so )(x
A

λ
~

(0)
A

λ
~

= .  If Ix∉  implies ( ) 1α~x
A

µ~ =  and 

( ) 1β
~

x
A

λ
~

= .  Now ( ) ( )x
A

µ~α~α~0
A

µ~ 10 =>=  and ( ) ( )x
A

λ
~

β
~

β
~

0
A

λ
~

10 =<= . 

Therefore, in either cases )(x
A

µ~(0)
A

µ~ ≥  and )(x
A

λ
~

(0)
A

λ
~

≤  for all .Xx∈  



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.10, 2013 

 

22 

Let Xyx, ∈  be such that Xy andy x ∈∗ .  If Iyx ∈∗  and Iy ∈  since I is an ideal of X.  We have that 

Ix∈  and so ( ) { } { }(y)Aλ
~
 y),(xAλ

~
 min0α~,0α~ minα~x

A
µ~ 0 ∗===  and 

( ) { } { }(y)Aλ
~
 y),(xAλ

~
 max0β

~
,0β

~
 maxβ

~
x

A
λ
~

0 ∗===  

If Iyx ∈∗ and IxIy ∉⇒∉  and so ( ) { } { }(y)Aµ~  y),(xAµ~ min1α~,0α~minα~x
A

µ~ 1 ∗===  and 

( ) { } { }(y)Aλ
~

  y),(xAλ
~
 max1β

~
,0β

~
 maxβ

~
x

A
λ
~

1 ∗===  

If Iyx ∉∗ and IxIy ∉⇒∈  and so ( ) { } { }(y)Aµ~  y),(xAµ~ min0α~,1α~ minα~x
A

µ~ 1 ∗===       

( ) { } { }(y)Aλ
~

  y),(xAλ
~
 max0β

~
,1β

~
 maxβ

~
x

A
λ
~

1 ∗===    

If Iyx ∉∗  and IxIy ∉⇒∉  and so ( ) { } { }(y)Aµ~  y),(xAµ~ min1α~,1α~ minα~x
A

µ~ 1 ∗===  

( ) { } { }(y)Aλ
~

  y),(xAλ
~
 max1β

~
,1β

~
 maxβ

~
x

A
λ
~

1 ∗===  

Therefore ( ) { }(y)Aµ~  y),(xAµ~ minx
A

µ~ ∗≥  and ( ) { }(y)Aλ
~
 y),(xAλ

~
 maxx

A
λ
~

∗≤ ,  for all Xyx, ∈  

Hence )λ
~

,µ~(X,A AA= is an i-v intuitionistic fuzzy ideal of X. 

 

Corollary 2.13 Let XI ⊆ and )λ
~

,µ~(X,A AA=  be an i-v IFS in X defined by     

 A
1,        if x I

µ (x)
0, otherwise

 ∈
= 



%

%
%

 and   



 ∈= I xif    ,1

~

otherwise  ,0
~(x)

A
λ
~

, for all X.x∈  

Then the following conditions are equivalent: 

(1)  A is an i-v intuitionistic fuzzy ideal of X. 

(2)  I is an ideal of X. 

 

Proposition 2.14 Let )λ
~

,µ~(X,A AA= be an i-v intuitionistic fuzzy ideal of X and 

( )
A

λ
~

Im()
A

µ~Im()
2

β
~

,
2

α~(),
1

β
~

,
1

α~ ×∈  with 1β
~

α~ ii ≤+  for 1,2i = .  Then 

)2β
~

,2α~(

A
X

)1β
~

,1α~(

A
X =  if and only if )

2
β
~

,
2

α~()
1

β
~

,
1

α~( = . 

 

Proof: If )
2

β
~

,
2

α~()
1

β
~

,
1

α~( =  then clearly 
)2β

~
,2α~(

A
X

)1β
~

,1α~(

A
X = .  Assume that 

)2β
~

,2α~(

A
X

)1β
~

,1α~(

A
X = .  Since )

A
λ
~

Im()
A

µ~Im()
1

β
~

,
1

α~( ×∈  then there exist Xx∈  such that  

11 β
~

(x)
A

λ
~

,α~(x)
A

µ~ == .   It follows that   
)2β

~
 ,2α~(

A
X

)1β
~
 ,1α~(

A
Xx =∈ , so that 

2121 β
~

(x)
A

λ
~

β
~
 and α~(x)

A
µ~α~ ≤=≥= .  Similarly we have 21 α~α~ ≤   and 21 β

~
β
~

≥ . Hence 

)
2

β
~

,
2

α~()
1

β
~

,
1

α~( = . 

 

Theorem 2.15 Let )λ
~

,µ~(X,A AA= be an i-v IFS in X and ( ) ( ) ( )kβ
~

,kα~,.....1β
~

,1α~,0β
~

,0α~{Im(A) =  

where ( ) ( )jβ
~

,jα~iβ
~

,iα~ <  whenever ji> .  Let .k}0,1,2,....r/ r{G =  be family of i-v ideals of  X such that 

XkG.....1G0G =⊂⊂⊂  and )
r

β
~

,
r

α~()
r

A(G =∗
, that is, rα~)

r
(G

A
µ~ =∗

 and rβ
~

)
r

(G
A

λ
~

=∗
, 
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where 1rG\rGrG −=∗
 and φ1G =−  for ...k0,1,2,3,..r = .  Then )λ

~
,µ~(X,A AA= is an i-v intuitionistic 

fuzzy ideal of X. 

 

Proof: Since 0G0∈ , we have (x)
A

µ~α~(0)
A

µ~ 0 ≥= and (x)
A

λ
~

β
~

(0)
A

λ
~

0 ≤= for all Xx∈ . Let

Xyx, ∈ .  To prove that )λ
~

,µ~(X,A AA=  satisfies the conditions 2) IF v-(i and 3) IF v-(i . We discuss 

the following cases: 

 If
∗∈∗
r

Gyx  and
1r

G\
r

G
r

Gy −=∗∈ then 
r

Gx ∈ , because rG  is an ideal of X. 

Thus ( ) { }(y)Aµ~  y),(xAµ~  minα~x
A

µ~ r ∗=≥  and ( ) { }(y)Aλ
~
 y),(xAλ

~
 maxβ

~
x

A
λ
~

r ∗=≤  . 

If 
∗∉∗
r

Gyx  and
∗∉
r

Gy , then the following four cases will be arise: 

1. 
r

G\Xyx ∈∗ and
r

G\Xy ∈ ,  2. 
1r

Gyx
−

∈∗  and 
1r

Gy
−

∈ , 

3. 
r

G\Xyx ∈∗ and 
1r

Gy
−

∈  ,  4. 
1r

Gyx
−

∈∗  and 
r

G\Xy ∈ . 

But, in either case, we know that  

         ( ) { }(y)Aµ~ y),(xAµ~ minx
A

µ~ ∗≥ and  ( ) { }(y)Aλ
~
 y),(xAλ

~
maxx

A
λ
~

∗≤  

If 
∗∈∗
r

Gyx  and 
∗∉
r

Gy  that either 
1r

Gy
−

∈ or 
r

G\Xy ∈ . It follows that either 

( )
r

G\X xor
r

Gx ∈∈  .  Thus ( ) { }(y)Aµ~ y),(xAµ~ minx
A

µ~ ∗≥  and 

( ) { }(y)λ
~
 y),(xλ

~
 maxxλ

~
AAA ∗≤  

If  
∗∉∗
r

Gyx  and
∗∈
r

Gy , then by similar processes, we have ( ) { }(y)Aµ~ y),(xAµ~ minx
A

µ~ ∗≥  and                     

( ) { }(y)Aλ
~

y),(xAλ
~
 maxx

A
λ
~

∗≤  for all .Xyx, ∈   Thus )λ
~

,µ~(X,A AA=  is an interval-valued 

intuitionistic fuzzy ideal of X. 
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