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Abstract 

The distributional form of the returns on the underlying assets plays a key role in finance under valuation theories for derivative 

securities. Among them, Student t-distributions are generally applied in financial studies as heavy-tailed substitute to the normal 

distribution. Therefore, distributions of logarithmic asset returns can often be fitted extremely well using Student t-distribution 

with υ degree of freedom, such that 3 ≤ υ ≤  5. The aim of this paper is to investigate the characterization behavior of Student 

t-distributions and its related properties into finance which are based on computational aspects using Mathematica. Furthermore, 

convolution, infinity divisibility and self-decomposability properties of Lévy-Student process are considered as background to the 

option pricing. Finally, applications of modeling high frequency price returns are discussed.  
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1. Introduction  

The distributional form of the returns on the underlying assets plays a key role in finance under valuation theories for derivative 

securities. Among them, Stochastic processes with heavy-tailed marginal distributions, including Student’s t-distribution, are used 

commonly for modeling in logarithmic stock returns and stochastic volatility in finance, econometrics, insurance, turbulence, 

communication networks, etc (Aas & Haff 2006; Heyde & Leonenko 2005; Kumari & Tan 2013). Hence, it is frequently used to 

model the asset returns for which the tails of the normal distribution are almost invariably found to be thin.  

This distribution is increasing important in classical as well as in Bayesian modeling in Statistics. Both Normal and T-distribution 

are members of the general family of symmetric distributions. Due to its central importance in statistical inference, the Student-t 

offers a more viable alternative particularly when it comes to real market data. The applications of Student-t can be classified into 

the fields of empirical modeling, cluster analysis, discriminant analysis, multiple regression, risk and dependence modeling, Lévy 

processes & derivatives, portfolio selection and many more. Therefore in this paper, we concentrate on characterization of Student 

t-distribution and its related properties into finance.  

2. Characterization of Student T-Distribution  

Considering the sample of independent observation X1……… Xn from the normal population with mean μ and variance σ2 for 

testing the null hypothesis H0 ∶  μ =  μ0 against the alternative H1 ∶  μ ≠  μ0, Gosset (Student 1908) suggested the ‘t’ test 

statistic  

                    tn =  
 (x̅n−μ0)
sn

√n 
⁄

,         n ≥ 2,                 (01) 

where X̅n = 
1

n
 ∑ Xi

n
i=1  and  sn

2 = 
1

n−1
 ∑ (Xi − X̅n)

2n
i=1 .  

He derived that the distribution law ℒ(tn) = T1(n − 1, 1, 0) , where T1(υ, σ, μ)  denotes the univariate Student's 

t-distribution(ST) with with υ > 0 degree of freedom/ tail parameter, a scaling parameter σ2 > 0 and a location parameter 

μ ϵ ℝ1. The t-test and the associated theory became well-known through the work of Fisher (1927), who called the distribution 

"Student's distribution". 

A random variable T1 has a standard Student's t distribution (ST) with υ degrees of freedom and it can be written as a ratio: 

T1 = 
 Y

√χ
υ
2

υ⁄  

 , between a standard normal random variable and the square root of a Chi-square random variable with  υ degrees 

of freedom (dividing by υ a Chi-square random variable with degrees of freedom). This is similar to obtaining a Gamma 

random variable with parameters υ 2⁄  and 2. Then its Probability Density function (PDF) can be defined as;   

http://en.wikipedia.org/wiki/Ronald_A._Fisher
http://www.statlect.com/ucdnrm1.htm
http://www.statlect.com/subon2/ucdchi1.htm
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                  fυ(x) =
Γ(

υ+1

2
)

√π υ  Γ(
υ

2
)
[1 +

1

υ
x2]

−(υ+1 2⁄ )
,  t ϵ ℝ1,           (02) 

and Γ(z) is the Euler’s gamma. 

Normal distribution is recovered as υ → ∞. This reflects the fact that the estimated variance converges in probability to the true 

variance when υ grows without limit. The tails of the t distribution become more pronounced for smaller values of υ. Whereas 

for finite υ the tails of the density function decay as an inverse power of order υ + 1, and is therefore fat-tailed relative to the 

Normal. Therefore, extreme outcomes are more likely than Normal distribution. It is implied by the Fig.1. When υ  = 1, the t 

distribution is identical to another classical distribution, the Cauchy distribution. Its tails are so fat that they prevent it from having 

a mean (as well as any higher order moment). 

A random variable (X) has a general Student's t-distribution and it can be written as a linear transformation of a standard Student's 

t random variable (T1) as, X =  μ + σ T1. The PDF of X can be obtained using the formula for the density of a function of an 

absolutely continuous variable (X = g(T) =  μ + σ T1 is a strictly increasing function of T1, since σ is strictly positive) as; 

fX(x) = fT1(g
−1(x))

dg−1(x)

dx
=  fT1 (

x −  μ

σ
)
1

σ
 

                           fX(x) =  
Γ(

υ+1

2
)

√π σ υ  Γ(
1

2
υ)
[1 +

1

υ
(
x− μ

σ
)
2
]
−(υ+1 2⁄ )

, x ϵ ℝ1.                 (03) 

This distribution results from compounding a Gaussian distribution with mean μ and unknown precision (the reciprocal of the 

variance), with a gamma distribution with parameters  υ 2⁄  and υ 2⁄ . In other words, the random variable x is assumed to have 

a normal distribution with an unknown precision distributed as gamma. This is marginalized over the gamma distribution. The 

reason for the usefulness of this characterization is that the gamma distribution is the conjugate prior distribution of the precision 

of a Gaussian distribution. As a result, the three-parameter Student's t distribution arises naturally in many Bayesian inference 

problems.) Therefore, the standard ST-distribution can be formulated using the following integration as; 

       fμ,σ2,υ(x) =  ∫
Γ(

υ

2
)

υ
2

Γ(
υ

2
)√2π yσ2  

e
−
1

2y
(
x− μ

σ
)
2
−
υ

2y y−
υ

2
−1∞

0
dy .                  (04) 

Fig. 2 illustrates the structural behavior of the ST(υ, σ, μ) distribution when parameters are changing. (refer the ‘Appendix A’ for 

Mathematica coding). 

2.1 Simulation of General ST-distribution  

We use four methods to simulate, 4 different samples from ST distribution. Fig. 3 shows the results of sampling from ST 

distribution with 4 degrees of freedom, using following approaches;  

I. 10000 independent samples are taken from five standard normal variables  1,  2,    ,          and then calculate the  ( ) as; 

 ( ) =
 1

( 2+  +  +  ) √ ⁄
 , which has the ST distribution with 4 degrees of freedom. (Fig. 3 (a)). 

II. Take 10000 samples from independent standard normal variable  1 and Chi-squared variable   
2, with 4 degrees of freedom 

and calculate the  ( ) as;  ( ) =
 1

√  
2  ⁄

, which is the sample from the ST distribution with 4 degrees of freedom, (Fig. 3(b)). 

III. Take 10000 samples from independent standard normal variable  1  and Inverse-gamma variable  Γ( 
2
,
 

2
), with  =  , and 

calculate sample from the ST distribution with 4 degree of freedom as;  ( ) =  1  √ Γ(2,2), (Fig. 3 (c)). 

IV. Bailey (1994) discovered that the T distribution could be sampled by a very elegant modification to the well known Box-Muller 

method, and its polar variant, for the Normal distribution. With some modification of polar algorithm for generating 

 (υ)-variates can be summarized as follows; 

a) Generate two uniform variates  1 and  2 from [0, 1] and replace  1 and  2 as  1 = 2 1 − 1 and  2 = 2 2 − 1. 

b) Let  =   1
2 +  2

2, If  > 1 return to step (a.) for resample.     

c) Then calculate T as;  =  1√
 ( −2  ⁄ −1)

 
  (Fig. 3(d)). 

http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_cauchy.htm
http://www.statlect.com/subon2/dstfun1.htm#densinc
http://www.statlect.com/subon2/dstfun1.htm#densinc
http://en.wikipedia.org/wiki/Compound_distribution
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Precision_(statistics)
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Conjugate_prior
http://en.wikipedia.org/wiki/Bayesian_inference
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(see ‘Appendix B’ for Mathematica cording) 

2.2 Moments 

The general ST distribution is symmetrical around zero whereby all odd moments vanish. The kth moment exists if and only if 

k < υ; 

                  E(Xk) =  

{
 
 

 
 
0                             k odd;   0 <  𝑘 <  𝑣

Γ(
k+1

2
)Γ(

υ−k

2
)υ

k
2⁄

√π  Γ(
1

2
υ)

    k even;  0 <  𝑘 <  𝑣

Not Define           k odd;    0 <  𝑣 <  𝑘
  Infinite               k even;   0 <  𝑣 <  𝑘

                 (05) 

In this case, the variance of the distribution is Var(T) =  E(X2) = υ υ − 2⁄   and it is finite for υ > 2. Due to symmetry, the 

skewness of the distribution is zero and kurtosis is given by K(T) =
E(X )

[E(X2)]2
=

 (υ−2)

υ− 
  and it is finite for υ >  . 

Kurtosis measures the "fatness" of the tails of a distribution. Positive excess kurtosis means that distribution has fatter tails than a 

normal distribution. Fat tails means the probability of big positive and negative returns realizations is higher than that suggested 

by normal distribution. When calculating kurtosis, a result of +3.00 indicates the absence of kurtosis (distribution is mesokurtic). 

For simplicity in its interpretation, some statisticians adjust this result to zero (i.e. kurtosis minus 3 equals zero), and then any 

reading other than zero is referred to as excess kurtosis. Negative numbers indicate a platykurtic distribution while positive 

numbers indicate a leptokurtic distribution. The likelihood of large gains or large losses on an investment is high when fatness of 

the tails is higher. Excess kurtosis indicates that the volatility of the investment is itself highly volatile. 

The kth moment of the standard ST distribution is given in equation (06) and it can be illustrated by using the following Fig. 4.  

E(Xk) =  

{
 
 
 
 
 

 
 
 
 
 

  −nνnσ2n(1 + 2n)!Γ (
−2n + ν

2
)

[
(μ2 + νσ2) F12 [−n,

1
2
(−2n + ν), −

1
2
,−

μ2

νσ2
] +

( nμ2 − ν(μ2 + σ2)) F12 [−n,
1
2
(−2n + ν),

1
2
, −

μ2

νσ2
])

]

(1 + 2n)μ(1 + 2n − ν)Γ(1 + n)Γ(
ν
2
)

  k odd;   0 <  k <  v

 −nνnσ2n(2n)!Γ[
1
2
(−2n + ν)] F12 [−n,

1
2
(−2n + ν),

1
2
, −

μ2

νσ2
]

Γ[1 + n]Γ[
ν
2
]

                                                   k even;  0 <  k <  v

   Not Define                                                                                                                                                k odd;    0 <  v <  k
  Infinite                                                                                                                                                     k even;  0 <  v <  k

 

                                                                                   (06) 

(where, F12  is a Hypergeometric function) 

2.3 Characteristic Function 

The characteristic function (CF) ψ(u), of the random variable  X ~ ST(μ, σ2, υ) is given by;  

   ψ(u) = eiuμ21−
v

2

Kv
2
(√vσ|u|)

Γ(
v

2
)

(√vσ|u|)
v

2;  u ∈ ℝ              (07) 

(where Kv

2

(… ) is the modified Bessel function of the second kind) and it can be derived as follows with Lemma 01and 02.   

ψ(u) = E[eiux]  =  E[eiu( μ+ δϵ)] = eiuμE[eiu(δϵ)]1 

                                                        

1
 Lemma 01:  The random variable X~ ST(μ,σ, ν) has the representation:   X

D
⇒  μ +  δϵ.  

Where; the independent random variables ϵ and δ 2 are standard normal N(0,1) and inverse gamma distribution RΓ(
1

2
υ ,

1

2
σ2) respectively and 

μ is a constant. The probability density function of fδ2 is given by:   

http://financial-dictionary.thefreedictionary.com/Tail
http://financial-dictionary.thefreedictionary.com/Distribution
http://financial-dictionary.thefreedictionary.com/Return
http://financial-dictionary.thefreedictionary.com/Gains
http://financial-dictionary.thefreedictionary.com/Losses
http://financial-dictionary.thefreedictionary.com/Volatility
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Let, X =  δϵ 

ψ(u) = eiuμ∫ eiux
∞

−∞

fx (x) = eiuμ  ∫ eiux
∞

−∞

∫
1

|t|

∞

−∞

fδ(t)fϵ (
x

t
) dt dx2 

= eiuμ ∫ [∫ eiux
1

|t|

∞

−∞

1

√2π
e
−(x t⁄ )2

2⁄ dx]]
∞

−∞
 fδ(t)dt      =  eiuμ ∫ [∫ eiux

1

|t|

∞

−∞
fϵ (

x

t
) dx]]

∞

−∞
 fδ(t)dt 

= eiuμ ∫ [2 ∫ Cos(ux)
1

|t|

∞

0

1

√2π
e
−(x t⁄ )2

2⁄ dx]]
∞

−∞
 fδ(t)dt =  e

iuμ ∫ e
−(u

2

2⁄ )t2∞

−∞
 fδ(t)dt       

= eiuμ  ∫ e
−(u

2

2⁄ )t2
∞

0

 2tfδ2(t
2)dt 

Let t2 = t̅ then   =  eiuμ ∫ e
−(u

2

2⁄ )t2∞

0
 fδ2(t̅)dt̅   = eiuμ ∫ e

−(u
2

2⁄ )t̅∞

0
 
(
1

2
σ2)

υ
2⁄

Γ(
1

2
υ)

t̅
−υ

2⁄ −1 e
σ2

(2t̅)⁄  
dt̅    

= eiuμ
(
1
2
σ2)

υ
2⁄

Γ (
1
2
υ)

∫ e
−(u

2

2⁄ )t̅
∞

0

 e
σ2

(2t̅)⁄  
t̅
(−υ

2⁄ −1 )dt̅     

ψ(u)  = eiuμ2(1−υ 2⁄ )
Kυ

2⁄
(√vσ|u|)

Γ(
υ

2
)

(√vσ|u|)
υ
2⁄  

3. Empirical Evidence 

Some empirical results as given in below is an indication of the suitability of the Lévy student process for financial data. Daily 

closing prices of Gold Future index and S&P 500 index are considered from Janaury-2002 to December-2012, which are traded in 

the NYMEX, with a total of 2870 and 2769 observations respectively. In the analysis, logarithmic returns were used. 

The maximum likelihood estimates of the parameters are given in table 01. For the assessment of goodness of fit, the 

Anderson-Darling (AD) and Person χ2 tests are utilized with the log-likelihood estimator and results are recorded in Table 01. 

The smaller the value of AD and χ2 means that closer to empirical distribution and fitted one. Obviously, the statistics for Lévy 

process are smaller than the value for Brownian motion. Higher log-likelihood value gives better fit. Further, the corresponding 

empirical densities, Gaussian and Student T density, for Gold Future Index and S&P 500 index are shown in Fig. 5 in separately.  

Therefore, Student-t distribution is more realistic distribution in describing the financial data than Gaussian, for the historical data 

investigated. As a result, we can be used to student process for asset price modeling.  

4. Financial Applications 

4.1 Convolution 

Convolutions and related operations are found in many applications of mathematics and engineering. The concept of convolution 

is needed to many derivatives in Lévy processes applications.  

Corollary 1: The PDF for n-fold self-convolution can be found by; either convolution integrals:    

   ∫ ∫ ⋯ f (x1, x2, … )g (y1 − x1, y2 − x2, … ) dx1 dx2⋯
∞

−∞

∞

−∞
         (08)  

or the inverse Fourier transform of the nth power of the characteristic function of the original function as,      

                                                                                                                                                                                    

𝑓𝛿2 (𝑥)  = {
(
1

2
𝜎2)

 
2⁄

Γ(
1

2
𝜐)

𝑥
−𝜐

2⁄ −1 𝑒
𝜎2

(2𝑥)⁄  
   𝑓 𝑥 > 0 

0                                              𝑓 𝑥 ≤ 0 

  

For > 0 , fδ (x) = 2x fδ2 (x) , the density function of δ.  

 
2
 Lemma 02:  Let X1 and X2be independent stochastic random variable (absolutely continuous) with density function fX1and fX2. Then the 

random variable X1. X2 is absolutely continuous with density function (consider product of r. v.) as: 

fX1.X2(x) =  ∫
1

|t|

∞

−∞
 fX1(t)fX2 (

x

t
) dt ; x ∈ ℝ  
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1

√2π
∫ e−ixtψ(x)ndx
∞

−∞
.                                   (09) 

In general, the Student t-distributions are not closed under convolution (Nadarajah & Dey 2005), because the sums of independent 

identically distributed (iid) t variables are not ‘t-distributed’. Therefore, analytical solutions can be derived in some special cases 

only. Nadarajah & Dey (2005) provided analytical solutions for the density function fυ1,υ2 of the 2 fold-convolution for any odd 

integer values of υ1 and υ2. They showed that there are no similar analytical solutions for even υ. However, numerical solution 

can be found for any integer υ using the characteristic function technique.  

The n-fold self-convolution of a Student’s t-distribution for odd υ (=3, 5, 7, ...) can be formulated simply and their expression are 

given in below. However, n-fold convolution do not hold for even  υ (=4, 6, ...) except υ = 2 case.  

The PDF for a 2-fold self-convolution: 

fu
(2)(u) =  

1

√νΓ [
ν
2
]
2 2

1
2
−ν
√πΓ [

1 + 2v

2
] Γ [

1 + ν

2
] F12 [

1

2
+ ν,

1 + ν

2
,
2 + ν

2
,−

u2

 ν
] 

ν = 2;            fu
(2)(u) =  

 

 2
π 2⁄ F12 [

 

2
,
 

2
, 2, −

u2

8
]  

ν = 5;            fu
(2)(u) =

 00√ (8 00+120u2+u )

 π(20+u2) 
                    (10) 

The PDF for a 4-fold self-convolution with 𝜈 = 5: 

fu
( )(u) =    

800√  

 π(80+u2)9
(118 50858700000 + 152166 000000u2 + 12 56960000u + 73728000u6 +

308 00u8 + 810u10 + u12
)     (11) 

The PDF for a 6-fold self-convolution with 𝜈 = 5 

fu
(6)(u) =  

 00√5

π(180 + u2)1 
(979699  6573926 X1010 + 1012312171860 8X1010u2 +   650898019296X1010u 

+ 32 358903872X108u6 + 131556506 X108u8 +  31  79616X10 u10 + 11115 36X10 u12

+  2153X106u1 + 293 X10 u16 + 2500u18 + u20) 

                            (12) 

The tails of the n-fold self-convolution of a Student’s t-distribution maintain the character of the original t-distribution. For large t, 

the n-fold ν = 5 pdf goes as u−6. Thus, n-day returns will maintain the fat tails of the distribution of the daily returns, which is 

known to be described well by a Student’s t-distribution. This is in agreement with the analysis of Bouchaud and Potters (2003, p. 

33). Fig. 6 shows the shapes of the convoluted probability density functions for different n (=1, 2, 4, 6, 10 & 15) fold self 

convolution with υ = 5. The tails of the distributions show a u−6 behavior that is characteristic of a Student’s t-distribution with 

υ = 5 degrees of freedom. 

4.2 Infinite Divisibility & Self-decomposability  

Relating student’s t distributions to the Lévy processes, the crucial role are paid the properties of infinite divisibility or 

self-decomposability (Grigelionis 2013; Sato 1999). Grosswald (1976) proved that the standard student’s t-distribution of any 

degree of freedom is infinitely divisible, by deriving the following formula: 

   Kυ−1(x) =  xKυ(x) ∫
gυ(u)

x2+ u

∞

0
du, υ ≥  −1, x > 0              (13) 

where, gυ(u) = 2[π2x(Jυ
2(√x) + Yυ

2(√x))]−1, x > 0,  

Jυ(x) and Yυ(x) are the Bessel functions of the first kind and second kind, respectively while Jurek (2001) proved that the 
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general student t-distribution is infinite divisible(ID) and self-decomposable(SD) by using Lemma 1 and Lemma 33. That means, 

the class of all self-decomposable characteristic (or probability distributions) are infinitely divisible, 

i.e.,     ∀(n ≥ 1) ∃ (ψn), ∀(u ∈  ℝ) s.t. ψ(u) =  [ψn(u)]
n            (14) 

The characteristic function of every infinitely divisible distribution can be represented in a very special form, the 

Lévy–Khintchineformula:   

          ψμ(u) = e
Φ(u) = exp (iub − 

1

2
cu2 + ∫ (eiux − 1 − iux1{|x|>1})ℝ

υ(dx))           (15) 

where the coefficient b ∈ ℝ, c ≥ 0 and the L évy measure υ(dx) which satisfies υ(dx) = 0 and ∫ (x2 ⋀1)
ℝ

υ(dx) <  ∞ are 

unique.  

The Lévy–Khintchine representation of the characteristic function of the general ST(υ, σ, μ) can be obtained from the results of 

Halgreen (2005) by choosing α =  |β| = 0, σ > 0 and λ = −
υ

2
< 0 as follows; 

              ψ(u) = exp (iuμ + ∫ (eiux − 1 − iux1{|x|>1})ℝ
g(x)dx),                       (16) 

With g(x) =
1

|x|
∫

e−|x|√2ydy

π2y(Jυ
2⁄

2 (σ√2y)+ Yυ
2⁄

2 (σ√2y))

∞

0
                                             

4.3 Lévy- Student Processes  

Student t-distribution is infinitely divisible and therefore generate a Lévy processes L =  (L(t))t≥0, such that the distribution of 

L(1), has symmetric ST(υ, σ, μ) distribution (for simplicity and without loss of generality, we consider t = 1 with Student 

marginal. However, as ST distributions are not closed under convolution as above and Nadarajah & Dey (2005), the marginals of 

these Lévy processes are Student distributed only for one time horizon t0. On other time horizons, the marginal are not Student 

distributed. Their distribution can be derived analytically only for some special cases (Heyde & Leonenko 2005; Cufaro 2007). 

Apart from these cases, they have to be derived numerically in quite an involved manner (Barndorff & Shephard 2004). For this 

reason, only few research papers have covered Lévy Student processes, so far. 

The law of L(t) is determined by the law of L(1), which is ID. The independent and stationary of the increments of the Lévy 

process leads to the cumulant transform  ϰ(u) = log (ψ(u)) is given by;  

     ϰL(t)(u) =  t ϰL(1)(u)  u ∈ ℝ.          (17) 

For υ > 1 and E[L(t)] = tμ, t ≥ 0, the process can be split into L(t) = tμ + L0(t), t ≥ 1, with E[L0(t)] = 0. By Eq. (16), 

the characteristic function of the random variable L0(t), t ≥ 0 with the characteristic function ψ(u), of the process at time t and 

                     ψL0(t)(u) =  (ψL0(1)(u))
t,  u ∈  ℝ.                    (18) 

As the characteristic function of a random variable equals its Fourier transformation up to some constant factors, the inverse 

Fourier transformation reproduces the density from the characteristic function. Let φL(1) be the characteristic function of the 

Student distribution, the PDF of L0(t) is given; 

               fL(t)(x) =  ∫ eiux
∞

−∞
ψL0(t)(u) du 

    = ∫ eiux
∞

−∞
(eiuμ21−

v

2  
Kv
2
(√vσ|u|)

Γ(
v

2
)

(√υσ|u|)
v

2)

t

du  

             =
2t(1−

υ
2⁄ )

πΓt(
υ

2
)
∫ cos (ux)eiuμt(√υσ|u|)υt 2⁄ Ktυ

2

(√υσ|u|)du
∞

0
 .            (19) 

When t = 1  the expression (19) can be exactly calculated and coincides with the PDF (03) of a ST(υ, σ, μ). Furthermore, the 

principal drawback for not being stable is in the subsequent definition of the Lévy–Student process. In fact the CF of the Student 

                                                        
3 Lemma 3: Let 𝐿(𝑡)be a levy process with having the strong Markov and scaling (the process  𝐿(𝑡) has the scaling property if 

for each 0<c<1 there exists a constant h(c) such that 𝐿(𝑐𝑡) =
𝑑
ℎ(𝑐)𝐿(𝑡))  properties.  For any independent random variable 

 ≥ 0, there is 𝐿(𝑡 +  ) − 𝐿( ) =
𝑑
𝐿(𝑡). If   is SD and the ℎ(𝑐) is homeomorphism of unit interval, then 𝐿( )  is SD.  
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Lévy process φL0(t)(u) coincides with (06) only for only for t = 1, while for t ≠ 1 it is no more the CF of a Student law 

(Petronia el al. 2006).  

The integral on the right hand side of (18) can be computed numerically for specific values of υ. The results are shown in Fig. 6, 

where the densities of the convolution semi-group are represented for values of t varying from 1 to 3, with the parameters of 

υ = 3, μ = 0 and unit value of σ. The integral is difficult to evaluate for even υ.  Therefore, it is better to see the behavior of 

Student Lévy process when υ = 3 situation due to results in section 3 (value of degree of freedom in both indexes are close to 3).  

5. Discussion  

The Student t-distribution has strong reason to be regarded as an alternative model of first choice particularly when the benchmark 

normal or Black Scholes, model is found to be inadequate. It implies an Inverse gamma distribution for the marginal distribution 

of the squared volatility.  

Student distributions are infinitely divisible and self-decomposable; there exist Lévy processes with Student marginal’s for a 

certain point in time. The densities of the Lévy Student processes for any point in time are given by integrals (18) which can be 

solved analytically only for few special cases. There are some problem solving the problem numerically due to slow convergence 

and heavy tails of the distributions. Therefore, a model can be developed for a specific values of υ to price the option. This 

distributional property can be exploited to identify possible dynamics of the volatility process and hence the evolution of the asset 

price process can be derived 
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(a).Sampling distribution from  

Method I 

 

(b).Sampling distribution from    

Method II 

 

(c).Sampling distribution from 

Method III 

 

(d).Sampling distribution 

from Method IV 

Fig. 3. The results of above four methods, (which each one has ST distribution with 4 degrees of freedom) are compared with the 

normal distribution 

 

Fig.2. Structural behavior of the ST(υ, σ, μ) distribution with 

different parameter values 
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Fig.1. Plot of the standard normal density and student 

t-densities with 0.5,1,3 and 30 degrees of freedom 
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Fig.4. First 10 moments of the Standard ST Distribution 

 

 

(a).Gold Returns (b).S&P 500 Returns 

Fig. 5.  Densities Estimation for return, from Smooth Kernel, Student T and Normal Distribution 

  

Fig.6. Shapes of the convoluted PDFs for different n (=1, 2, 4, 

6, 10 & 15) with υ = 5 

Fig. 7. Convolution Semi-group Densities 

 

Table 1: Parameter estimates and goodness of fit-tests for the gold future index & S&P 500 index 

Index Model υ μ σ AD 𝛘𝟐 Log-Likeli-hood 

Gold Gaussian - 0.00063 0.0139 14.386 

(0.000) 

176.12 

(0.000) 

6642 

 

Student T 3.45 0.00044 0.0103 0.4712 

(0.841) 

47.14 

(0.243) 

6886 

 

S&P 500 Gaussian - 0.00005 0.0053 20.145 

(0.000) 

196.45 

(0.000) 

5614 

Student T 2.89 0.00023 0.0032 0.6532 

(0.521) 

32.15 

(0.154) 

5941 
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Fig.4. First 10 moments of the Standard ST Distribution 
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