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Abstract 

Most importantly, the derivation of novel class of probability distributions plays a vital role in 

improving the underlying structure to model complex real-world data. In this study, we 

propose a new distribution, Exponentiated Generalized Exponential Pareto Distribution 

(EGEPD), which is a compounding distribution of the Exponentiated Generalized  (EG) class 

of distribution and Exponential Pareto distribution. The valuation of EGEPD is contemplated 

by colossal comparisons with other distributions such as Exponential Pareto Distribution 

(EPD), Exponentiated Exponential Pareto Distribution (EEPD) and Exponential Distribution 

(ED). EGEPD significantly outperforms these distributions according to both visual and 

statistical analyses. The EGEPD outperforms all alternatives in terms of Log-Likelihood 

values, as well as Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) scores, confirming its goodness-of-fit and optimal complexity. Goodness-of-fit tests based 

on Kolmogorov-Smirnov (KS), Anderson-Darling (AD), and Cramér-von Mises (CM) statistics, 

etc., confirm EGEPD’s performance due to the smallest statistics and the largest p-values that 

contribute to strong fitting of EGEPD with observed data. Parameter analysis indicates 

EGEPD’s location parameter (α) adjusts the distribution’s central tendency, while the scale 

parameter β controls spread and variability. The shape parameters such as a, b, and θ are 

able to control skewness, tail behavior, and spread of the distribution, allowing the EGEPD to 

be flexible and fit diverse data characteristics. The ability to adjust this prior flexibility allows 

for EGEPD to be an effective spatio-temporal model for complex datasets across many domains 

that require varying spatial and temporal scales of location, variability, or shape. The EGEPD 

is the best and most robust model with respect to the fitted data and the structure of the data. 

It proves to be a great addition among other statistical modeling approaches such as the case 

with Exponential Distribution and also with the medium generators such as EPD and EEPD. 

 

Keywords: Heavy-tailed data, Goodness-of-fit tests, Log-Likelihood, Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov Statistic, 

Anderson-Darling Statistic, Cramér-von Mises Statistic, Flexible probability distributions. 
 

1.1 Introduction 

Diaconis (1988) explained this process through a statistical science lens: "New probability 

distributions is a rapidly growing area of research in statistics, and there is certainly no shortage 

of need for better models." We introduce a new probability distribution, the Exponentiated 

Generalized Exponential Pareto Distribution (EGEPD) based on Karima and Boshi (2013)'s 
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Exponential Pareto distribution as the base and Cordeiro (2013)'s Exponentiated Generalized 

family of distributions. Recent work in statistical inference has emphasized the development 

of more sophisticated probability distributions. Cordeiro et al. (2013) first proposed the 

Exponentiated Generalized  (EG) family of distributions, a class of flexible distributions that 

extends standard models by introducing intercalated parameters that better represent the 

behaviour of the data. This family has been critical in designing more adaptable distributions 

that correct some flaws of the current models. The Exponential Pareto distribution is proposed 

by Karima and Boshi (2013) as a combination of the exponential and Pareto distributions to 

describe datasets with exponential-like and heavy-tailed attributes. This distribution can be 

applied in several fields, including finance and insurance, where extreme value modeling is 

important. More recently, researchers have built upon established forms to adapt probability 

distributions for a wider variety of practical applications. For instance, Alzaghal et al. They 

use exponentiation and generalization to demonstrate highly flexible models on the 

Exponentiated Generalized Gamma Distribution  (2020). In a similar vein, Nadarajah and 

Kotz (2006) developed the Exponentiated Pareto Distribution, which extends the Pareto 

distribution by including an additional exponentiation parameter to provide more flexibility 

when modeling heavy-tailed data. 

Motivated by the above-mentioned work, we propose the Exponentiated Generalized 

Exponential Pareto Distribution (EGEPD) which incorporates some merits of the EG family of 

distributions and the Exponential Pareto distribution. The main goal of this work is to present 

the EGEPD, which is a flexible model providing a good fit to data showing both exponential 

and heavy-tailed behavior. 

 

2.1  METHODOLOGY  

Derivation and Development of Exponentiated Generalized Exponential Pareto 

Distribution  (EGEPD) 

Let X be a random variable with Exponential Pareto distribution (EPD) defined in [Karima and 

Boshi, 2013] by the CDF, probability density function (pdf) and quantile function respectively 

given by: 

𝐺(𝑥) = 1 − 𝑒−𝛽(
𝑥

𝛼
)
𝜃

  𝑥 > 0, 𝛼, 𝛽 𝑎𝑛𝑑 𝜃 >0       (1)  

𝑔(𝑥) =
𝛽𝜃

𝛼
(

𝑥

𝛼
)
𝜃−1

𝑒−𝛽(
𝑥

𝛼
)
𝜃

(1 − 𝑒−𝛽(
𝑥

𝛼
)
𝜃

)            𝑥 > 0, 𝛼, 𝛽 𝑎𝑛𝑑 𝜃 >0   (2) 

𝑞 = −
𝛼

𝛽
𝑙𝑜𝑔(1 − 𝑝)

1
𝜃           (3) 

while equation (4) and (5) are the probability density function (pdf) and cumulative 
distribution function (cdf) of Exponentiated Generalized family proposed by           Cordeiro 
et al (2013) 
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The CDF of Exponentiated Generalized G family of distribution is as follows: 
𝐹(𝑥) = [1 − {1 −  𝐺(𝑥)}𝑎]𝑏  𝑥 > 0, 𝑎, 𝑏 >0      (4) 

and the pdf is given as 
𝑓(𝑥) = 𝑎𝑏𝑔(𝑥){1 −  𝐺(𝑥)}𝑎−1[1 − {1 −  𝐺(𝑥)}𝑎]𝑏−1  𝑥 > 0, 𝑎, 𝑏>0               (5) 

2.2 PROPOSED EXPONENTIATED GENERALIZED TOPP LEONE FRÉCHET 

PROBABILITY OF DISTRIBUTION 

 

The propose Exponentiated Generalized Exponential Pareto Distribution (EGEPD) CDF is 

defined as : 

𝐹(𝑥) = (1 − (1 − (1 − 𝑒−𝛽(
𝑥

𝛼
)
𝜃

))

𝑎

)

𝑏

  𝑥 > 0, 𝑎, 𝑏, 𝜃, 𝛼 𝑎𝑛𝑑 𝛽 >0   (6) 

The quantile of the proposed distribution EGEPD is given as: 

𝑥 = 𝛼

(

 
 

−

𝑙𝑛 ((1 − 𝑝
1
𝑏)

1
𝑎
)

𝛽

)

 
 

1
𝜃

                                                                                                            (7) 

The median of the proposed distribution EGEPD is given as: 

𝑥 = 𝛼

(

 
 

−

𝑙𝑛 ((1 − (0.5)
1
𝑏)

1
𝑎
)

𝛽

)

 
 

1
𝜃

                                                                                                   (8)  

And the pdf is given as: 

𝑓(𝑥) =
𝑎𝑏𝛽𝜃

𝛼
(

𝑥

𝛼
)

𝜃−1

𝑒−𝛽(
𝑥

𝛼
)
𝜃

(1 − (1 − 𝑒−𝛽(
𝑥

𝛼
)
𝜃

))

𝑎−1

(1 − (1 − (1 − 𝑒−𝛽(
𝑥

𝛼
)
𝜃

))

𝑎

)

𝑏−1

𝑥 >

0, 𝑎, 𝑏, 𝜃, 𝛼 𝑎𝑛𝑑 𝛽 >0                                                                                                                                                (9) 

Using binomial expansion series, we have: 
𝑓(𝑥)

=
abβθ

α
(
x

α
)
θ−1

∑∑ ∑ −1𝑖+𝑗+𝑘

∞

𝑘=0

(
𝑏 − 1

𝑖
)

∞

𝑗

(
a − 1 + ai

𝑗
)

∞

𝑖

(
𝑗
𝑘
)e−β(

x
α
)
θ
(𝑘+1)

                                            (10) 

𝑖𝑓 𝑤𝑖 = ∑∑∑ −1𝑖+𝑗+𝑘

∞

𝑘=0

(
𝑏 − 1

𝑖
)

∞

𝑗

(
a − 1 + ai

𝑗
)

∞

𝑖

(
𝑗
𝑘
)                                                                                 (11) 

Therefor the probability density function (pdf) of the Exponentiated Generalized Exponential 

Pareto Distribution is given as: 

𝑓(𝑥) =
abβθ

α
(
x

α
)
θ−1

𝑤𝑖e
−β(

x
α
)
θ
(𝑘+1)

                                                                                                                  (12) 

2.3 Expansion of Properties of the Propose Distribution Function 

𝐸[𝑋𝑟] =
𝑎𝑏𝛼𝑟𝑤𝑖Γ (

𝑟 + 𝜃
𝜃

+ 1)

(𝑘 + 1)
𝑟+𝜃
𝜃

                                                                                                                                   (13) 

 𝐸[𝑋] =
𝑎𝑏𝛼𝑤𝑖Γ (

1 + 𝜃
𝜃

+ 1)

(𝑘 + 1)
1+𝜃
𝜃

                                                                                                                                     (14) 

𝐸[𝑋2] =
𝑎𝑏𝛼2𝑤𝑖Γ (

2 + 𝜃
𝜃

+ 1)

(𝑘 + 1)
2+𝜃
𝜃

                                                                                                                                     (15) 
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𝐸[𝑋3] =
𝑎𝑏𝛼3𝑤𝑖Γ (

3 + 𝜃
𝜃

+ 1)

(𝑘 + 1)
3+𝜃
𝜃

                                                                                                                                      (16) 

𝐸[𝑋4] =
𝑎𝑏𝛼4𝑤𝑖Γ (

4 + 𝜃
𝜃

+ 1)

(𝑘 + 1)
4+𝜃
𝜃

                                                                                                                                       (17) 

2.4 Maximum Likelihood Function  

Given a sample of size n with data point 𝑥1, 𝑥2, … , 𝑥𝑛, the likelihood function is the product of 

the individual PDF’s evaluated at each observation: 

𝐿(𝑎, 𝑏, 𝛽, 𝜃, 𝛼) = ∏𝑓(𝑥𝑖; 𝑎, 𝑏, 𝛽, 𝜃, 𝛼)

𝑛

𝑖=1

 

Taking the natural logarithm of the likelihood function (log-likelihood) simplifies the 

differentiation process for parameter estimation: 

𝑙𝑜𝑔𝐿(𝑎, 𝑏, 𝛽, 𝜃, 𝛼) = ∑𝑙𝑜𝑔𝑓(𝑥𝑖; 𝑎, 𝑏, 𝛽, 𝜃, 𝛼)

𝑛

𝑖=1

 

The log-likelihood function becomes:  

𝑙𝑜𝑔𝐿(𝑎, 𝑏, 𝛽, 𝜃, 𝛼) = ∑(𝑙𝑜𝑔(𝑎𝑏𝛽𝜃) − log(𝛼) + (𝜃 − 1)𝑙𝑜𝑔 (
𝑥𝑖

𝛼
) −  𝛽 (

𝑥𝑖

𝛼
)
𝜃

)

𝑛

𝑖=1

+ (𝑎 − 1)𝑙𝑜𝑔 (1 − (1 − 𝑒
−𝛽(

𝑥𝑖
𝛼

)
𝜃

))

+ (𝑏 − 1)𝑙𝑜𝑔 (1 − (1 − (1 − 𝑒
−𝛽(

𝑥𝑖
𝛼

)
𝜃

))

𝑎

) 

The maximum likelihood estimates of the parameters 𝑎, 𝑏, 𝛽, 𝜃 𝑎𝑛𝑑 𝛼 are obtained by taking 

the partial derivative of the log-likelihood function with respect to each parameter, setting 

them equal to zero and solving. 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑎
= ∑(

1

𝑎
 + 𝑙𝑜𝑔 (1 − (1 − 𝑒

−𝛽(
𝑥𝑖
𝛼

)
𝜃

)))

𝑛

𝑖=1

+ ∑(𝑏 − 1)

𝑙𝑜𝑔 (1 − (1 − 𝑒
−𝛽(

𝑥𝑖
𝛼

)
𝜃

))(1 − 𝑒
−𝛽(

𝑥𝑖
𝛼

)
𝜃

)

1 − (1 − (1 − 𝑒
−𝛽(

𝑥𝑖
𝛼

)
𝜃

))

𝑎

𝑛

𝑖=1

           (18)     

𝜕𝑙𝑜𝑔𝐿

𝜕𝑏
= ∑

𝑙𝑜𝑔 (1 − (1 − (1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

))

𝑎

)

𝑏 − 1

𝑛

𝑖=1

                                                                 (19) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
= ∑

[
 
 
 
 
1

𝛽
− (

𝑥𝑖

𝛼
)

𝜃

+
(𝑎 − 1) (

𝑥𝑖

𝛼
)

𝜃

𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

1 − (1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

)
]
 
 
 
 

+ ∑

(𝑏 − 1)𝑎 (
𝑥𝑖

𝛼
)

𝜃

(1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

)

𝑎−1

1 − (1 − (1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

))

𝑎

𝑛

𝑖=1

𝑛

𝑖=1

                (20) 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
= ∑[

1

𝜃
+ 𝑙𝑜𝑔 (

𝑥𝑖

𝛼
) − 𝛽 (

𝑥𝑖

𝛼
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖

𝛼
)] + ∑

(𝑎 − 1)𝛽 (
𝑥𝑖

𝛼)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖

𝛼) 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

1 − (1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

)

𝑛

𝑖=1

𝑛

𝑖=1

+ ∑

(𝑏 − 1)𝑎𝛽 (
𝑥𝑖

𝛼)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖

𝛼) 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

(1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

)

𝑎−1

1 − (1 − (1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

))

𝑎

𝑛

𝑖=1

                  (21) 
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𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
= ∑[−

𝜃

𝛼
+ (

𝛽𝜃𝑥𝑖
𝜃

𝛼𝜃+1
)

𝜃

] + ∑
(𝑎 − 1)𝛽𝜃𝑥𝑖

𝜃𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

(1 − 𝑒−𝛽(
𝑥𝑖
𝛼

)
𝜃

)

𝑛

𝑖=1

𝑛

𝑖=1

                                              (22) 

2.5 Order of Statistics  

The density 𝑓𝑖:𝑛(𝑥)of the ith order statistic for i=1,…n, from independent identically 

distributed random variable 𝑌1, . . ., 𝑌𝑛   is given by  

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1 {1 − 𝐹(𝑥)}𝑛−𝑖 

From equation 6 and 12, the CDF and pdf of the Exponentiated Generalized Exponential 

Pareto Distribution is given as: 

𝑓(𝑥) =
𝑎𝑏𝛽𝜃

𝛼
(
𝑥

𝛼
)
𝜃−1

𝑤𝑖𝑒
−𝛽(

𝑥
𝛼
)
𝜃
(𝑘+1)

     𝑎𝑛𝑑 𝐹(𝑥) = (1 −  (1 −  (1 − 𝑒
−𝛽(

𝑥
𝛼
)
𝜃

))

𝑎

)

𝑏

                

 distribution is given as 

𝑓𝑖:𝑛(𝑥) =

𝑎𝑏𝛽𝜃
𝛼

(
𝑥
𝛼
)

𝜃−1

𝑤𝑖𝑒
−𝛽(

𝑥
𝛼
)
𝜃
(𝑘+1)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
((1 −  (1 −  (1 − 𝑒

−𝛽(
𝑥

𝛼
)
𝜃

))

𝑎

)

𝑏

)

𝑖−1

∗ (1 − (1 −  (1 −  (1 − 𝑒
−𝛽(

𝑥

𝛼
)

𝜃

))

𝑎

)

𝑏

)

𝑛−𝑖

 

𝑙𝑒𝑡 (1 − 𝑧)𝑘 = (1 − (1 −  (1 −  (1 − 𝑒
−𝛽(

𝑥

𝛼
)
𝜃

))

𝑎

)

𝑏

)

𝑛−𝑖

 

𝑤ℎ𝑒𝑟𝑒 𝑧 = (1 −  (1 −  (1 − 𝑒−𝛽(
𝑥
𝛼

)
𝜃

))

𝑎

)

𝑏

 

∑(
𝑛 − 𝑖

𝑘
)

∞

𝑙=0

(−1)𝑘𝑧𝑘 

𝑓𝑖:𝑛(𝑥) =

𝑎𝑏𝛽𝜃
𝛼

(
𝑥
𝛼
)

𝜃−1

𝑤𝑖𝑒
−𝛽(

𝑥
𝛼
)
𝜃
(𝑘+1)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
((1 −  (1 −  (1 − 𝑒

−𝛽(
𝑥

𝛼
)
𝜃

))

𝑎

)

𝑏

)

𝑖−1

∗ ∑(
𝑛 − 𝑖

𝑗
)

𝑛−𝑖

𝑗=0

(−1)𝑗 (1 −  (1 −  (1 − 𝑒
−𝛽(

𝑥

𝛼
)
𝜃

))

𝑎

)

𝑏𝑗

 

𝑓𝑖:𝑛(𝑥) =

𝑎𝑏𝛽𝜃
𝛼

(
𝑥
𝛼
)

𝜃−1

𝑤𝑖𝑒
−𝛽(

𝑥
𝛼
)
𝜃
(𝑘+1)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∗ ∑(

𝑛 − 𝑖

𝑗
)

∞

𝑗=0

(−1)𝑗 (1 −  (1 −  (1 − 𝑒
−𝛽(

𝑥

𝛼
)

𝜃

))

𝑎

)

𝑖+𝑏𝑗−1

 

(1 − (1 − (1 − 𝑒−𝛽(
𝑥
𝛼

)
𝜃

))

𝑎

)

𝑖+𝑏𝑗−1

= ∑ ∑ ∑(−1)𝑘+𝑙+𝑚 (
𝑖 + 𝑏𝑗 − 1

𝑘
) (

𝑘

𝑙
) (

𝑎

𝑚
)(𝑒−𝛽(

𝑥
𝛼

)
𝜃

)

𝑚𝑙𝑎

𝑚

𝑘

𝑙

𝑖+𝑏𝑗−1

𝑘

 

Therefore,  
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𝑓𝑖:𝑛(𝑥) =

𝑎𝑏𝛽𝜃
𝛼

(
𝑥
𝛼
)

𝜃−1

𝑤𝑖𝑒
−𝛽(

𝑥
𝛼
)
𝜃
(𝑘+1)
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3.1 Data Presentation and Analysis of Data 
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Fig. 2 

Fig. 3 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.15, No.1, 2025 

 

40 

 

              Fig. 4 

3.2 REAL LIFE APPLICATION 

In this section, we fit the EGEPD to real life data sets and compare it fitted values with that of 

its sub-models. The data comprise of Cumulative Grade Point Average (CGPA) of Auchi 

Polytechnic, Auchi.2022/2023 first semester result in the Department of Statistics,  

 

Table 1: CGPA of 145 Students in the Department of statistics Auchi Polytechnic 

Table: 1 

Source: Department of Statistics Auchi Polytechnic, 2022/2023 first semester result 

 

 

 

 

 

 

 

3.47,3.17,2.91,2.42,3.09,2.59,3.12,2.30,2.66,2.83,3.01,3.46,2.44,3.19,2.38,2.36,2.59,2.86,2.87,2.53,2.81,3.01,

3.10,2.85,2.96,2.74,3.08,3.11,3.11,3.66,2.95,2.71,3.22,2.88,2.37,2.87,2.46,2.96,2.42,2.55,3.09,3.36,2.60,3.03,

2.86,3.00,2.99,2.66,3.18,2.75,3.04,2.64,2.59,3.49,2.26,2.74,2.55,2.79,2.43,2.67,2.83,3.08,2.84,2.40,3.14,2.50,

2.72,2.87,3.02,3.13,2.58,2.79,3.28,2.80,2.83,2.41,2.06,2.81,2.59,2.62,3.14,2.50,2.97,2.97,2.51,2.78,2.26,3.08,

2.90,2.46,3.03,2.81,2.75,2.56,2.35,2.50,2.38,3.01,3.23,2.76,3.06,2.92,2.45,2.72,2.87,2.85,2.96,2.74,2.92,2.45,

2.72,2.87,2.85,2.96,2.74,2.85,2.96,2.74,2.92,2.45,2.72,2.87,2.85,2.96,2.74,2.85,2.96,2.74,2.92,2.45,2.72,2.87,

2.85,2.96,2.74,2.85,2.96,2.74,2.92,2.45,2.72,2.87,2.85,2.96,2.74. 
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This figure 5 compares the fit between 4 distributions (EPD, EGEPD, EEPD, and ED) and the 

data represented in the histogram. The blue bars represent the actual data Histogram The pitch 

of the bars indicates how common the data values are. The four colored lines in the plot are the 

fitted distributions so that EPD does not closely follow the form of the histogram. EGEPD fit 

the histogram very well, particularly around the peak. EEPD Somewhat follows the histogram 

but fails at parts. ED (Almost flat and clearly away from the histogram, the worst fit.) So, the 

EGEPD (blue line) has the best fit on the data, since it follows the histogram shape closely 

(especially at the peak). The Exponential Distribution (green line) has the worst fit as it is far 

from the data values. 

  

 Fig. 5  
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Table 2: Log likelihood and Information Criterion on students CGPA 

S/N Distribution Log Likelihood AIC BIC 

1 EGEPD -28.99236 67.98473 81.57722 

2 EEPD -58.64752 125.29505 136.16904 

3 EP -71.20472 148.40944 156.56493 

4 ED -683.80044 1369.60088 1372.31937 

 

Table 2 displays the Log-Likelihood, AIC (Akaike Information Criterion) and BIC (Bayesian 

Information Criterion) values for various statistical distributions of students' CGPA data 

depicting the best-fit distribution for the students CGPA dataset. Log-Likelihood: A Higher 

value (closer to 0) means that the model fits the data better. EGEPD has the best fit: (-28.99) 

whereas, the worst fit is of Exponential distribution: (-683.80) AIC and BIC keep track of how 

well the model strikes a balance between fit and complexity. Generalization of the Model — 

Lower is better. In the above table EGEPD has lowest AIC (67.98) and BIC (81.57) and that 

has been derived only based on the fact that it performs the best across the top overall. AIC 

(1369.60) and BIC (1372.32) indicates that Exponential distribution is the worst fit for this 

data. 

Table 3:  Goodness of fit Criterion on students CGPA 

S/N Distribution KS_Statistic KS_p_value AD_Statistic CM_Statistic 

1 EGEP 0.1287149 4.427242e-02 3.60264 0.6172434 

2 EEP 0.5525224 6.415088e-31 16.36317 3.1746969 

3 EP 0.3057557 9.180574e-10 88.21568 15.7915456 

4 Exponential 0.9942006 3.702699e-99 644.98308 38.148909 

 

Table 3: Goodness-of-Fit of Various Distributions to Students-CGPA Data (Based on 4 Tests) 

Kolmogorov-Smirnov Statistic ( KS_Statistic) : The smaller the better. EGEPD is the best one 

with KS_Statistic 0.1287 and Exponential Distribution is the worst with KS_Statistic 0.9942. 

KS_p_value = higher p_value = better fit. If the EGEPD has the largest p-value (0.044), it 

indicates that it fits well. The main information that Exponential Distribution very small value 

(close to 0), therefore, the fitting is bad. AD_Statistic and CM_Statistic also indicate goodness 

of fit. Smaller values are better.EGEPD has the lowest values (3.60 for AD and 0.62 for CM), 
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thus it fits best. The worst fit is Exponential Distribution (note that it has the biggest values, 

644.98 for AD and 38.15 for CM). 

The strengths of 1.5cm glass fibres were used from those obtained by workers at the UK 

National Physical Laboratory. Smith and Naylor, Bourguinonetal have used that data before 

and Merovci et al. The first run is as follows: 

 

Table 4: The strength data concerning the 1.5cm glass fibers obtained by the workman at the 

UK National Physical laboratory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6, the probability density functions, PDFs, for some four distributions: the EPD, EGEPD, 

EEPD, ED The histogram (light blue bars) visualizes the actual distribution of the data, that is, 

how often data values occur over ranges. The four lines (red, blue, purple, and green) are the 

theoretical density curves for the four distributions, where EPD (red line) fits moderately well, 

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 

1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 

1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 

1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84,  2.00, 2.01, 2.24. 

Fig. 6 
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but it does not match with the peak of the histogram. EGEPD (blue line) picks out the best fit 

of the data its shape and height is closest to the histogram. EEPD (purple line) fits quite closely, 

though we see a slight deviation at the peak. ED (green line) poorly fits the data and has a 

visible misalignment with the histogram. Thus, from the histogram and its fit to the data, it can 

be concluded that the EGEPD distribution is the best fit. 

 
Table 5: Log likelihood and Information Criterion on Glass fibre data 

S/N Distribution LogLikelihood AIC BIC 

1 EGEPD -30.80188   71.60375   82.31942 

2 EEPD -42.72501 91.45002 97.87943 

3 EPD -93.40360 194.80719 203.37973 

4 Exponential D. -292.38346 586.76691 588.91005 

 

EGEPD satisfactorily fits Glass Fibre Data best because it possesses highest Log-Likelihood along 

with lowest AIC and BIC values as shown in Table 5. Exponential distribution is certainly the worst 

fit with the least Log-Likelihood and greatest AIC and BIC values. Other models (EEPD and EPD) 

only achieve moderate performance, but not better than EGEPD. 

 

Table 6  Goodness of fit Criterion on Glass fibers data  

S/N Distribution KS_Statistic KS_p_value AD_Statistic CM_Statistic 

1 EGEPD 0.1623103 7.234397e-02 2.808005     0.3841247 

2 EEPD 0.2049535 1.005585e-02 4.033532 0.7515303 

3 EPD 0.3850873 1.535735e-08 17.755910 3.5482622 

4 Exponential Distribution 0.9877227 8.228794e-54 610.257148 20.9588445 

 

As seen in Table 6, EGEPD is the best-fitting for the data with the smallest KS, AD, and CM 

statistics, and the highest p value. The worst distribution is Exponential with the highest KS, AD 

and CM statistics and a near-zero p-value. EEPD and EPD moderately fit but not as EGEPD fit. 

 

Simulated Data  

This will create simulated realizations of EGEPD based on the quantile function. Here’s how that 

simulation process works. The shape parameters are (a, b and θ), the codes simulate for different 
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values of (a= 1.5, 2.0, 2.5), (b=1.2, 1.8, 2.0) and (θ=1.2, 1.5, 1.8) Beta (β) is the scale parameter, 

being held constant (1.5) in this simulation. (θ) is the location parameter which is fixed (0.8) in 

this simulation. Sample Size (n) — Number of random values to simulate (50 and 100). The 

simulation starts with drawing p uniform random samples of the size of n distributed in [0, 1]. We 

can create the random variables using the runif() function in R. The random variables are 

transformed to follow the Exponentiated Generalized Exponential Pareto (EGEPD). To obtain the 

desired value of x, the quantile function Q (p) is solved for x, using generated random values (p). 

This is a great way to convert a uniform test of random values into an EGEPD. Once the simulated 

data points are created, descriptive statistics  (which in this case are simple averages because we 

are simulating independent data points) are calculated from each combination of alpha and beta 

values. Mean is the mean of the simulated data, Median is the middle value of the simulated data. 

The Standard Deviation (SD) is calculated from the spread of the simulated data. These statistics 

give an idea of the mean and standard deviation of the simulated data. 

Mean, Median, and SD calculated for each combination of alpha and beta would be saved in a 

results data frame. I then reshaped this data frame so the statistics were in their own columns for 

easier viewing. 

  

Table 7: Mean, Standard Deviation and Median from Exponentiated Generalized 

Exponential Pareto (EGEPD) of sample Size n=50 

 Scale Parameters 

 Shape Parameters 𝜶 = 𝟐          𝜷 = 𝟒  𝜶 = 𝟒          𝜷 = 𝟔 

𝜽 a b Mean Median SD Mean Median SD 

1.2 2.0 1.5 0.4412 0.3541 0.3087 0.6294 0.5051 0.4404 

1.2 2.0 2.0 0.4706 0.4195 0.2334 0.6713 0.5984 0.3329 

1.2 2.0 2.5 0.5326 0.4618 0.3512 0.7598 0.6587 0.5010 

1.2 2.5 1.5 0.3345 0.2663 0.2498 0.4772 0.3798 0.3563 

1.2 2.5 2.0 0.4167 0.4020 0.2531 0.5944 0.5735 0.3611 

1.2 2.5 2.5 0.3874 0.3574 0.1948 0.5527 0.5098 0.2778 

1.2 3.0 1.5 0.3088 0.2691 0.1975 0.4405 0.3838 0.2817 

1.2 3.0 2.0 0.3291 0.3043 0.1977 0.4694 0.4341 0.2821 

1.2 3.0 2.5 0.3785 0.3314 0.2561 0.5400 0.4728 0.3654 

1.5 2.0 1.5 0.5118 0.4575 0.2674 0.7811 0.6982 0.4081 

1.5 2.0 2.0 0.6282 0.5723 0.2854 0.9588 0.8735 0.4357 

1.5 2.0 2.5 0.6902 0.5733 0.3458 1.0535 0.8750 0.5278 

1.5 2.5 1.5 0.4675 0.3977 0.2662 0.7136 0.6070 0.4063 

1.5 2.5 2.0 0.5065 0.4884 0.2322 0.7731 0.7454 0.3543 

1.5 2.5 2.5 0.5504 0.5332 0.2596 0.8401 0.8138 0.3963 

1.5 3.0 1.5 0.3977 0.3619 0.2147 0.6071 0.5523 0.3276 

1.5 3.0 2.0 0.4721 0.4585 0.2027 0.7205 0.6998 0.3094 

1.5 3.0 2.5 0.5159 0.5192 0.2184 0.7874 0.7924 0.3333 
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1.8 2.0 1.5 0.6880 0.6319 0.3258 1.0984 1.0088 0.5202 

1.8 2.0 2.0 0.6994 0.6570 0.3239 1.1166 1.0490 0.5172 

1.8 2.0 2.5 0.7975 0.7520 0.3057 1.2733 1.2007 0.4881 

1.8 2.5 1.5 0.6207 0.5979 0.2780 0.9910 0.9545 0.4439 

1.8 2.5 2.0 0.6713 0.6742 0.3210 1.0719 1.0764 0.5126 

1.8 2.5 2.5 0.6972 0.7005 0.2644 1.1131 1.1185 0.4221 

1.8 3.0 1.5 0.4959 0.4771 0.2048 0.7917 0.7618 0.3270 

1.8 3.0 2.0 0.5689 0.5358 0.2377 0.9084 0.8555 0.3795 

1.8 3.0 2.5 0.6130 0.6117 0.2054 0.9788 0.9766 0.3279 

Source: Computation from simulated data on EGEPD distribution 

Table 8: Mean, Standard Deviation and Median from Exponentiated Generalized 

Exponential Pareto (EGEPD) of sample Size n=100 

 Scale Parameters 

 Shape Parameters 𝜶 = 𝟐          𝜷 = 𝟒  𝜶 = 𝟒          𝜷 = 𝟔 

𝜽 a b Mean Median SD Mean Median SD 

1.2 2.0 1.5 0.4102 0.3298 0.2783 0.5851 0.4704 0.3970 

1.2 2.0 2.0 0.4901 0.3925 0.3448 0.6992 0.5600 0.4918 

1.2 2.0 2.5 0.5249 0.4816 0.2822 0.7487 0.6870 0.4026 

1.2 2.5 1.5 0.3412 0.3026 0.2215 0.4867 0.4317 0.3159 

1.2 2.5 2.0 0.3988 0.3623 0.2611 0.5688 0.5169 0.3725 

1.2 2.5 2.5 0.4140 0.3531 0.2368 0.5905 0.5037 0.3378 

1.2 3.0 1.5 0.3171 0.2695 0.2164 0.4523 0.3845 0.3087 

1.2 3.0 2.0 0.3504 0.3085 0.2186 0.4999 0.4400 0.3119 

1.2 3.0 2.5 0.3478 0.3086 0.1869 0.4962 0.4402 0.2666 

1.5 2.0 1.5 0.5577 0.4980 0.2833 0.8512 0.7601 0.4325 

1.5 2.0 2.0 0.6105 0.5451 0.3178 0.9318 0.8320 0.4850 

1.5 2.0 2.5 0.6544 0.6235 0.3109 0.9988 0.9516 0.4746 

1.5 2.5 1.5 0.4449 0.4068 0.2323 0.6790 0.6209 0.3546 

1.5 2.5 2.0 0.4829 0.4606 0.2400 0.7371 0.7031 0.3662 

1.5 2.5 2.5 0.5936 0.5594 0.2685 0.9060 0.8538 0.4099 

1.5 3.0 1.5 0.3801 0.3605 0.2106 0.5802 0.5502 0.3215 

1.5 3.0 2.0 0.4760 0.4171 0.2685 0.7266 0.6366 0.4097 

1.5 3.0 2.5 0.5200 0.4979 0.1999 0.7937 0.7600 0.3050 

1.8 2.0 1.5 0.6510 0.6079 0.3119 1.0394 0.9706 0.4980 

1.8 2.0 2.0 0.7546 0.7280 0.3080 1.2048 1.1623 0.4917 

1.8 2.0 2.5 0.7750 0.7782 0.2993 1.2374 1.2424 0.4778 

1.8 2.5 1.5 0.5769 0.5686 0.2551 0.9210 0.9078 0.4072 

1.8 2.5 2.0 0.7042 0.6841 0.3044 1.1243 1.0922 0.4860 

1.8 2.5 2.5 0.7465 0.7279 0.2981 1.1919 1.1623 0.4760 

1.8 3.0 1.5 0.5348 0.5036 0.2865 0.8538 0.8041 0.4574 

1.8 3.0 2.0 0.5862 0.5571 0.2487 0.9359 0.8895 0.3970 

1.8 3.0 2.5 0.6269 0.5809 0.2710 1.0010 0.9275 0.4326 

Source: Computation from simulated data on EGEPD distribution  
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Tables 7 and 8 presents the simulated outputs for EGEPD shows how the different parameters 

affect the statistical properties (mean, median and standard deviation) of the distribution. As 

the location parameter α increases the distribution shift right and both mean and median 

increase. This indicates that the EGEPD is well suited to datasets that have a baseline that shifts 

the central tendency. A big value of the scale parameter β stretches the distribution and leads 

to larger mean, median, and SD, which shows that β controls the “spreadness” of the distribution. 

Increasing α reduces the mean and variability in general when α, β and θ are fixed. An increase 

in the size of b results in a larger mean and standard deviation (SD) and therefore affects the 

tail behavior and variability of the distribution. The result is that larger θ corresponds to a 

wider and more spread out distribution, thus greater variability. The adjustment of the 

parameters (especially the simultaneous growth of α and β) will make the distribution shift to 

the right (larger values) and more diverse. This interaction highlights the EGEPD's versatility 

in producing different shapes and spreads. 

The findings show that the EGEPD can be tuned to fit different modeling scenarios due to its 

parameterization structure: location parameter α affecting the center tendency, scale parameter 

β adjusting to spread and variance, and shape parameters a, b and θ determining finer details 

such as skewness, tail behavior, and overall spread of the distribution. The flexibility of the 

EGEPD provides a strong approach to modeling complex datasets, especially those data sets 

that need to be fitted to the location, variability, or shape. 

  

4.0 Findings 

The results show that, in all indices and figures, the best fit is provided by the EGEPD 

distribution. As shown in Figures 5 and 6, the EGEPD curve closely matches both the 

histogram peaks and the overall shape of the data, thus visually outperforming the other 

distributions. This result is confirmed by Tables 2 and 5, where EGEPD emerges with the 

highest Log-Likelihood and the lowest AIC and BIC, indicating its ability to balance goodness 

of fit and model complexity effectively. Moreover, these observations are also supported by 

Tables 3 and 6, where EGEPD has the smallest KS, AD, and CM statistics with the highest p-

value, implying the closest fit among compared methods to fit the data. Conversely, the ED is 

the worst among the analyses. The numbers, underscore that its curve is virtually flat, and very 

far from the data and unable to capture the shape of the histogram. Tables 2 and 5 confirm this 

poor performance with its low Log-Likelihood and largest AIC and BIC values. Finally, as 
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shown in Tables 3 and 6, ED has the largest KS, AD, and CM respectively, along with a p-

value of nearly 0, further supporting this observation. Though the EEPD and EPD distributions 

give moderate performance, they are substantially outperformed by EGEPD, in terms of all 

evaluation criteria. 

So, in conclusion, the analysis shows that the EGEPD distribution provides the best fit among 

all the fitted distributions since it achieves better performance in terms of all the goodness-of-

fit measures for all the datasets. The Exponentiated Generalized Exponential Pareto 

Distribution (EGEPD) statistical properties are notably impacted the values of their parameters. 

As the location parameter α increases, the whole distribution shifts rightward with an 

increasing mean and median. A greater scale parameter β stretches it out: larger mean, median, 

and variability. Specific shape parameters can control the distribution's spread, tail behavior, 

and variance: a usually decreases variance, b increases it, and θ expands the entire scale. 

EGEPD has high flexibility for applications, where the parameters interacting simultaneously 

allow for various shapes of the distribution. 

 

4.1 Conclusion 

The analysis shows that the Exponentiated Generalized Exponential of Pareto Distribution 

(EGEPD) is the most preferable distribution tfor the given data sets. It consistently yields better 

performance on all evaluation metrics log-likelihood, AIC, BIC, and goodness-of-fit tests such 

as KS, AD and CM statistics. Its strong fit is further confirmed by the clear dyeing of the 

EGEPD curve with respect to the histogram. In contrast, the Exponential Distribution (ED) 

fares the worst in terms of its ability to represent the data, clearly not aligning in statistical or 

graphical terms as seen in Figure [5] and Figure [6] The EEPD and EPD models provide 

moderate performance compared to the benchmark EGEPD, but their result is inferior. As a 

result, the EGEPD is the least liable and stable selection tool to classify this data, reflecting the 

latent features and construction quite well. The outcomes demonstrate that the parameter 

structure of EGEPD allows the model to adjust to different modeling contexts. Where the 

location parameter α determines the central tendency, the scale parameter β adjusts spread and 

variability, and the shape parameters a, b and θ when appropriate define finer details like 

skewness, tail behavior, and overall spread of the distribution. This comprehensive flexibility 

endows the EGEPD as a powerful tool for modeling complex datasets, especially those that 

need to be adjusted in location, variability or shape. 
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