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Abstract 
In this paper, we define expansive mappings in the setting of �-cone metric spaces analogous to expansive 
mappings in metric spaces. We also obtain some results for two mappings to the setting of �-cone metric space. 
These results extend main results of Wang et al [14] into the structure of �-cone metric space. 
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1. Introduction and Preliminaries 
Over the past two decades a considerable amount of research works for the improvement of fixed point theory 
have executed by several authors. There has been a number of generalizations of the usual notion of metric 
spaces such as Gahler [3,4] (called 2-metric spaces). But different authors proved that there is no relation 
between these two functions, for instance, Ha et al. in [5] show that 2-metric need not be continuous function, 
further there is no easy 
relationship between results obtained in the two settings.  
In 1992, Bapure Dhage in his Ph.D thesis introduce a new class of generalized metric space called �-metric 
space [1,2]. However, Mustafa and Sims in [10] have pointed out that most of the results claimed by Dhage and 
others in �-metric spaces are invalid. To overcome these fundamental flaws, they introduced a new concept of 
generalized metric space called �-metric space[11] and obtained several interesting fixed point results in this 
structure. Recently in 2012 Sedghi, Shobe and Aliouche have introduced the notion of an �-metric space and 
proved that this notion is a generalization of a �-metric space. Also, they have proved some properties of �-
metric spaces and some fixed point theorems for a self-map on an �-metric space. Another such generalization 
initiated by Huang and Zhang[6], replacing the set of real numbers by an ordered Banach space, called cone 
metric space and gave some fixed point theorems for contractive type mappings in a normal cone metric space. 
In [12], Rezapour and Hamlbarani omitted the assumption of normality in cone metric space. Very recently in 
2013 Neeraj Malviya and Brain Fisher[9] introduced an appropriate concept of �-cone metric space which is a 
generalization of �-metric space and cone metric space. They also proved some properties of these spaces and 
established some fixed point results for asymptotic regular maps in the setting of �-cone metric space. 
On the other hand, the research about fixed points of expansive mapping was initiated by Machuca (see [8]). 
Later Jungck discussed fixed points for other forms of expansive mapping (see [7]). In 1982, Wang et al. (see 
[14]) presented some interesting work on expansive mappings in metric spaces which correspond to some 
contractive mapping in [13]. Also, Zhang has done considerable work in this field. In order to generalize the 
results about fixed 
point theory, Zhang (See [15]) published his work Fixed Point Theory and Its Applications, in which the fixed 
point problem for expansive mapping is systematically presented in a chapter. As applications, he also 
investigated the existence of solutions of equations for locally condensing mapping and locally accretive 
mapping. In present paper we define expansive map and investigate fixed points for these maps in �-cone metric 
space. 
 
Definition 1.4[9]: Let � be a nonempty set. An �-cone metric on � is a function �: �� → 	 , that satisfies the 
following conditions for all �, , �, � ∈ �. 

1. �(�, , �) ≥ 0 

2. �(�, , �) = 0 if and only if � =  = � 

3. �(�, , �) ≤ �(�, �, �) + �(, , �) + �(�, �, �) 
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Then the function � is called an �-cone metric and the pair (�, �) is called an �-cone metric space. 
 
Remark 1.5[9]: It is easy to see that every generalized �∗-metric space is an �-cone metric space but in general, 
the converse is not true, see the following example. 
 
Example 1.6[9]: Let 	 = ��, � = �(�, , �) ∈ 	, �, , � ≥ 0�, � = � and �: � × � × � → 	 is defined by 
 

�(�, , �) = ��(| + � − 2�| + | − �|), #(| + � − 2�| + | − �|), $(| + � − 2�| + | − �|)% 
 
where �, #, $ are positive constants. Then (�, �) is an �-cone metric space but it is not a generalized �∗-metric 
space because � is not symmetric. 
 
Proposition 1.7[9]: If (�, �)  is an � -cone metric space, then for all �, , � ∈ �,  we have �(�, �, ) =
�(, , �). 
 
Definition 1.8[9]: Let (�, �) be an �-cone metric space. Let ��&� be a sequence in � and � ∈ �. If for every 
' ∈ 	  with 0 ≪ '  there is �  such that for all ) > �(�&, �& , �) ≪ ' , then ��&� is said to be convergent, ��&� 
converges to � and � is the limit of ��&�. We denote this by �& → � as () → ∞). 
 
Lemma 1.9[9]: Let (�, �) be an �-cone metric space and � be a normal cone with normal constant ,. Let ��&� 
be a sequence in �. If ��&� converges to � and ��&� also converges to  then � = . That is the limit of ��&�, if 
exists is unique. 
 
Definition 1.10[9]: Let (�, �) be an �-cone metric space and ��&� be a sequence in �. If for any ' ∈ 	 with 
0 ≪ ' there is � such that for all -, ) > �, �(�&, �& , �.) ≪ ', then ��&� is called a Cauchy sequence in �. 
 
Definition 1.11[9]: Let (�, �) be an �-cone metric space. If every Cauchy sequence in � is convergent in �, 
then � is called a complete �-cone metric space. 
 
Lemma 1.12[9]: Let (�, �) be an �-cone metric space and ��&� be a sequence in �. If ��&� converges to �, then 
��&� is a Cauchy sequence. 
 
Definition 1.13[9]: Let (�, �) and (�/, �/) be �-cone metric spaces. Then a function 0: � → �/ is said to be 
continuous at a point � ∈ � if and only if it is sequentially continuous at �, that is whenever ��&� is convergent 
to � we have �0�&� is convergent to 0(�). 
 
Lemma 1.14[9]: Let (�, �) be an �-cone metric space and � be a normal cone with normal constant ,. Let ��&� 
and �&� be two sequences in � and suppose that �& → �, & →  as ) → ∞. Then �(�& , �& , &) → �(�, �, ) as 
) → ∞. 
 
Remark 1.15[9]: If �& → � in an �-cone metric space � then every subsequence of ��&� converges to � in �. 
 
Proposition 1.16[9]: Let (�, �) be an �-cone metric space and � be a cone in a real Banach space 	. If 2 ≤ 3, 
3 ≪ 4 then 2 ≪ 4. 
Lemma 1.17[9]: Let (�, �)  be an � -cone metric space, �  be an � -cone in a real Banach space 	  and 
,5, ,6, ,�, ,7, , > 0. If �& → �, & → , �& → � and 8& → 8 in � and 
 

,� ≤ ,5�(�& , �&, �) + ,6�(& , &, ) + ,��(�& , �&, �) + ,7�(8&, 8& , 8)                                   (1.4) 
then � = 0. 
 
Expansive map: We define expansive map in �-cone metric space as follows 
 
Definition 1.18: Let (�, �) be an �-cone metric space. A map 0: � → � is said to be an expansive mapping if 
there exists a constant ; > 1 such that �(0�, 0�, 0) ≥ ;�(�, �, ) for all �,  ∈ �. 
 
Example 1.8: Let (�, �) be an �-cone metric space as defined in example 1.6. Define a self map 0: � → � by 
0� = #� where # > 1, for all � ∈ �. Clearly 0 is an expansive map in �. 
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2. Main Results 
The first main result is 
 
Theorem 2.1. Let (�, �) be a complete �-cone metric space with respect to a cone � contained in a real Banach 
space 	. Let 0and < be two surjective self map of � satisfying. 
 

�(0�, 0�, <) + ,=�(�, �, <) + �(, , 0�)> ≥ ��(�, �, 0�) + ?�(, , <) + '�(�, �, )         (2.1.1) 
 
for every �,  ∈ �, � ≠  where �, ?, ', , ≥ 0, and � < 2, + 1, ? < 2, + 1 and 3, + 1 < '. Then 0 and < have 
a unique common fixed point in �. 
 
Proof: We define a sequence ��&� as follows for ) = 0,1,2,3, … 
 

�6& = 0�6&D5, �6&D5 = <�6&D6                                                                         (2.1.2) 
 
If �6& = �6&D5 = �6&D6 for some ) then we see that �6& is a fixed point of 0 and <. Therefore, we suppose that 
no two consecutive terms of sequence ��&� are equal. 
 
Now we put � = �6&D5 and  = �6&D6 in (2.1.1) we get 
 

�(0�&D5, 0�6&D5, <�6&D6) + ,=�(�6&D5, �6&D5, <�6&D6) + �(�6&D6, �6&D6, 0�6&D5)>
≥ ��(�6&D5, �6&D5, 0�6&D5) 

+?�(�6&D6, �6&D6, <�6&D6) + '�(�6&D5, �6&D5, �6&D6) 
 
�(�6&, �6& , �6&D5) + ,=�(�6&D5, �6&D5, �6&D5) + �(�6&D6, �6&D6, �6&)> ≥ ��(�6&D5, �6&D5, �6&) 
+?�(�6&D6, �6&D6, �6&D5) + '�(�6&D5, �6&D5, �6&D6) 
 
⇒ �(�6& , �6&, �6&D5) + ,=2�(�6&D6, �6&D6, �6&D5) + �(�6& , �6&, �6&D5)> ≥ ��(�6&D5, �6&D5, �6&) 
+?�(�6&D6, �6&D6, �6&D5) + '�(�6&D5, �6&D5, �6&D6) 
 
⇒ (1 + , − �)�(�6&, �6& , �6&D5) ≥ (? + ' − 2,)�(�6&D5, �6&D5, �6&D6) 
 

⇒ �(�6&D5, �6&D5, �6&D6) ≤ (5DFGH)
(IDJG6F)

�(�6& , �6&, �6&D5) 

 
⇒ �(�6&D5, �6&D5, �6&D6) ≤ K5�(�6& , �6&, �6&D5) 
 

where K5 =
(5DFGH)

(IDJG6F)
< 1 (LM  � + ? + ' > 1 + 3,) 

Similarly we can calculate 
 
⇒ �(�6&D6, �6&D6, �6&D�) ≤ K6�(�6&D5, �6&D5, �6&D6) 

where K6 =
(5DFGH)

(IDJG6F)
< 1 (LM  � + ? + ' > 1 + 3,) 

and so on 
 
So, in general 
 
⇒ �(�& , �& , �&D5) ≤ K�(�&G5, �&G5, �&) for ) = 1,2,3, … 
where K = -���K5, K6� then K < 1 

 
⇒ �(�& , �& , �&D5) ≤ K&�(�N, �N, �5)  
 
Now we shall prove that ��&� is a cauchy sequence. For this for every positive integer 8, we have 
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  ���& , �& , �&DO% ≤ 2�(�& , �& , �&D5) + 2�(�&D5, �&D5, �&D6) + ⋯ + 2���&DOG6, �&DOG6, �&DOG5%
+ ���&DOG5, �&DOG5, �&DO%
≤ 2�(�& , �& , �&D5) + 2�(�&D5, �&D5, �&D6) + ⋯ + 2���&DOG6, �&DOG6, �&DOG5%
+ 2���&DOG5, �&DOG5, �&DO% 

                                                ≤ =2K& + 2K&D5 + ⋯ + 2K&DOG6 + 2K&DOG5>�(�N, �N, �5) 
                                                = 2K&=1 + K + K6 + ⋯ + KOG5>�(�N, �N, �5) 

                                                < 6QR

(5GQ)
�(�N, �N, �5) 

                                                ⇒ S���& , �&, �&DO%S < 6QR

(5GQ)
 T ‖�(�N, �N, �5)‖ 

 
Which implies that S���&, �& , �&DO%S → 0 as ) → ∞. 

Since VWR

(XYW) T ‖�(�N, �N, �5)‖ → 0 as ) → ∞. 

Therefore ��&� is a cauchy sequence in �, which is complete space, so ��&� → � ∈ �. 
 
Existence of fixed point: Since 0 and < are surjective maps and hence there exist two points  and / in � such 
that 
 

� = 0 and � = </                                                                           (2.1.3) 
 
Consider, 
 
�(�6&, �6& , �) = �(0�6&D5, 0�6&D5, </) 
                           ≥ −,=�(�6&D5, �6&D5, </) + �(/, /, 0�6&D5)> + ��(�6&D5, �6&D5, 0�6&D5) + ?�(/, /, </) 
                           +'�(�6&D5, �6&D5, /) 
                           = −,=�(�6&D5, �6&D5, </) + �(/, /�6&)> + ��(�6&D5, �6&D5, �6&) + ?�(/, /, </) 
                           +'�(�6&D5, �6&D5, /) 
 
As ��6&� and ��6&D5� are subsequences of ��&� as ) → ∞, ��6&� → �, ��6&D5� → �. 
 
Therefore 

�(�, �, �) ≥ −,=�(�, �, �) + �(/, /, �)> + ��(�, �, �) + ?�(/, /, �) + '�(�, �, /)  
=? ;Z--� 1.14 �)[ 2.1.3> 

 
 0 ≥ (? + ' − ,)�(�, �, /)                                                                                               =? �\]? 1.7> 

 
⇒ �(�, �, /) = 0                          (LM  1 + 3, < � + ? + ' < 2, + 1 + ? + ' ⇒ , < ? + ') 

 
⇒ � = /                                                                                                                                        (2.1.4) 

In an exactly similar way (_M`)< ? < 2, + 1) we can prove that, 
 

� =                                                                                                           (2.1.5) 
 
The fact (2.1.3) along with (2.1.4) and (2.1.5) shows that � is a common fixed point of 0 and <. 
 
Uniqueness: Let � be another common fixed point of 0 and <, that is 
 

0� = � �)[ <� = �                                                                                     (2.1.6) 
 
�(�, �, �) = �(0�, 0�, <�) 
                   ≥ −,=�(�, �, <�) + �(�, �, 0�)> + ��(�, �, 0�) + ?�(�, �, <�) + '�(�, �, �) 
 
⇒ �(�, �, �) ≥ −,=�(�, �, �) + �(�, �, �)> + ��(�, �, �) + ?�(�, �, �)

+ '�(�, �, �)                                     =? 2.1.6> 
⇒ (1 − ' + 2,)�(�, �, �) ≥ 0 
⇒ �(�, �, �) = 0                                       =LM  ' > 3, + 1 > 2, + 1> 
⇒ � = � 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.7, 2013 

 

85 

 
This completes the proof of the theorem 2.1. 
 
Corollary 2.2. Let (�, �) be a complete �-cone metric space with respect to a cone �  contained in a real 
Banach space 	. Let 0 and < be two surjective self maps of � satisfying. 
 

�(0�, 0�, <) ≥  '�(�, �, )                                                                (2.2.1) 
 
where ' > 1. Then 0 and < have a unique common fixed point in �. 
 
Proof: If we put ,, �, ? = 0 in theorem 2.1 then we get above corollary 2.2 
 
Corollary 2.3. Let (�, �) be a complete �-cone metric space with respect to a cone �  contained in a real 
Banach space 	. Let 0 be a surjective self map of � satisfying. 
 

�(0�, 0�, 0) ≥  '�(�, �, )                                                              (2.3.1) 
 
where ' > 1. Then 0 has a unique fixed point in �. 
 
Proof: If we put 0 = < in corollary 2.2 then we get above corollary 2.3 which is an extension of theorem 1 of 
Wang et al. [14] in �-cone metric space. 
 
Corollary 2.4. Let (�, �) be an �-cone metric space and 0: � → � be a surjection. Suppose that there exist a 
positive integer ) and a real number c > 1 such that �(0&�, 0&�, 0&) ≥ c�(�, �, ) for all �,  ∈ �. Then 0 
has a unique fixed point in �. 
 
Proof: From corollary 2.3 0& has a unique fixed point �. But 0&(0�) = 0(0&�) = 0�, so 0� is also a fixed point 
of 0&. Hence 0� = �, � is a fixed point of 0. Since the fixed point of 0 is also fixed point of 0&, the fixed point 
of 0 is unique. 
 
Corollary 2.5. Let (�, �) be a complete �-cone metric space with respect to a cone �  contained in a real 
Banach space 	. Let 0 and < be two surjective self maps of � satisfying. 
 

�(0�, 0�, <) ≥ ��(�, �, 0�) + ?�(, , <) + '�(�, �, )                                   (2.5.1) 
 
for every �,  ∈ �, � ≠  where �, ?, ' ≥ 0 and ' > 1. Then 0 and < have a unique common fixed point in �. 
Proof: The proof is similar to proof of the theorem 2.1. 
 
Corollary 2.6. Let (�, �) be a complete �-cone metric space with respect to a cone �  contained in a real 
Banach space 	. Let 0 be surjective self map of � satisfying. 
 

�(0�, 0�, 0) ≥ ��(�, �, 0�) + ?�(, , 0) + '�(�, �, )                                   (2.6.1) 
 
for every �,  ∈ �, � ≠  where �, ?, ' ≥ 0 and ' > 1. Then 0 has a unique fixed point in �. 
 
Proof: If we put 0 = < in corollary 2.5 then we get above corollary 2.6 which is an extension of theorem 2 of 
Wang et al. [14] in �-cone metric space. 
 
The following example demonstrates corollary 2.3. 
 
Example 2.7. Let 	 = ��, � = �(�, , �) ∈ 	, �, , � ≥ 0� and � = � and �: � × � × � → 	 is defined by 
 

�(�, , �) = ��(|� − �| + | − �|), #(|� − �| + | − �|), $(|� − �| + | − �|)% 
 
where �, #, $ are positive constants. Then (�, �) is an �-cone metric space. Define a self map 0 on � as follows 
0� = 2� for all � ∈ �. Clearly 0 is an expansive mapping. If we take ' = 2 then condition (2.3.1) holds trivially 
good and 0 is the unique fixed point of the map 0. 
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Remark 1: If mappings are continuous in theorem 2.1 then existence of fixed point follows very easily. As 
shown below. 
 

� = lim
&→g

�6& = lim
&→g

0�6&D5 = 0 lim
&→g

�6&D5 = 0�                    (�M  ) → ∞ ��6&D5� → �) 

Similarly 
� = lim

&→g
�6&D5 = lim

&→g
<�6&D6 = < lim

&→g
�6&D6 = <�                    (�M  ) → ∞ ��6&D6� → �) 

 
Remark 2: In corollary 2.6 we proved the fixed point is unique by using only ' > 1 and there is no need of 
� < 1 and ? < 1, so it extend and unify the theorem 2 of Wang et al.[14] in �-cone metric space. 
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