
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.8, 2013 

 

113 

Sixth-Order Hybrid Block Method for the Numerical Solution of 

First Order Initial Value Problems 

 

E. A. AREO    and    R.B. ADENIYI  

1. Department of Mathematical Sciences, Federal University of Technology Akure, Akure, Nigeria. 

2. Department of Mathematics, University of Ilorin. 

* E-mail of the corresponding author: areofemmy@yahoo.com and eaareo@futa.edu.ng 

 

Abstract 

Hybrid block method of order six is proposed in this paper for the numerical solution of first order 

initial value problems. The method is based on collocation of the differential system and interpolation of the 

approximate at the grid and off-grid points. The procedure yields five consistent finite difference schemes which 

are combined as simultaneous numerical integrators to form block method. The method is found to be zero-

stable hence convergent. The accuracy of the method is shown with some standard first order initial value 

problems. 
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1. Introduction 

Many problems encountered in the various branches of science, engineering and 

 management give rise to differential equations of the form: 

 bxayxyyxfy ≤≤′ ,=)(),,(= 00  
(1.1) 

 where f is assumed to be Lipschiz constants. 

 The solution of (1.1) has been discussed by various researchers among them are [see Lie and Norsett 

(1989), Onumanyi et al. (1994, 1999, 2002), Sirisena [(1999, 2004), Lambert (1973) and Gear (1971)]. However, 

experience has shown in [Lie and Norsett (1989), and Onumanyi et al. (1994)] that the traditional multistep 

methods including the hybrid ones can be made continuous through the idea of multistep collocation. These 

earlier works have focused on the construction of continuous multistep methods by employing the multistep 

collocation. The continuous multistep methods produce piecewise polynomial solutions over k-steps ],[ knn xx +  

for the first order systems of ordinary differential equation (ODEs). Sirisena et al. (2004) developed a continuous 

new Butcher type two-step block hybrid multistep method for problem (1.1). The results obtained showed a class 

of discrete schemes of order 5 and error constants ranging from 
5

6 101.45= −×C  to 
4

6 101.790= −×C . In a 

recent paper, we reported one-step embedded Butcher type two-step block hybrid schemes employing basis 

functions as approximate solution see Areo et al. (2009) , but in this paper effort is being made to extend the 

scope. In this paper, we propose sixth-order hybrid block method for the numerical solution of first order initial 

value problems. 

 

2. The Derivation of the Method 
In this section, the derivation of the continuous formulation of the proposed sixth-order hybrid block 

method is presented and employs it to deduce the discrete ones. The continuous scheme is used to obtain finite 

difference methods which are combined as simultaneous numerical integrators to constitute conveniently the 

block method. 

In order to derive the continuous scheme, the method of Sirisena et al. (2004) is applied where a k-step 

multistep collocation method with m collocation points was obtained as follows: 
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where )(xjα  and )(xjβ  are the continuous coefficients of the method. Where )(xjα  and )(xjβ  

are defined as 
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 and 

 { }10,1,2,...,;=)( 1,

1

1

−∈+

−+

−
∑ tjxx j

ij

mt

i

j ββ  (2.3) 

 jnx + : 10,1,2,...,= −tj  in (2.1) are )(0 kt ≤≤  arbitrary chosen interpolation points taken from 

},...,{ knn xx +  and jx
−

: 10,1,...,= −mj  are the m collocation points belonging to },...,{ knn xx + . To get 

)(xjα  and )(xjβ , Sirisena et al. (2004) arrived at a matrix equation of the form 

 IDC =  (2.4) 

Where I is the identity matrix of dimension )()( mtmt +×+  while D and C are matrices defined as  
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The above matrix (2.5) is the multistep collocation matrix of dimension )()( mtmt +×+  and  
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 (2.6) 

 Where t  and m  are defined as the number of interpolation points and the number of collocation points used 

respectively. The columns of the matrix 
1= −DC  give the continuous coefficients 

 10,1,...,=;)(10,1,...,=;)( −− kjxandkjx jj βα  

The proposed sixth-order hybrid block method was developed subjected to the following conditions for matrix D: 
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 Thus the matrix D  in (2.5) becomes  
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 Thus, the elements of 
1= −DC  were obtained such that )(= , jicC , 7,1 ≤≤ ji   

  

From (2.2) and (2.3) using the elements of 
1= −DC  we have,  
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On substituting the above into (2.7), the continuous scheme is obtained as follows:  
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 Now, evaluating (2.9) at 1= +nxx , 

12

11=
+n

xx , 

6

5=
+n

xx , 

3

2=
+n

xx  and its first derivative at 

12

11=
+n

xx , the 

following five discrete schemes which constitute the block method were obtained:  
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3. The Basic Properties of the Method 
3.1 Order, Error Constant and Consistency of the Method 

The five finite difference schemes (2.10)-(2.14) derived are discrete schemes belonging to the class of 

Linear Multistep Method (LMM) of the form  
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xfxhxyx ++ ∑∑ βα  (3.1) 

 This is a method associated with a linear difference operator,  
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 where )(xy  is an arbitrary function continuously differentiable on the interval ],[ ba . The Taylor series 

expansion about the point x ,  
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 Definition 3.1: The method (3.1) is said to be of order P  if 0===== 210 pCCCC K  and 01 ≠+pC  is 

the error constant, see Lambert (1973). Applying this definition to equations (2.10)-(2.14) which make up the 

block method, it is verified that each of the five difference schemes is of order 
Tp )(6,6,6,6,6=  with error 
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constants 

T)1039.99684772,1052.39215869,
4891041792

925
,

3681207388602

280357
,

95528160

29
( 0707 −− ×−×−−−− . 

Definition 3.2: A LMM of the form (3.1) is said to be consistent if the LMM is of order 1≥p . Since 

the discrete schemes derived in (2.10)-(2.14) are of order 1≥  according to Definition 3.2, therefore, the 

schemes are consistent.  

3.2 Zero-Stability and Convergence of the Method 

It is known from the literature that the stability of a LMM determines the manner in which the error is 

propagated as the the numerical computation proceeds. Hence, the investigation of the zero-stability property is 

necessary. 

Definition 3.3: According to Lambert (1973), The LMM is said to be zero - stable if no root of the first 

characteristic polynomial )(ξρ  has modulus greater than one, and if every root with modulus one is  

simple, where 
j

j

k

j
ξαξρ ∑ 0=

=)( . The investigation carried out on the five difference schemes in  

(2.10)-(2.14) revealed that all the roots of the derived schemes are less than or equal to 1; hence the schemes are 

zero-stable. Since the consistency and zero-stable of the schemes (2.10)-(2.14) have been established, then the 

proposed hybrid block method is convergent, see Lambert (1973) and Fatunla (1988). 

 

4  Numerical Experiment 
 In this section, the concern is the application of the schemes derived in section two in block form on 

some initial value problems with test problems 4.1.1-4.1.3 and an application problem 4.1.4:  

4.1  Problems 
 Problem 4.1.1:  

 
xexyandxhyyy −≤≤−′ =)(10.1,0=1,=(0);=  

[see Sirisena et al. (1999 and 2004) and Areo et al. (2009)] 

Problem 4.1.2: 

 10.1,0=2,=(0)1;)8(= ≤≤+−−′ xhyxyy  

 
xxxy 82=)( −+ l  

[see Sirisena et al. (1999 and 2004) and Areo et al. (2009)] 

Problem 4.1.3: 

 10.1,0=0,=(0),= ≤≤−′ xhyyxy  

 1=)( −+ −xxxy l  

[see Sirisena et al. (1999 and 2004) and Areo et al. (2009)] 

Problem 4.1.4: Considering the discharge valve on a 200 -gallon tank that is full of water opened at 

time 0=t  and 3  gallons per second flow out. At the same time 2  gallons per second of 1 percent chlorine 

mixture begin to enter the tank. Assume that the liquid is being stired so that the concentration of chlorine is 

consistent throughout the tank. The task is to determine the concentration of chlorine when the tank is half full. It 

takes 100  seconds for this moment to occur, since we lose a gallon per second. If )(ty  is the amount of 

chlorine in the tank at time t , then the rate chlorine is entering is 
100

2
 gal/sec and it is leaving at the rate 

]
200

3[
t

y

−
 gal/sec. 

Thus, the resulting IVP is 

t

y

dt

dy

−
−
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3
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2
= , 10 ≤≤ t : 0=(0)y , 0.1=h  

whose analytical solution is 

3]
1000

5
2[1
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1
2=)(

t
tty −−− . 

[See John L. Van Iwaarden (1985)]  
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4.2  Results 
 The comparison of errors for problems 4.1.1-4.1.4 are shown in the tables below.  

Table  1: Comparison of absolute errors for Problem 4.1.1 

 X Sirisena et al. 

(1999) 

Sirisena et al. 

(2004) 

Areo et al. (2009) Proposed Method 

0.1 2.00×10
-9 

2.00×10
-9

 3.60×10
-10 

0.0 

0.2 2.00×10
-9

 2.00×10
-9

 1.80×10
-10 

0.0 

0.3 3.00×10
-9

 1.00×10
-9

 5.80×10
-10 

0.0 

0.4 4.00×10
-9

 2.00×10
-9

 7.40×10
-10 

0.0 

0.5 2.00×10
-9

 1.00×10
-9

 8.10×10
-10 

0.0 

0.6 5.00×10
-9

 3.00×10
-9

 9.90×10
-10 

1.00×10
-10 

0.7 6.00×10
-9

 2.00×10
-9

 9.90×10
-10 

0.0 

0.8 6.00×10
-9

 3.00×10
-9

 1.00×10
-9

 1.00×10
-10 

0.9 6.00×10
-9

 3.00×10
-9

 1.10×10
-9

 0.0 

1.0 6.00×10
-9

 3.00×10
-9

 1.20×10
-9

 1.00×10
-10 

   

Table  2: Comparison of absolute errors for Problem 4.1.2 

X Sirisena et al. 

(1999) 

Sirisena et al. 

(2004) 

Areo et al. (2009) Proposed Method 

0.1 3.60×10
-4 

3.60×10
-4 

7.20×10
-6 

1.99×10
-7 

0.2 1.50×10
-4

 1.50×10
-4

 6.50×10
-6 

1.79×10
-7 

0.3 1.40×10
-4

 5.90×10
-5

 4.40×10
-6 

1.20×10
-8 

0.4 6.10×10
-5

 1.60×10
-5

 2.60×10
-6 

7.23×10
-8 

0.5 4.20×10
-5

 4.30×10
-5

 1.50×10
-6 

3.98×10
-8 

0.6 1.80×10
-5

 2.10×10
-5

 8.00×10
-7 

2.80×10
-8 

0.7 1.10×10
-5

 5.70×10
-7

 4.20×10
-7 

1.10×10
-8 

0.8 4.90×10
-6

 1.60×10
-6

 2.10×10
-7 

5.30×10
-9 

0.9 2.80×10
-6

 5.10×10
-6

 1.10×10
-7 

2.30×10
-9 

1.0 1.30×10
-6

 2.80×10
-6

 5.30×10
-8

 1.00×10
-9 

  

Table  3: Comparison of absolute errors for Problem 4.1.3 

 X Sirisena et al. 

(1999) 

Sirisena et al. 

(2004) 

Areo et al. (2009) Proposed Method 

0.1 2.00×10
-9 

2.00×10
-9

 3.80×10
-11 

0.0 

0.2 2.10×10
-9

 2.10×10
-9

 7.80×10
-11 

0.0 

0.3 3.70×10
-9

 1.70×10
-9

 1.00×10
-10 

6.00×10
-10 

0.4 1.00×10
-9

 0.00 1.30×10
-10 

3.00×10
-11 

0.5 4.70×10
-9

 6.70×10
-9

 2.10×10
-10 

0.0 

0.6 4.10×10
-9

 0.00 1.90×10
-10 

1.00×10
-10 

0.7 4.80×10
-9

 1.00×10
-9

 1.90×10
-10 

0.0 

0.8 4.10×10
-9

 0.00 2.20×10
-10

 0.0
 

0.9 4.70×10
-9

 0.00 2.40×10
-10

 0.0 

1.0 4.20×10
-9

 0.00 2.70×10
-10

 1.00×10
-10 
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Table  4: Comparison of absolute errors for Problem 4.1.4 

 X Areo (2011) Proposed Method 

0.1 3.26×10
-6 

0,0 

0.2 6.82×10
-6 

0,0 

0.3 1.07×10
-5 

2.40×10
-11 

0.4 1.48×10
-5 

2.40×10
-11 

0.5 1.92×10
-5 

2.40×10
-11 

0.6 2.39×10
-5 

3.00×10
-11 

0.7 2.89×10
-5 

3.00×10
-11 

0.8 3.42×10
-5 

3.00×10
-11 

0.9 3.97×10
-5 

3.00×10
-11 

1.0 4.56×10
-5 

3.00×10
-11 

 

5. Conclusion 

A collocation approach which produces a family of order six multiderivative schemes has been 

proposed for the numerical solution of first order initial value problems. The errors arising from Problems 4.1.1-

4.1.3 using the proposed method were compared with those obtained by Sirisena et al. (1999), Sirisena et al. 

(2004) and Areo et al. (2009) respectively, who earlier solved the same problems while the errors arising from 

Problem 4.1.4 were compared with Areo (2011). 

A close look at the tables presented above reveal that the newly proposed method perform better than 

those compared with. The method is also desirable by virtue of possessing of high order accuracy.  
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