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Abstract 

The study examined some conditions that must be satisfied in order to perform Factor Analysis. The objective was 

to determine whether or not the accepted pre-requisite tests always prove that the dataset will produce practical 

factor solution. Some of the conditions examined are the Kaiser-Meyer-Olkin test of sampling adequacy and the 

Bartlett’s test of sphericity. Two datasets were used in this study namely Sales Performance and Personality Types. 

Both datasets were subjected to the pre-requisite tests and the extraction of various factor solutions. Both datasets 

passed the pre-requisite tests. One of the datasets was found not to produce significant factor solution; the other 

produced a practical factor solution.      

Keywords: factor analysis, Kaiser-Meyer-Olkin test, Bartlett’s test  

 

1. Introduction 

Research into the area of dimension reduction techniques is important because most researchers and students use 

these techniques daily. Data reduction techniques are applied where the goal is to aggregate or amalgamate the 

information contained in large datasets into manageable smaller information. Data reduction techniques can 

include simple tabulation, aggregation (computing descriptive statistics) or more sophisticated techniques like 

Principal Component Analysis and Factor Analysis. Factor analysis is a statistical method to explain a large number 

of interrelated variables in terms of a potentially low number of unobserved variables. Factor analysis reduces the 

complexity and reveals the underlining structure of the data set. Factor analysis is over a century old. In psychology, 

the factor model dates back at least to Spearman (1904), who is sometimes credited with the invention of factor 

analysis. The technique is later also applied to social science, economics, finance and marketing, signal processing, 

bioinformatics etc. The latent factors discovered by factor analysis make the observed variables more 

understandable. Factor analysis has been used for several years for finding underlying factors within a large set of 

variables. There exist pre-determined tests that are run on the dataset to determine whether factor analysis will be 

possible or not. These tests or conditions include Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and 

Bartlett’s test of sphericity. The main justification for conducting this study is to examine if datasets that pass the 

pre-requisite conditions can produce practical factor solutions. 

 

2. Literature Review 

2.1 Factor Analysis 

Factor analysis is a collection of methods used to examine how underlying constructs influence the responses on 

the number of measured variables. The key concept of factor analysis is that multiple indicator variables have 

similar patterns of responses as they are all associated with a latent (i.e., not directly measured) variable (Nkansah, 

2018). The essential purpose of FA is to describe, if possible, the covariance relationships amongst many variables 

in terms of few underlying, but unobservable random quantities called factors.  

2.2. Assessing the Factor Suitability of the Data 

2.2.1. Sample Size and Sample to Variable Ratio  

In reviewing literature, a general opinion has emerged, suggesting that ratio criteria do not provide an accurate 

guide (Guadagnoli & Velicer, 1988; Hogarty et al., 2005; Osborne & Costello, 2004). Fabrigar et al. (1999) and 

MacCallum et al. (2001), further support that stable solutions can be reached with samples as low as 100 when 

three to four strong items (loadings of 0.70 or greater) make up a factor, suggesting that weaker relationships need 

a larger sample size. A strong solution, made up of stable factors, reduces the influence of the sample size; however, 
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a larger sample size decreases sampling error resulting in more stable solutions (Hogarty et al., 2005). 

Determination of sample size sufficiency is dependent upon the stability of the solution; therefore, the adequacy 

of a sample cannot be fully determined until the analysis has been conducted. 

2.2.2. Kaiser-Meyer-Olkin Measure of Sampling Adequacy and Bartlett’s Test of Sphericity 

Burton and Mazerolle (2011) states that prior to the extraction of the factors, there are some tests which must be 

conducted to examine the adequacy of the sample and the suitability of data for factor analysis. Measures of 

sampling adequacy evaluate how strongly an item is correlated with other items in the correlation matrix (Burton 

and Mazerolle, 2011). The sampling adequacy can be assessed by examining the Kaiser-Meyer-Olkin (KMO) 

(Kaiser, 1970). The Kaiser-Meyer-Olkin Test of Sampling Adequacy (KMO) is a measure of the shared variance 

in the items. The following guideline is suggested for assessing the measure. 

 

Table 1.1 Interpretation Guidelines for the Kaiser-Meyer-Olkin MSA 

KMO Value                  Degree of Common Variance 

0.90 to 1.00                               Marvelous 

0.80 to 0.89                               Meritorious 

0.70 to 0.79                               Middling 

0.60 to 0.69                               Mediocre 

0.50 to 0.59                               Miserable 

0.00 to 0.49                               Don’t Factor 

 

By the guideline in Table 1.1, it is generally expected that to have satisfactory results, the overall KMO measure 

should be 0.8 or higher (Nkansah, 2018). This rule of thumb appears to have been accepted widely, although a 

measure of above 0.6 is acceptable (Rencher, 2002).  Bartlett’s test of Sphericity (Bartlett 1950) provides a chi-

square output that must be significant. The null hypothesis of Bartlett’s test states that the observed correlation 

matrix is equal to the identity matrix, suggesting that the observed matrix is not factorable (Pett et al., 2003). It 

indicates that the matrix is not an identity matrix and accordingly it should be significant (p<0.05) for factor 

analysis to be suitable (Hair, Anderson et al. 1995; Tabachnick and Fidell 2001). In summary, if the KMO indicates 

sample adequacy and Bartlett’s test of sphericity indicates that the item correlation matrix is not an identity matrix, 

then researchers can move forward with the factor analysis (Netemeyer, Bearden et al. 2003). 

2.3. The Correlation Matrix        

A correlation matrix should be used in the factor analysis process displaying the relationships between individual 

variables. Henson and Roberts (2006) pointed out that a correlation matrix is most popular among investigators. 

Tabachnick and Fidell (2007) recommended inspecting the correlation matrix (often termed Factorability of R) for 

correlation coefficients over 0.30. Hair et al. (1995) categorized these loadings using another rule of thumb as 

±0.30=minimal, ±0.40=important, and ±.50=practically significant. If no correlations go beyond 0.30, then the 

researcher should reconsider whether factor analysis is the appropriate statistical method to utilize. In other words, 

a factorability of 0.3 indicates that the factors account for approximately 30% relationship within the data, or in a 

practical sense, it would indicate that a third of the variables share too much variance, and hence becomes 

impractical to determine if the variables are correlated with each other or the dependent variable (multicollinearity) 

(Williams, Brown et al. 2010). If the correlation matrix is an identity matrix (there is no relationship among the 

items), factor analysis should not be applied. 

2.4 Method of Factor Extraction 

There are several ways to extract factors: principal components analysis (PCA), principal axis factoring (PAF), 

image factoring, maximum likelihood, alpha factoring, unweighted least squares, generalized least squares and 

canonical (Tabachnick and Fidell 2001; Thompson 2004; Costello and Osborne 2005). However, principal 

components analysis and principal axis factoring are used most commonly in studies (Tabachnick and Fidell 2001; 

Thompson 2004; Henson and Roberts 2006). The decision whether to use PCA and PAF is fiercely debated among 

analysts (Henson and Roberts 2006), although the practical differences between the two are often insignificant 

(Thompson 2004) and according to (Gorsuch 1983), when factors have high reliability or there are thirty or more 

factors, the is not significant differences. Thompson (2004) stated that the reason why PCA is mostly used is that 
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it is the default method in many statistical software. PCA is suggested to be used when no prior theoretical basis 

or model exists (Gorsuch 1983). Moreover, (Pett, Lackey et al. 2003) recommended using PCA in establishing 

preliminary solutions in EFA. According to (Costello and Osborne 2005), factor analysis is preferable to principal 

components analysis which is only a data reduction approach. If researcher have initially developed an instrument 

with several items and is interested in reducing the number of items, then the PCA is useful (Netemeyer, Bearden 

et al. 2003). It is computed without regard to any underlying structure caused by latent variables; components are 

calculated using all of the variance of the manifest variables, and all of that variance appears in the solution (Ford, 

MacCallum et al. 1986). When the factors are uncorrelated and communalities are moderate it can produce inflated 

values of variance accounted for by the components (Gorsuch 1997). On the other hand, (Fabrigar, Wegener et al. 

1999) stated that if data are relatively normally distributed, maximum likelihood (ML) is the best choice because 

“it allows for the computation of a wide range of indexes of the goodness of fit of the model and permits statistical 

significance testing of factor loadings and correlations among factors and the computation of confidence intervals.” 

Overall, according to (Costello and Osborne 2005), maximum likelihood or principal axis factoring will give 

researcher the best results, depending on if data are generally normally-distributed or significantly non-normal, 

respectively. 

2.5. Factor Loadings 

Simple structure is achieved when each factor is represented by several items that each load strongly on that factor 

only (Pett et al., 2003; Tabachnick and Fidell, 2001). Practically, “several items” is generally considered to be at 

least three to five items with strong loadings (Guadagnoli & Velicer, 1988). An item is considered to be a good 

identifier of the factor if the loading is 0.70 or higher and does not significantly cross load on another factor greater 

than 0.40. These guidelines vary slightly within literature. Tabachnick and Fidell (2001) suggest that the secondary 

loading (or cross-loading) should be not greater than 0.32. Costello and Osborne (2005) suggest that a loading of 

0.50 is enough to be considered “strong,” while Guadagnoli and Velicer (1988) state that the loading should be 

0.60 or greater. Generally, a communality (loading) of 0.70 or greater is ideal because that suggests that 

approximately 50% of the variance of that item is accounted for by the factor. . If an item is not significantly 

correlated to any of the factors (generally considered to be less than 0.30) and does not provide a conceptually 

vital dimension to the measure, the item should be removed. Additionally, a complex variable, or a variable that 

loads on more than one factor, should be removed if the cross-loading is greater than 0.40 (Schonrock-Adema et 

al., 2009). Once the weak items have been removed, the data should be factored again without the presence of that 

item for a more refined solution (Pett et al., 2003). Interpretation of the factor also requires that each factor be 

sufficiently identified. This means that a factor contains at least three to five items with significant loadings in 

order to be considered a stable and solid factor (Costello & Osborne, 2005). More importantly, the items and the 

factors should make sense conceptually. 

 

3. Materials and Methods 

The data and statistical techniques utilized in this study to meet the stated goals are the main topics of this section. 

In this section, some tests will be described into detail.  

3.1. Data Description 

Two datasets have been used to carry out the study. The following provides 

descriptions of these datasets.  

Dataset 1 (Performance of Sales Personnel): The data covers assessment of performance of sales personnel 

employees of a marketing company (Johnson & Wichern, 2007). The firm attempts to evaluate the quality of 

its sales staff and tries to find an examination, or series of tests, that may reveal the potential for good performance 

in sales. It has selected a random sample of 50 salespeople and has evaluated each on three measures of 

performance: growth of sales, profitability of sales, and new account sales. These measures have been converted 

to a scale, on which 100 indicates “average” performance. Each of the 50 individuals would take each of four tests, 

which purportedly measures creativity, mechanical reasoning, abstract reasoning, and mathematical ability, 

respectively.  

Dataset 2 (Difference Personality types): The data covers a set of responses from a personality questionnaire 

obtained from 400 participants. There were 13 variables personality characteristics. These characteristics include 

talkative, finds fault, does a thorough job, depressed, original, reserved, helpful, careless, relaxed, starts quarrels, 

reliable, tense and ingenious. 
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3.2. Some Conditions Required Before Factor Analysis 

Before factor analysis is done, some tests are run on the data to show that a practical factor solution can be achieved. 

Some of these conditions include Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett’s test 

of sphericity. 

3.2.1. Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 

The Kaiser-Meyer-Olkin measure of sampling adequacy is used to measure the appropriateness of factor analysis. 

The Kaiser-Meyer-Olkin Measure is a statistic that indicates the proportion of variance in the variables that might 

be caused by underlying factors. High values (close to 1.0) generally indicate that a factor analysis may be useful 

with your data. If the value is less than 0.50, the results of the factor analysis probably won't be very useful. The 

Kaiser-Meyer-Olkin measure of sampling adequacy is used to determine the suitability of factor analysis and 

whether the partial correlations among the different variables are small (Bisschoff & Kade, 2010). The Kaiser-

Meyer- Olkin measure of sampling adequacy presents an index ranging from 0 to 1 of the amount of variance 

among the different variables where a value of 0 indicates that factor analysis is not suitable and a value of 1 

indicates that factor analysis is suitable for the study (Field, 2000). KMO values smaller than 0.5 indicates that 

factor analysis is not suitable and a KMO value of 0.6 should be present before factor analysis can be considered. 

Values between 0.5 and 0.7 are considered average, values between 0.7 and 0.8 are good and values between 0.9 

and 1.0 are excellent.  

The specific form of the KMO measure is given by  

𝐾𝑀𝑂𝐽  =
∑ 𝑟𝑖𝑗

2
𝑖≠𝑗

∑ 𝑟𝑖𝑗
2 + ∑ 𝑢𝑖𝑗𝑖≠𝑗𝑖≠𝑗

 

where 

• R= [rij] is the correlation matrix 

• U=[uij] the partial covariance matrix 

 

3.2.2. Bartlett’s Test of Sphericity 

The Bartlett’s test of sphericity is used to test if the original variables are independent and have a common variance. 

Bartlett’s test for sphericity compares the correlation matrix (a matrix of Pearson correlations) of the data to the 

identity matrix. In other words, it checks if there is a redundancy between variables that can be summarized with 

some factors. Bartlett's test of sphericity tests the hypothesis that your correlation matrix is an identity matrix, 

which would indicate that your variables are unrelated and therefore unsuitable for structure detection (Field, 2000). 

Small values (less than 0.05) of the significance level indicate that a factor analysis may be useful with the data. 

The formula for the chi-square value is: 

𝜒2 = −((𝑛 − 1) −
2 ∗ 𝑝 − 5

6
) ∗ log (|𝑅|) 

where  

• n is the number of observations, 

• p is the number of variables,  

• R is the correlation matrix.  

The chi square test is then performed on   
𝑝2−𝑝

2
 degrees of freedom. 

In summary, the test statistic calculates the determinate of the matrix of the sums of products and cross-products 

(S) from which the intercorrelation matrix is derived. The determinant of the matrix S is converted to a chi-square 

statistic and tested for significance. The null hypothesis is that the intercorrelation matrix comes from a population 

in which the variables are noncollinear (i.e. an identity matrix) and that the non-zero correlations in the sample 

matrix are due to sampling error. 
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3.3. Factor Retention Methods 

3.3.1. Eigenvalues 

Let A be k*k square matrix and I be k*k identity matrix. The scalar λ1, λ2, … , λk satisfying the polynomial equation 

|𝐴 − 𝜆𝐼| = 0 are called the eigenvalues of the matrix A. |𝐴 − 𝜆𝐼| = 0 is known as the characteristic equation. 

Also, if 𝐴𝑋 = 𝜆𝑋 where X is a k*1 vector, then X is known as the eigenvector of the matrix A. The most popular 

method for deciding on the retention of factors is Kaiser’s eigenvalue greater than one criterion (Fabrigar et al., 

1999). This method specifies all factors with eigenvalues greater than one are retained for interpretation. Some 

researchers argue this method oversimplifies the situation and also has a tendency to overestimate the number of 

factors to retain (Zwick and Velicer, 1986). According to Ledesma and Pedro, 2007, this method may lead to 

arbitrary decisions, for example, it does not make sense to retain a factor with an eigenvalue of 1.01 and discard a 

factor with an eigenvalue of 0.99. 

3.3.2. Cattell's Scree Plot 

A technique which overcomes some of the deficiencies inherent in Kaiser’s approach is the Catell’s scree test 

(Cattell and Vogelmann, 1977). This is a plot of the eigenvalues associated with each of the factors extracted, 

against each factor. The scree plot is used to determine the number of factors to retain in factor analysis. In a scree 

plot, it is desirable to find a sharp reduction in the size of the eigenvalues. When the eigenvalues drop dramatically 

in size, an additional factor would add relatively little to the information already extracted. 

3.4. Factor Analysis 

The Factor Analysis Model 

The “traditional” or “classical” factor analysis model is defined by the equation 

𝒁𝑱 = 𝒂𝒋𝟏𝑭𝟏 + 𝒂𝒋𝟐𝑭𝟐 +⋯+ 𝒂𝒋𝒎𝑭𝒎 + 𝜺𝒋           (𝒋 = 𝟏, 𝟐, … , 𝒏) 
In this model, a variable Zj is described by a linear combination of common factors (F1, F2, … ,Fm) and a unique 

factor ɛj. Coefficients or loadings for the common factors are represented with 𝑎𝑗1, 𝑎𝑗2, … , 𝑎𝑗𝑚; the number of 

common factors (m) is normally smaller than the number of observed variables, n (Harman, 1976). When 

considering the value of a specific variable, 𝒙𝒋, for a given individual, i, the factor model can be written as: 

 

𝑍𝑗𝑖 = ∑𝑎𝑗𝑝

𝑚

𝑝=1

𝐹𝑝𝑖 

where  

• 𝑓𝑝𝑖 is the common factor p for individual i;  

• 𝑎𝑗𝑝𝐹𝑝 represents the contribution of the factor on the linear composite.  

• The residual error is given by εj. (Harman, 1976).  

The factor analytic model provides estimates for the values of loadings on 

common factors (Harman, 1976). 

3.5. Factor Extraction Methods 

According to Merrifield (1974), dimensional options include the methods that social science researchers employ 

to extract factors from “person by task matrices” (Merrifield, 1974). The most commonly used methods include 

maximum likelihood, principal axis factors with prior estimates of communalities, and “iterative principal factors” 

(Fabrigar et al., 1999). The relative utility of each method is dependent on the researchers’ intentions and the 

distributions of observed data (Fabrigar et al., 1999). 

3.5.1. Maximum Likelihood Estimation 

Assumptions 

• Data are independently sampled from a multivariate normal distribution 

• Mean = 0 and variance = 1 

Suppose 𝑋𝑖~𝑖𝑖𝑑 𝑁(µ, 𝐿𝐿
1 + 𝛹) is a multivariate normal vector. The log-likelihood function for a sample of n 

observations has the form  
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𝐿𝐿(µ, 𝐿, 𝛹) = −
𝑛𝑝𝑙𝑜𝑔(2𝛱)

2
+
𝑛𝑙𝑜𝑔(|∑−1|)

2
−
∑ (𝑋𝑖 − µ)

′∑−1(𝑋𝑖 − µ)
𝑛
𝑖=1

2
 

where ∑=LL′ + Ψ 

Maximum likelihood factoring allows the researcher to test for statistical significance in terms of correlation 

among factors and the factor loadings, but this method for estimating factor models can yield distorted results 

when observed data are not multivariate normal (Costello & Osborne, 2005; Fabrigar et al., 1999). Based on the 

assumption that a specified number of factors exists in a population, maximum likelihood factor analysis yields 

estimate of factor loadings for a given sample size and number of observed variables (Harman, 1976). When the 

observed variables exhibit multivariate normality and the sample size is large, maximum likelihood strategies 

facilitate the calculation of confidence intervals for the estimated loadings (Chen, 2003). 

3.5.2. Principal Component Method 

Perhaps the most widely used method for determining a first set of loadings is the principal component method. 

This method seeks values of the loadings that bring the estimate of the total communality as close as possible to 

the total of the observed variances. 

Let Xi be a vector of observations for the ith subject. 

𝑋𝑖 =

(

  
 

𝑥𝑖1
𝑥𝑖2.
.
.
𝑥𝑖𝑝)

  
 

 

S denotes the sample variance-covariance matrix and it is expressed as 

𝑆 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)

′

𝑛

𝑖=1

 

There are p eigenvalues for this variance-covariance matrix as well as corresponding eigenvectors for this matrix.  

Eigenvalues of S= 𝜆1̂, 𝜆2̂, … , 𝜆�̂� 

Eigenvectors of S= 𝑒1̂, 𝑒2̂, … , 𝑒�̂� 

The variance-covariance matrix expressed in the form of the eigenvalues and eigenvectors 

∑=∑ 𝜆𝑖𝑒𝑖𝑒𝑖
′𝑝

𝑖=1 ≅ ∑ 𝜆𝑖𝑒𝑖𝑒𝑖
′𝑚

𝑖=1 = (√𝜆1𝑒1  √𝜆2𝑒2  …  √𝜆𝑚𝑒𝑚)

(

 
 
 
 √𝜆1𝑒1

′

√𝜆2𝑒2
′

...

√𝜆𝑚𝑒𝑚
′
)

 
 
 
 

= 𝐿𝐿′ 

The idea behind the principal component method is to approximate the expression above. Instead of summing 

from 1 to p, the summing is now done from 1 to m, ignoring the last p-m terms.  

The factor loadings are estimated with 𝑖𝑖�̂� = 𝑒𝑗�̂�√𝜆�̂� . This forms the matrix L of factor loadings in the factor 

analysis. This is followed by the transpose of L. 

Recall:    ∑= LL′ + Ψ 

               Ψ= ∑- LL′ 

Therefore, the specific variance, the diagonal elements of Ψ, are estimated with the expression below. 

𝛹�̂� = 𝑆𝑖
2 − ∑𝜆𝑗𝑒𝑗𝑖

2̂

𝑚

𝑖=1

 

where 

• 𝛹�̂� is the communality or unique variance 

• 𝑆𝑖
2is the sample variance 

• ∑ 𝜆𝑗𝑒𝑗𝑖
2̂𝑚

𝑖=1  is the sum of the squared factor loadings 

The approach of the principal component method is to calculate the sample covariance matrix S from a sample of 

data and then find an estimator that can be used to factor s. The principal component method seeks values of the 
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loadings that bring the estimate of the total communality as close possible to the total of the observed variances. 

 

4. Results and Discussion 

4.1. Factor Analysis 

The aims of the research include examining some conditions for practical factor solution, determining whether 

sample size affects the factor analysis process and to compare the values of the pre-requisite tests and their 

suitability in confirming practical factor solution. 

4.1.1. Correlation Matrix 

Table 3.1 Correlation Matrix on Sales Performance 

 

Sales 

growth 

Sales 

profitability 

New 

account 

sales Creativity 

Mechanical 

reasoning 

Abstract 

reasoning  

 Sales 

profitability 
0.926       

New account 

sales 
0.884 0.843      

Creativity 0.572 0.542 0.700     

Mechanical 

reasoning 
0.708 0.746 0.637 0.591    

Abstract 

reasoning 
0.674 0.465 0.641 0.147 0.386   

Mathematics 0.927 0.944 0.853 0.413 0.575 0.566  

 

From Table 3.1, ‘Mathematics’, ‘Sales growth’ and ‘Sales profitability’ are likely to share the same factor since 

they are highly correlated. Also, ‘New account sales’ has strong relationships with ‘Mathematics’, ‘Sales growth’ 

and ‘Sales profitability’ and positive moderate relationships with ‘Creativity’, ‘Mechanical reasoning’ and 

‘Abstract reasoning’. The correlation matrix shows the strength of association between the variables to be analyzed. 

4.1.2. KMO and Bartlett's Test 

Table 3.2 KMO and Bartlett's Test for Sales Performance  

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.              

0.616 

Bartlett's Test of Sphericity Approx. Chi-Square 499.661 

Df 21 

Sig. 0.000 

 

Table 3.3 KMO and Bartlett’s Test for Personality 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.712 

Bartlett's Test of Sphericity Approx. Chi-Square 1132.561 

Df 78 

Sig. 0.000 

 

Tables 3.2 and 3.3 show the Kaiser-Meyer-Olkin (KMO) measure and the Bartlett’s test of sphericity which are 

used to check the adequacy of the sample size and whether or not the correlation matrix is suitable for factor 

analysis. Both KMO values of 0.616 (for the sales performance data) and 0.710 (for the personality data) are 

greater than the minimum threshold of 0.50 required for factor analysis. The Bartlett’s test p-value of 0.000 for 
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both datasets that at least some of the variables are inter-correlated and therefore the data is suitable for factor 

analysis. 

4.1.3. Extracted Communalities 

Tables 3.4 shows the communalities of variables in the sales performance and personality studies. 

Table 3.4 Communalities for Personality and Sales Performance 

Indicators Extraction Indicators Extraction 

Talkative 0.764 Sales growth 0.995 

finds fault 0.769 Sales profitability 0.987 

does a thorough job 0.698 New account sales 0.998 

Depressed 0.607 Creativity 0.999 

Original 0.629 Mechanical reasoning 0.999 

Reserved 0.706 Abstract reasoning 0.998 

Helpful 0.562 Mathematics 0.993 

Careless 0.518   

Relaxed 0.643   

starts quarrels 0.576   

Reliable 0.659   

Tense 0.681   

Ingenious 0.732   

In principal component method, all variables are assigned an initial variance (total communality) of 100%. The 

extracted communalities are at least 0.50 and above. This means that, at least 50% of the initial communality of 

each variable accounts for factors in the final factor solution. 

4.1.4. Total Variance Explained  

Table 3.5 displays the number of factors that can be derived from the sales performance variables. 

Table 3.5 Total Variance explained by Extracted factors for Sales Performance 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % 

1 
5.035 71.923 71.923 5.035 71.923 71.923 2.877 41.100 41.100 

2 
0.934 13.336 85.259 0.934 13.336 85.259 1.446 20.662 61.761 

3 
0.498 7.113 92.372 0.498 7.113 92.372 1.396 19.949 81.711 

4 
0.421 6.018 98.390 0.421 6.018 98.390 1.153 16.469 98.180 

5 
0.081 1.158 99.547 0.081 1.158 99.547 .096 1.368 99.547 

6 
0.020 0.291 99.838       

7 
0.011 0.162 100.000       
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When two factors are extracted, it accounts for 85.259% of the total variance of the factor analysis model. Three, 

four and five factors explain 92.372%, 98.390% and 99.547% respectively.  

Table 3.6 displays the number of factors that can be derived from the variables in the personality dataset. 

 

Table 3.6 Total Variance explained by Extracted Factors for Personality 

Compo

nent 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cumulativ

e % Total 

% of 

Variance 

Cumulativ

e % Total 

% of 

Variance 

Cumulativ

e % 

1 3.09 23.759 23.759 3.089 23.759 23.759 2.158 16.604 16.604 

2 1.77 13.641 37.400 1.773 13.641 37.400 1.962 15.093 31.696 

3 1.37 10.563 47.963 1.373 10.563 47.963 1.675 12.884 44.580 

4 1.25 9.606 57.569 1.249 9.606 57.569 1.423 10.943 55.523 

5 1.06 8.154 65.723 1.060 8.154 65.723 1.326 10.199 65.723 

6 0.747 5.748 71.471       

7 0.713 5.484 76.955       

8 0.626 4.818 81.773       

9 0.579 4.453 86.226       

10 0.519 3.991 90.217       

11 0.486 3.740 93.957       

12 0.401 3.083 97.040       

 13 0.385 2.960 100.000       

 

4.2 Cattell’s Scree Plot 

The scree plots in Figures 3.1 and 3.2 show the factors or components that contribute to the total variance of the 

factor model.  
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Fig 3.1 Scree plot of the sales performance dataset 

 

 

Figure 3.2 Scree plot of the personality dataset 
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4.3. Extraction and Rotation of Factors for the Sales Performance Data 

 

Table 3.7 One-Factor Solution for Two Different Methods 

 PC ML 

 1 1 

Sales growth 0.973 0.975 

Sales profitability 0.943 0.959 

New account sales 0.945 0.902 

Creativity 0.660 0.567 

Mechanical reasoning 0.783 0.712 

Abstract reasoning 0.649 0.615 

Mathematics 0.914 0.953 

From Table 3.7, all the variables loaded significantly on the Factor under the two different methods of extraction.  

 

Table 3.8 Two-Factor Solution for Two Different Methods 

 PC ML 

 1 2 1 2 

Sales growth 0.785 0.585 0.852 0.452 

Sales profitability 0.670 0.664 0.868 0.419 

New account sales 0.685 0.651 0.717 0.602 

Creativity 0.043 0.923 0.147 0.989 

Mechanical reasoning 0.379 0.743 0.502 0.523 

Abstract reasoning 0.898 -0.012 0.620 0.057 

Mathematics 0.801 0.482 0.946 0.277 

 

From Table 3.8, three variables, namely “Sales growth”, “New account sales” and “Sales profitability” load 

significantly on both Factor 1 and Factor 2 under the Principal Component method. That is, they load above 0.50 

on both factors.  

Also, with the Maximum Likelihood method, there are significant loadings on both factors by the variables “New 

account sales” and “Mechanical reasoning”. 
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Table 3.9 Three-Factor Solution using Principal Component Method 

 

Component 

1 2 3 

Sales growth 0.779 0.387 0.452 

Sales profitability 0.908 0.356 0.189 

New account sales 0.616 0.548 0.484 

Creativity 0.213 0.952 0.047 

Mechanical  reasoning 0.552 0.607 0.146 

Abstract reasoning 0.286 0.060 0.950 

Mathematics 0.909 0.181 0.328 

 

From Table 3.9, “New account sales” and “Mechanical reasoning” load significantly on Component 1 and 

Component 2. Also, Component 3 is a single indicator component which defeats the idea of factor analysis. 

 

Table 3.10 Three-Factor Solution using Maximum Likelihood Estimation 

 

Factor 

1 2 3 

Sales growth 
0.794 0.374 0.437 

Sales profitability 
0.912 0.316 0.184 

New account sales 
0.652 0.544 0.437 

Creativity 
0.255 0.966 0.019 

Mechanical reasoning 0.541 0.464 0.208 

Abstract reasoning 
0.300 0.054 0.952 

Mathematics 
0.918 0.179 0.296 

In Table 3.10, “New account sales” loads significantly on Factor 1 and on Factor 2. 

 

Table 3.11 Four-Factor Solution using Principal Component Method 

 

Component 

1 2 3 4 

Sales growth 0.765 0.316 0.417 0.322 

Sales profitability 0.863 0.252 0.155 0.394 

New account sales 0.660 0.548 0.437 0.175 

Creativity 0.233 0.934 0.013 0.257 

Mechanical reasoning 0.353 0.308 0.169 0.865 

Abstract reasoning 0.297 0.030 0.944 0.132 

Mathematics 0.927 0.159 0.280 0.172 
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From Table 3.11, “New account sales” loads significantly on Components 1 and 2. Factors 3 and 4 are also single 

indicator factors. 

Attempt to determine the significance of the Four-factor solution does not yield convergent result. The error 

message indicates that it was not possible to extract four factors from the seven-item sales performance correlation 

matrix using maximum likelihood methods.  

Table 3.12 provides the Chi-square estimates, the degrees of freedom and the p-values for the various factor 

solutions.  

 

Table 3.12 Goodness-of-fit for various Factor Solutions for the Sales Performance Data 

Model Chi-Square Df p-value 

1 162.715 14 0.000 

2 117.114 8 0.000 

3 61.651 3 0.000 

4 - - - 

 

These p-values are all significant (p<0.05). Thus, the one factor solution, two factor solution and three factor 

solution are all significant. The chi-square goodness of fit test tests the null hypothesis, which states that, compared 

with a one-factor model (i.e., all of the items load on a single factor), the fit of the data with the number of factors 

chosen (m) is adequate. If the test statistic is significant, that means m factors are not enough and thus should try 

m+1 extraction. Thus, in this test, we seek the value of m for which the null hypothesis is not rejected. 

Interpretation of Factors Extracted from Sales Performance Data  

In an attempt to extract various factor solutions, several indicators cross-load significantly on two factors. This 

results in solutions that are not interpretable. Hence, it is difficult to provide labels for the factors. 

4.4. Extraction and Rotation of Factors for the Personality Data 

Table 3.13 Two-Factor Solution for Principal Component Method 

 

Component 

1 2 

talkative 0.404 -0.332 

finds fault -0.129 0.315 

does a thorough job 0.767 0.084 

depressed -0.190 0.706 

original 0.512 -0.305 

reserved -0.058 0.483 

helpful 0.651 -0.168 

careless -0.532 0.195 

relaxed 0.012 -0.720 

starts quarrels -0.356 0.145 

reliable 0.794 -0.059 

Tense 0.049 0.786 

ingenious 0.294 0.116 

 

From Table 3.13, five variables, namely “does a thorough job”, “original”, “helpful”, “careless” and “reliable” 

load significantly on Factor 1. Also, “tense”, “relaxed”, load significantly on Factor 2.  
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Table 3.14 Three-Factor Solution for Principal Component Method 

 

Component 

1 2 3 

talkative 0.267 -0.015 0.799 

finds fault -0.199 0.509 0.322 

does a thorough job 0.769 0.068 0.052 

depressed -0.144 0.630 -0.342 

original 0.454 -0.185 0.391 

reserved 0.071 0.185 -0.745 

helpful 0.637 -0.155 0.154 

careless -0.551 0.262 0.026 

relaxed 0.010 -0.752 0.093 

starts quarrels -0.405 0.282 0.210 

reliable 0.782 -0.048 0.145 

tense 0.063 0.788 -0.162 

ingenious 0.298 0.106 -0.007 

 

From Table 3.14, the variables “talkative” and “reserved” load significantly on Factor 3. On Factor 2, “depressed” 

and “relaxed” have significant loadings. 

Table 3.15 Four-Factor Solution for Principal Component Method 

 

Component 

1 2 3 4 

talkative 0.294 -0.012 0.829 -0.001 

finds fault -0.259 0.424 0.281 0.327 

does a thorough job 0.748 0.089 0.016 0.184 

depressed -0.190 0.634 -0.310 0.026 

original 0.409 -0.277 0.245 0.527 

reserved 0.035 0.202 -0.767 0.041 

helpful 0.654 -0.110 0.154 -0.002 

careless -0.568 0.222 0.042 0.005 

relaxed 0.034 -0.796 -0.002 0.127 

starts quarrels -0.487 0.131 0.083 0.543 

reliable 0.790 0.003 0.145 0.032 

tense 0.016 0.808 -0.108 0.023 

ingenious 0.198 -0.031 -0.205 0.743 

 

In Table 3.15, “reliable”, “helpful”, “careless” and “does a thorough job” are significant on Factor 1. Also, the 

variables “depressed” and “relaxed” are significant on Factor 2. On Factor 3, “talkative” and “reserved” are 

significant. “Ingenious”, “original” and “starts quarrel” also load significantly on Factor 4. 
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Table 3.16 Five-Factor Solution for Principal Component Method 

 

Component 

1 2 3 4 5 

talkative 0.270 -0.049 0.833 0.067 -0.019 

finds fault 0.086 0.189 0.077 0.851 -0.081 

does a thorough job 0.805 0.037 0.014 0.010 0.170 

depressed -0.239 0.689 -0.257 0.001 0.069 

original 0.298 -0.243 0.302 -0.035 0.605 

reserved 0.158 0.169 -0.810 0.068 -0.021 

helpful 0.416 0.021 0.309 -0.504 0.267 

careless -0.663 0.290 0.082 0.023 0.044 

relaxed 0.010 -0.790 -0.019 -0.105 0.155 

starts quarrels -0.355 0.037 -0.017 0.578 0.322 

reliable 0.751 0.006 0.196 -0.195 0.118 

tense 0.019 0.817 -0.075 0.100 0.015 

ingenious 0.061 0.045 -0.124 0.003 0.842 

 

In the Five-factor solution, “does a thorough job”, “careless” and “reliable” load significantly on Factor 1. 

“Depressed” and “relaxed” also load significantly on Factor 2. Factor 3 is indicated by “talkative” and “reserved”. 

On Factor 5, the indicators are “original” and “ingenious”. 

Table 3.17 Six-Factor Solution for Principal Component Method 

 

Component 

1 2 3 4 5 6 

talkative 0.248 -0.049 0.833 -0.004 0.108 -0.089 

finds fault 0.031 0.176 0.085 0.015 0.872 0.168 

does a thorough job 0.795 0.037 0.013 0.170 0.059 -0.117 

depressed -0.174 0.703 -0.259 -0.009 -0.118 0.232 

original 0.355 -0.240 0.311 0.530 -0.138 0.173 

reserved 0.134 0.162 -0.810 0.021 0.110 -0.050 

helpful 0.484 0.037 0.305 0.150 -0.561 -0.042 

careless -0.732 0.265 0.086 0.168 0.094 -0.105 

relaxed 0.024 -0.792 -0.014 0.131 -0.125 0.019 

starts quarrels -0.160 0.079 -0.007 0.069 0.182 0.899 

reliable 0.704 -0.002 0.193 0.165 -0.069 -0.315 

Tense -0.005 0.811 -0.077 0.061 0.130 -0.036 

ingenious 0.033 0.015 -0.108 0.917 0.009 -0.002 
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From Table 3.17, the 6th Factor is a One-Indicator Factor. Two variables namely, “does a thorough job” and 

“reliable” loads significantly on Factor 1. “Finds fault” and “helpful” also are significant on Factor 5. 

Table 3.18 Goodness-of-fit for various Factor Solutions for the Personality Data 

Model Chi-Square df p-value 

1 532.314 65 0.000 

2 285.119 53 0.000 

3 144.205 42 0.000 

4 88.430 32 0.000 

5 38.671 23 0.022 

6 22.540 15 0.094 

 

The p-values are all significant (p<0.05) for One-Factor solution through to Five-Factor solution. The p-value for 

the Six-Factor solution is not significant (p>0.05) and as such the null hypothesis is not rejected. This means that 

a Six-Factor solution is theoretically suitable for the data. 

4.5. Interpretation of Factors Extracted from Personality Data 

The higher the absolute value of a loading of an indicator on a factor, the more influential the variable is on the 

factor. However, a cut-off value of 0.50 and above is used to ensure that only variables of practical significance 

are included in the final factor solution. The factors are therefore labelled based on the loadings of the variables 

shown in the above Table 3.17 so that the higher the absolute value of a variable’s loading on a factor, the more 

influential the variable is in naming the factor. The factors are labelled as follows: 

• Factor 1: Conscientiousness 

• Factor 2: Neuroticism 

• Factor 3: Extraversion   

• Factor 4: Openness to experience 

• Factor 5: Agreeableness 

 

5. Conclusion 

This study examined some of the conditions that are required for practical factor solution in factor analysis. Some 

of the conditions studied include Bartlett’s test of sphericity and Kaiser-Meyer-Olkin measure of sampling 

adequacy. Two different datasets were used which are referred to in this study as the Sales Performance dataset 

and personality dataset. The Sales Performance dataset contained 7 variables and was collected from 50 

respondents. The Personality dataset measured 13 variables and was collected from 400 participants. Using the 

concept of exploratory factor analysis, the study variables in both datasets were subjected to statistical testing. The 

values for the Kaiser-Meyer-Olkin measure for both datasets were appropriate for factor analysis based on 

reviewed literature. Also, the Bartlett’s test for sphericity was also significant for both datasets. 

Although both pre-tests for the sales performance data were appropriate, practical factor solution could not be 

achieved after the extraction and rotation of two, three and four factors. 

The personality dataset also passed both the Kaiser-Meyer-Olkin measure and the Bartlett’s test of sphericity. Two, 

three, four, five and six factors were extracted and rotated. This six-factor solution was theoretically and practically 

correct. The study shows that the KMO and the Bartlett’s test of sphericity may not be golden rules for determining 

suitability of data for factor analysis. The significance of larger sample size for practical factor solution is 

consistent with findings in the literature. Such relevance can also be attributed to the number of variables in the 

data. 

Following the outcome of the study, the following recommendations are made for consideration to add to already 

literature in an attempt to reduce the controversy surrounding when factor analysis must be used on a multivariate 

data. 

1. The necessary size may depend on the complexity of the model e.g. number of factors. In any case and as has 

been established in this study, a large sample size is preferable to a small sample size.  
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2. Further research should be conducted using more datasets with varying sample sizes and number of variables 

to address the different ideologies concerning when factor analysis must be conducted and the proper preliminary 

conditions that must be satisfied before data can be declared fit for factor. 
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