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Abstract 
    In this article, we are interested in the domination problem in isosceles triangular chessboard. In our study we 
take in account one type of piece of rooks, bishops and kings, and two different types of pieces together, kings 
with rooks, kings with bishops and rooks with bishops. The chessboard in this work is isosceles triangular with 
square cells.  
   Also in most cases we determine the possible number of different methods of domination (total solution). 
Keywords: domination, Isosceles triangle chessboard, Kings, Bishops and Rooks.   
 
1. Introduction 
       One of the classical chessboard problems is placing minimum number of one type of pieces such that all 
unoccupied positions are under attack. This problem is called the domination number problem of P. This 
number is denoted by γ(P) and we denote the number of different methods for placing P pieces to obtain the 
domination number of P by S(γ(P)). Also we are interested in the domination number of two different types of 
pieces by fixing a number �� of one type P of pieces and determine the domination number �(	∗ , ��) of 
another type 	∗of pieces. Finally we compute �(�(	∗, ��)).   

In n square chessboard (see [4], [5] and [6]) γ is studied for rook "R", bishop "B" and king "K" .They proved 
that γ(R) = � , γ(B) = � and γ(K) = ����� ��

 . 
In [3], JoeMaio and William proved that γ(R) = min {m, �} for mxn Toroidal chessboards. 
A saw-toothed chessboard, or STC for short, is a kind of chessboard whose boundary forms two staircases 

from left down to right without any hole inside it. 
In [2] Hon-Chan Chena, Ting-Yem Hob, determined the minimum number of rooks that can dominate all 

squares of the STC. 
Dietrich and Harborth [1] studied the triangular triangle board, i.e. the board in the shape of a triangle with 

triangular cells. They defined the chess pieces   in particular the rook which attacks in straight lines from a side 
of the triangle to a side of the triangle, forming rhombuses, the bishop 1 which attacks from vertex to side, side 
to vertex etc. in straight lines, forming diamonds, and for the bishop 2: the triangular triangle board can be 2-
coloured, whose cells are sharing an edge of different color, and the bishop 2 moves as bishop 1, but attacks 
only cells of the same color. 
 
2. Chessboard of two equal sides length 
       In this work, we consider the isosceles triangular chessboard with square cells and three pieces, rooks, 
bishops and kings. They move or attack the pieces as usual. 

We mean by the length of the two equal sides of the board the number of cells (squares) in each side. Let the 
length of each side is n, consequently the third side (base) is of length 2� − 1. 

In matrix form, let ri denote the ith row measured from above to down, i = 1, 2,…, n. If Li denotes the length 
of row ri, then the first row r1 which contains one cell will have the length L1= 1, the second row r2 which 
contains 3 cells has the length L2 = 3, and so on… In general the ith row which contains 2 − 1 cells has the 
length Li = 2 − 1. Let cj denote the jth column which is numbered from the middle (the middle column has the 
greatest length of columns), j = 0, ±1, ±2, … , ±(i – 1). Let the middle column c0 contain n cells, then each of the 
two columns c1 and c-1 which lies to the right and to the left of c0 respectively contains n-1cells. In general the jth 
column contains n – |j| cells. We denote the cell (square) of row i and column j by !",#    ,  = 1, 2, … �, and j = 0, 
±1, ±2, … , ±(i – 1) and we note that the number of squares in isosceles triangular chessboard of two equal sides 
of length n is n2. We refer to the length of the two equal sides by the size of our chessboard. Figure 1 shows a 
chessboard of lengths 5, 5, 9. 
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3. Domination of one piece 
    In this section we will compute the domination number �(	)  of one type of piece and it is total 
solution �(�(	)). 
 
3.1.  Domination of Rooks 
Theorem  3.1.1. 

 (I)      γ(R) = n − �&�'� � 
 (II)   (n − �&�'� �) ! ≤ S,γ(R)- ≤ (2 �&�'� � + 1) !   
Proof: (I) We note that by putting a piece in each cell of c0, we can dominate the chessboard. To find γ(R), we 
look for the largest number of rows beginning from r' which can be dominated without putting any piece in it. 
Suppose that this number is i0, consequently the number of pieces dominating the empty ( remaining ) rows is  n 
– i0 pieces . This means that γ(R) = � − i0. And now if � − i0  < L45, then we cannot dominate the row i0, since 

the number of pieces is less than L45. Hence � − i0 ≥ 2i0 – 1, which gives i0 = �&�'� �, thus   γ(R) = n − �&�'� �. 
(II) We have two cases as follows:  

   (i) If  � − ���'� � = 2 ���'� � + 1, we distribute γ(R) pieces on a square of "dimension"  � − ���'� � (see Figure 2 ( 

a ); � = 7 ). The number of methods to put one piece in the r45�' is L4589, the number of methods to put one 
piece in the next row r45�� is L4589 − 1 and so on ... Finally the number of methods to put one piece in the last 
row r& is one. Thus the total number of Dom(R) is ,L45�'-, L45-,L45:'- … (1) = (2i0 + 1)! , 
 so S(γ ( R ) ) = (� − ���'� �) !. 
   (ii) If � − ���'� � < 2 ���'� � + 1, then this is similar to (i), but we distribute γ(R)   pieces on a rectangular 

chessboard of dimensions  � − ���'� � and  2 ���'� � + 1  ( see Figure 2(b),� = 6 ), such that one of the pieces must 

be put in the column c0. 

  By using (i), we get    (� − ���'� �) ! < S,γ(R)- < (2 ���'� � + 1) !.    
  
                                                  
                                                  

                                                  

                                                  
                                                  
                                                  
                                                  

                             a                                                             b  
                                                 Figure 2   
 
3.2 Domination of Bishops 
Theorem  3.2.1. 
(I)  �(<) = � 

Figure 1 

=' →  =� →  

?' ↑  ?0 ↑  ?:' ↑  
=A →  

!',0   
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(II)  �,�(<)- = B �               C �  ! DEE� − 1         C �  ! FGF�H  
Proof:  
It is clear that, if we put one piece in each cell of c0 of an isosceles triangular chessboard, we get γ(B), if we put 
any piece except the piece in !�,0 in another place we will need another piece for dominating the chessboard. The 
piece in !�,0 can move in � − 1 cells when n is even, and in n cells when n is odd. 
 
3.3.  Domination of Kings 

In this section, for the total solution S, we are interested in the distribution of pieces in row movement, since 
in column movement, the outcome is much more difficult. We denote the solution of domination of kings by   �∗(γ(I).  

Theorem   3.3.1. 

(I)   �(I) = JKLMN9O PQ (K��:'� P + 2) ,  C K��:'� P   ! FGF� 
(KLMN9O P�')L

Q               ,  C K��:'� P   ! DEE R 

(II) �∗,γ (I )- =
STU
TV∏ K��:(��XY)� PKMOP:'YZ0        C � ≡ D(\DE 3 )

 ∏ (2^� + ^)KMOP:'YZ'     ,  C � ≡ 1(\DE 3 ) 1                       ,          C � ≡ 2(\DE 3 ) _T̀
Ta

 

Proof:  
(I) We use row =�:' to dominate the cells of =�,  =�:' and =�:� . Since we need one piece to dominate every three 

successive cells and row =�  contains 2� − 1  cells, then we use  K��:'� P pieces to dominate the cells of  =� , =�:' 

and  =�:�. We distribute these cells in =�:' such that one piece for each corner: !�:',:(�:�) and   !�:',(�:�), to 
guaranty domination of the two cells  !�,:(�:�) and  !�,(�:�) .By the same manner, we use =�:Q to dominate the 

cells of =�:�, =�:Q and =�:A. Thus we distribute K��:b� P pieces in =�:Q to dominate the cells in the three rows. And 

so on…, we obtain   

� ( I ) =  ∑ K��:('�XY)� P�MN9O �YZ0 = JKLMN9O PQ (K��:'� P + 2) ,  C K��:'� P   ! FGF� 
(KLMN9O P�')L

Q               ,  C K��:'� P   ! DEE R 

(II)  We have three cases as follows:  
   (i)   � ≡ 0   mod 3 , as in (I), we distribute the pieces in row   =�:' to dominate the last three rows r&, r&:' and r&:� such that one piece is in each of the corners !�:',:(�:�) and !�:',(�:�). We distribute the king pieces from 
right to left such that between any two pieces there are two empty cells, and there is one empty cell between the 
last two pieces  (see  Figure 3; n = 9 ).  
 
                                            

                                                        Figure 3 
     Now we study the possibility of the movement of the pieces from left to right (there is no possibility in this 
case for movement from right to left). Thus any one move of a piece gives one method of domination, so the 

total number of methods of domination is K��:�� P (see Figure 4; � = 9). Similarly we use row r&:Q to dominate 

the next above three rows r&:�, r&:Q and  r&:A. The number of methods of domination is K��:h� P, and so on... 

Thus the general formula of the total methods of domination is given by   �∗,�(I)- = ∏ K��:(��XY)� P�MN9O �YZ0 . 
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                                                     Figure 4 
(ii) n ≡ 1 mod 3 

Again to dominate the three rows =�, =�:' and  =�:�, we start distributing the pieces in row  =�:'. In this case 
the last two pieces will be in the cells  !�:',:(�:�) and  !�:',:(�:�) on the left as shown in Figure 5; n = 10. 

 
                                              

                                                                         Figure 5 
We start the movement of the pieces from left to right as in the following steps:    
Step 1) As shown in (Figure 5; � = 10), if we fix the pieces in  !�:',:(�:�) and !�:',:(�:�), then we have a 
unique method of domination in this step, since there exist two empty cells between any two other pieces. 
 Step 2) When we move the piece from  !�:',:(�:�) to  !�:',:(�:Q) we obtain a new method of distribution. This 
move will allow us to move all the next pieces to the right direction, this means we obtain a method for the 

movement of any piece. Thus the number of methods in this step is (���:'� � − 1).  

Step 3) The second move start form !�:',:(�:�) to !�:',:(�:A).Thus we have two pieces in the cells !�:',:(�:A) , !�:',:(�:X) (see Figure 6; � = 10). 
 
                                            

                                                    Figure 6  

Again with the same manner (as in step 2), we have a number of methods which is equal to ���:'� � − 2, and so 

on. Thus the corresponding total solution of movement in row =�:'    is ���:'� � + ∑ (���:'� � − 1 −  )KLMN9O P:�"Z0 . 

Step 4) With the same manner we can determine the methods of distribution in any other rows that contain 
pieces. Finally for the row =' which contains one cell, we have one method only for domination. So this row has 
no influence on the product of the general formula, and consequently the number of rows which we deal with is K��P − 1 (since the number of rows that contains kings is K��P). Also we note that the rows which contain pieces 

have the same manner of distributions, since all their lengths are equal in mod 3.Thus the total number of 
methods of domination is given by �∗(� (K)) = ∏ i��('��Y):'� � + ∑ (��('��Y):'� � − 1 −  )KL(98Oj)N9)O P:�"Z0 kKMOP:'YZ'   = ∏ (2^� + ^)KMOP:'YZ'  

 (iii)  � ≡ 2   \DE 3  
Again, we start with row =�:' to distribute the king pieces .We fix two pieces in !�:',:(�:�) and  !�:',(�:�) . 
Naturally we must distribute the other pieces such that there are two empty cells between any two pieces of 
them. It is clear that there exists a unique method to distribute the minimum number of kings, since we cannot 
move any piece to any cell. So  � (� (I)) = 1. 
   The following example is illustrating the above theorem for some different values of �. 
Example  3.3.2. Let n = 8, 9, 10, determine �(I) and �∗ (� (K)) for all n.  

1) If  � =  8, then �(I) = 9  and �∗ (� (K)) = 1, ( see Figure 7 (a) ) . 
2) If  � =  9, then �(I) = 12  and �∗ (� (K)) = 15, (see  Figure 7 (b) ) . 
3) If  � =  10, then �(I) = 16 and �∗ (� (K)) = 630,   (see  Figure 7 (c) ) . 
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              a                                   b                 

 
                                                  
                                                  
                                                  
                                                  
                                                  
                                                  
                                                  
                                                  
                                                  
                                                  

                                                                   c 
                                                              Figure 7 
  We need the following corollary concerning the equilateral triangular chessboard of length n for the next 
section dealing with two pieces.  
Corollary 3.3.3. For an equilateral triangular chessboard of length n: 

(I) �(I) = ∑ K�:�Y� P = mK��P + 1K��P − 1n�MN9O �YZ0  ∀ � ≥ 2 

(II)    �∗,� (I )- =
STU
TV 1                                            ,           C � ≡ 0(\DE 3 )∏ '� p��:�Y� �� + 3 ��:�Y� �qKMOP:�YZ0  ,  C � ≡ 1(\DE 3 ) 

∏  (K�:�Y� P)KMOP:'YZ0                    ,        C   � ≡ 2(\DE 3 )_T̀
Ta

  

Proof:  
(I) Figure 8 gives an example of the equilateral triangular chessboard of � = 8. With the same methods of 
Theorem 3.3.1., the assertion is clear.        
                                  
                                  
                                  
                                  
                                  
                                  
                                  
                                  

                                                    Figure 8 
(II) We have three cases as follows:  
   (i)    � ≡ 0   \DE 3                                                                                                                                    
To distribute king pieces from right to left, we start with row =�:'   and fix one piece in cell !�:',�:�  . Naturally 
we must distribute the other pieces such that there are two empty cells between any two of them. We are noting 
that the last king exists in !�:',' and the cell !�:',0 is empty as shown in Figure 9;  � = 12 . 

                                        
                                                                         Figure 9 
Therefore we cannot move any piece in any direction, so S(� (K))=1. 
    (ii)    � ≡ 1   \DE 3 
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To dominate the three rows =�, =�:' and =�:�, we start distributing the pieces in row =�:' as in (i). In this case 
there is one empty cell between the last two pieces in cells !�:',0 and  !�:',�   as shown in Figure 10; n = 10. 

 
                                        

                                                               Figure 10 
If we fix the king piece of king in cell !�:',0 and move the other pieces to the right direction then the number 

of methods is ��:�Y� � , ^ = 0,1, … , K&�P − 2. Now we move the king from !�:',0 to !�:',', we get the last two 

kings are in adjacent cells shown in Figure 11; � = 10. 
                                    

                                                               Figure 11 
Similar to part (ii) of Theorem 3.3.1 (III), The total solution is given �∗ (� (K))=∏ '� p��:�Y� �� + 3 ��:�Y� �qKMOP:�YZ0    
    (iii)  � ≡ 2   \DE 3    
Again we start with row =�:'  to distribute the king pieces from right to left. If we fix one piece in the 
cell !�:',�:�, then there exist two empty squares between any two pieces of kings as shown in Figure 12; � =11. 
                                      

                                                                  Figure 12 
So we cannot move any pieces to right cell. Now it is possible to move any piece to the left cell, so every 

movement takes one method of solution, that means  the number of methods in this row is K��P, Thus the total 

number of methods of domination is given by �∗(� (K)) = ∏  (K�:�Y� P)KMOP:'YZ0 . 

The following example is illustrating the above Corollary for some different values of �. 
Example 3.3.4.  Let   � = 8,9,10 , we have �(I) and S(� (K)) for all n as the follows:  
 1) If � =  8, then �(I) = 6  and �∗(� (K)) = 6, (see Figure 8). 
 2) If � =  9, then �(I) = 6  and �∗(� (K)) = 1, (see Figure 13 (a)). 
 3) If � =  10, then �(I) = 10 and �∗(� (K)) = 90, (see Figure 13 (b)). 
 
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        

                                           a                                                                       b       
                                                                                 Figure 13 
 
4.  Domination of Two pieces 
 

In this section, we shall fix a number of one type P and determine the domination number of the other type of 
piece 	∗. By nr we mean the fixed number of pieces P and by Nr the number of the cells which are attacked by 
the piece P and the cell of that piece. 
4.1 Domination of kings with a fixed number of rooks  

We denote the domination number of kings with a fixed number of rooks �t by �(I , �t) . 
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Theorem 4.1.1. 

(I) �(I , �t) =
STT
U
TTV 2 mK�:�u:�� P + 1K�:�u:�� P − 1n                              , if �t is odd  

mK�:�u� P + 1K�:�u� P − 1n + mK�:�u:'� P + 1K�:�u:'� P − 1n , if �t is even _TT̀
TTa

  

(II) If 

 z =
STU
TV 1                                                                        ,           C � − 3{ − 2 ≡ D(\DE 3 )∏ '� p��:�u:�:�Y� �� + 3 ��:�u:�:�Y� �qKMNO|NLO P:�YZ0  , ,  C � − 3{ − 2 ≡ 1(\DE 3 ) 

∏  (K�:�u:�:�Y� P)KMNO|NLO P:'YZ0                    ,                     C   � − 3{ − 2 ≡ 2(\DE 3 )_T̀
Ta

  

Then    �∗,ED\ (I , �t )- = Bz�           ,  C n} = 12z�       ,  C n} > 1  H; nr is an odd number 

(III) If z' =  
STU
TV 1                                                                        ,     C � − 3{ ≡ D(\DE 3 )∏ '� p��:�u:�Y� �� + 3 ��:�u:�Y� �qKMNO|O P:�YZ0  , ,  C � − 3{ ≡ 1(\DE 3 ) 

∏  (K�:�u:�Y� P)KMNO|O P:'YZ0                    ,                 C   � − 3{ ≡ 2(\DE 3 )_T̀
Ta

  

and z� =  
STU
TV 1                                                                        ,           C � − 3{ − 1 ≡ D(\DE 3 )∏ '� p��:�u:':�Y� �� + 3 ��:�u:':�Y� �qKMNO|N9O P:�YZ0   ,  C � − 3{ − 1 ≡ 1(\DE 3 ) 

∏  (K�:�u:':�Y� P)KMNO|N9O P:'YZ0                    ,                   C   � − 3{ − 1 ≡ 2(\DE 3 )_T̀
Ta

 

then  �∗,� (I , �t )- = 2z'z�; nr  is  an even number 
Proof:  
(I) We place the first piece of rooks in s& ,0, since in this cell we obtain maximal  N}.This rook bisects the 
chessboard into two equilateral triangles, the two triangles are of size  � − 2  as shown in  Figure 14; n = 8. 
 
 
                        X               
                        X               
                    K   X   K           
                        X               
                        X               
              K     K   X   K     K     
                        X               
          X  X X X X X X R X X X X X X X 

                                                               
                                                         Figure 14 

By using Corollary 3.3.3, we obtain  γ(K) = mK�:�� P + 1K�:�� P − 1n for each one of the two triangles. Thus γ(K , 1) = 2 

mK�:�� P + 1K�:�� P − 1n. We must put the second piece of rook in cell such that it has maximal N} so that we don't make 

more partition, so one of the two cells !�:',:' or !�:','  is suitable for this. Now the cells which are not attacked 
by these two rooks in the isosceles triangular chessboard are divided into two equilateral triangles of different 
sizes. One of the two triangles is of size  n −  4  and the other is of size  n − 3 (see Figure 15; n = 8). By using 
Corollary 3.3.3, we obtain   
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�(I , 2) = mK�:�� P + 1K�:�� P − 1n + mK�:Q� P + 1K�:Q� P − 1n.  
 
                          X               
                        X X K             
                      K X X               
                        X X               
                  K   K X X K     K       
                        X X               
              X X X X X R X X X X X X X   
            X  X X X X X X R X X X X X X X 

                                                               Figure 15 

In the case  �� = 2{ + 1 ;  { = 0,1, … , ��:�M89O �:�� �,  the cells which are not attacked by these number of rooks 

constitute two equilateral triangles of size (� − 3{ − 2). From corollary 3.3.3, we obtain     �(I , �t) =
2 mK�:�u:�� P + 1K�:�u:�� P − 1n.  

In case �t = 2{;  { = 1,2, … , ��:�M89O �:�� �,  the cells which are not attacked by this number of rooks constitute 

two  equilateral  triangles of different sizes. One of the two triangles is of size � −  3{, and the other is of 

size � − 3{ − 1 . Again by using Corollary 3.3.3, we obtain �(I , �t) = mK�:�u� P + 1K�:�u� P − 1n + mK�:�u:'� P + 1K�:�u:'� P − 1n.   

(II) From I where �t is an odd number, we put the first rook in the cell  !�,0. This rook bisects the chessboard 
into two equilateral triangles of size  � − 2  (since { = 0). We get the result in this case by using Corollary 3.3.3. 
(2), and we obtain the total solution of this case. If we put three rooks such that we put the first in !�,0  then there 
are two possible ways to put the second piece of rook in  !�:',:' or in !�:','. The suitable cell for the third piece 
depends on the position of the second piece. Thus we put the third piece in the cell !�:�,:' if the second piece is 
in !�:',' (see Figure 16). We continue with the same manner if the number of rooks is more than three pieces. 

Hence the total solution is �∗,� (I , �t )- = Bz�           ,  C �t = 12z�       ,  C �t > 1  H.  
(III) If �t is an even number and � > 2, we put two pieces in the chessboard. From I, these pieces divide the 

isosceles triangular into two equilateral triangles with different sizes (� −  3{) and (� −  3{ − 1). There are two 
possibilities to put the two pieces in (!�,0 and !�:',') or (!�,0 and !�:',:'). The other piece of rook doesn’t 
change the total number of methods. Using Corollary 3.3.3. (II). The total solution in this case is given by �∗,� (I , �t )- = 2z'z�. 
The following example is illustrating the above theorem. 
Example  4.1.2.  If � =  7 and  �t  = 3  then { = 1 �(I , 3) = 2,  �∗,� ( I , �t )- = 1 (see Figure 16) 
                        X             
                      X X X           
                    K X X X K         
                      X X X           
                X X X R X X X X X     
              X X X X X X R X X X X   
            X X X X X X R X X X X X X 

                                                Figure 16 
4.2 Domination of kings with a fixed number of bishops                                                                            

We denote the domination number of kings with a fixed number of bishops �� by  �(I , ��).  
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Theorem 4.2.1.                                                             

(I) �(I , ��) =  SU
VKL(MNM�)N9O PQ (K�(�:��):'� P + 2) ,  C K�(�:��):'� P   ! FGF� 

(KL(MNM�)N9O P�')L
Q                      ,  C K�(�:��):'� P   ! DEE _̀

a
 

(II) 

 �∗,� (I , �� )- =
STU
TV∏ K��:���:(��XY)� PKMNM�O P:'YZ0             C � − �� ≡ 0(\DE 3 )

∏ (2^� + ^)KMNM�O P:'YZ'                  ,  C � − �� ≡ 1(\DE 3 )1                                                           C� − �� ≡ 2(\DE 3 )_T̀
Ta

 

Proof:  
(I) We place the first piece of bishops in  !' ,0, since in this cell we obtain the maximal ��. This bishop attacks 
the two equal sides of the chessboard and the cells which are not be attacked by this piece take the form of 
isosceles triangular chessboard of size  � − 1. By the same manner for the other pieces of bishops we find that 
the cells not attacked by these pieces again take the form of isosceles triangular chessboard of size  � −�� ;  �� ≤ � − 2 and so on. We put the last piece of bishops in cell  !�:',0, and one king will be placed in the 
remaining cell !�,0. By using Theorem 3.3.1, we obtain that  

�(I , ��) =  SU
VKL(MNM�)N9O PQ (K�(�:��):'� P + 2) ,  C K�(�:��):'� P   ! FGF� 

(KL(MNM�)N9O P�')L
Q               ,  C K�(�:��):'� P   ! DEE _̀

a
  

(II) From I, if we put n�  pieces of bishops as mentioned above, we get a triangle of size  � − n� , and the 
method of distribution of the fixed pieces is unique. Hence, the result.  
The following example is illustrating the above theorem. 
Example 4.2.2.  Let  � =  10, �� = 3  �(3 , I ) =  9   , �∗,� (I , �� )- = 30, (see Figure 17 ; � = 10) 
                              B                   
                            X B X                 
                          X X B X X               
                        X X X K X X X             
                      X X X       X X X           
                    X X X K K     K X X X         
                  X X X               X X X       
                X X X                   X X X     
              X X X K K     K     K     K X X X   
            X X X                           X X X 

                                                                                          Figure 17 
4.3. Domination of rooks with a fixed number of bishops 

We denote the domination number of rooks with a fixed number of bishops n� by  �(R , n�).  
Theorem 4.3.1.  

(I)   � (� , ��) =  (� − ��)  - ��:���'� � 
(II)     ((� − ��)   − ��:���'� �) ! ≤ �,� (� , ��)- ≤ (2 ��:���'� � + 1) ! 
Proof:  
(I) We put the first piece of bishops in our chessboard such that we obtain maximal  Nr, the suitable place to do 
this is the cell  s' ,0.This piece attacks the external (longest) sides of the triangle as shown in Figure 18 by putting 
"�" in the cells , i.e. we obtain the triangle of size � − 1. Now we put the second piece of bishops in the cell s� ,0 
and obtain the non-attacked triangle of size � − 2. This work could be repeated until we reach the cell  s&:' ,0, 
and then we have to put a rook in the cell s& ,0. If we have n�  bishops then according to Theorem 3.3.1, we have   

 � (� , ��) =  (� − ��) − ��:���'� � . Figure 18 shows the case when � = 9, �� = 1.  
(II) From I, if we put ��  pieces as mentioned above, we get a triangle of size  � − �� . Thus the number of 
methods of distributing the fixed number of pieces is unique, according to Theorem 3.1.1, we have 

  ((� − ��)   −  ��:���'� �) ! ≤ �,� (� , ��)- ≤ (2 ��:���'� � + 1). 
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                            B                 
                          X   X               
                        X       X             
                      X           X           
                    X   R           X         
                  X       R           X       
                X           R           X     
              X               R           X   
            X                   R           X 

                                                                   Figure 18 
Open problem for two pieces: 
Find the general formula of each of the following numbers  �(R , n�) , �(B , n�) , �(B , n}). 
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