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Abstract: Numerical iteration methods for solving the roots of nonlinear transcendental or algebraic 

model equations (in 1D, 2D or 3D) are useful in most applied sciences (Biology, physics, 

mathematics, Chemistry…) and in engineering, for example, problems of beam deflections. This 

article presents new iterative algorithms for finding roots of nonlinear equations applying some fixed 

point transformation and interpolation. A method for solving nonlinear systems (in higher dimensions, 

for multi-variables) is also considered. Our main focus is on methods not involving the equation f(x) 

in problem and or its derivatives. These new algorithm can be considered as the acceleration 

convergence of several existing methods. For convergence and efficiency proofs and applications, we 

solve deflection of a beam differential equation and some test experiments in in Matlab.  Different 

(real & complex) dynamical (convergence plane) analyzes are also shown graphically. 

 Keywords: nonlinear equations, deflection of beam, iterations, dynamical analysis, applications, 2D 

 

1. Introduction 

The research work in nonlinear root finding [of f(x)] is not limited to algebraic real polynomial 

equations in 1D, 2D or 3D. The function f(x) can be any scalar (numerical) function or transcendental 

function [trigonometric, logarithmic, exponential, rational form or mixtures of such models…]. The 

functions may appear as a solution of model problems such as boundary value problems of beam 

differential equation in mechanical engineering. 

In the literatures, there are several applications of root solving in science and engineering. Douglas 

[22] analyzed (stability of) the problem of simple control system design for the isothermal 

continuously stirred tank reactor (CSTR)), using nonlinear transfer function with proportionality Kc to 

compute the roots (eigenvalues), s. Where, the types of roots ‘s’ (positive, negative, real or complex) 

determine the stability conditions. And the Soave-Redlich-Kwong [12, 17, 22] Equation of State to 

calculate the specific volume V of a pure gas, at a given temperature T and pressure P for constants a 

and b depending on temperature and pressure of a particular gas (in Thermodynamics & Chemical 

Engineering) also involves nonlinear root finding.  

In [23], an iterative method based on Newton’s method was used (by Raposo-Pulido & Peláez) to 

solve the Kepler equation for hyperbolic (HKE) orbits to obtain the value of the hyperbolic anomaly H 

in terms of the mean anomaly M and the eccentricity e. HKE is most important in the fields of 

astronomy, celestial mechanics, and astrodynamics. B., Kalantari presented the idea 
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“Polynomiography” with its applications in arts and sciences. The root finding methods also help us 

gain more insights and complete geometry of graph of a function and intersection or break points and 

critical points of curves (models), for instance, in business activities.  

The fixed point iteration method FPIM (successive approximation) is one of the numerical techniques. 

One advantage of this FPIM is that only a single initial guess ‘x0’ is required to start the iteration 

process to approximate a unique solution. The other advantage is that the method does not need 

calculation of the function and its derivative and is simple to use. The most popular Newton method, 

Chebyshev’s method and Halley’s method are basic examples of fixed point methods, from the 

representations viewpoints of their formula [1-20]. But all involve calculation of the function f(x) and 

its derivatives. 

Here, we present new iterative formula for finding roots of nonlinear equations (for problems in 

engineering) using some transformation and with a possible extension for solving nonlinear systems 

(in higher dimension). The methods do not involve the equation f(x) in problem and or its derivatives. 

These new methods may be considered as the acceleration convergence of the Aitken’s ∆2-method, 

which is known to accelerate the successive iterations of fixed point method FPIM.  

1.2 Materials and methods 

We consider a fixed point method. A given fixed point function (FPE) transformation of an equation 

f(x) and Taylor’s theorem in linear interpolation with possible extension for reformulation (to solve 

systems of equations) in higher dimension is used. For this, a theorem is defined. The method is 

implemented in matlab with a given initial guess x0. 

2. Main Results 

Theorem 2.1: For a fixed point function FPE g(x) of f(x) = 0, the formula in (1a) below is an iterative 

method. 

p(xn) = x(n) + [g(xn)-x(n)]/[1-g'(xn)]    (1a)                                               

And the iterative formula (1a) can be reformulated for solving the system F(x,y) = 0 via its fixed point 

function G(x.y) using the iterative method in (1b) below (in 2D ) 
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The iteration process in 3D is given by 
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Proof: Since it is more general, let’s show the formula for the higher dimension. Consider the Taylor’s 

series of a function of two variables f = f(X) = f(x,y) at (x0,y0), 
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Rn is the remainder error of the series estimation. 

Linearization of G(x,y)=X- P(X) through Taylor’s expansion near initial guess X0 = (x0,y0)t and a FPE 

P(X) = (g1(X), g2(X)) of the system F(X) = F(x,y) using (1d) gives .*'),( 0

1 GGyx t −−=
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We may rewrite this method as 
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The iteration process in 2D is then given by 
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 We can observe that the iterative process does not depend on F(x,y) & F'(x,y), which is a success, 

when 'F is an ill-conditioned. Notice also that (1f) is an extension of (1a). Hence proof of (1a) in 1D 

is clear.  For that, we let f(x) = x-g(x) and apply linearization, where g(x) is a FPE of f(x). Some 

necessary conditions for (1f) to hold are:  

(A) ,121 + yx gg or ,121 yx gg  

(B) 1-[ g1x + g2y + g2xg1y-g2yg1x] 0. 

The iteration process in 3D is given by 
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Now we shall show convergence order p of (1a).  

Proof: Applying Taylor’s series at x = xn, error of computation 1−−= nnn xxe

 

g(xn+en) =g(xn)+g'(xn)en+0.5g''(xn)en
2…(*)                                                

g'(xn+en) = g'(xn)+g''(xn)en+g'''(xn)en
2…(**)                                            

xn+1 = xn-(g(xn)-xn)/(g'(xn)-1)                 (a*)                                                              

Using (*) & (**) in (a*) we obtain 

en+1 = -(xn-g(xn+en))/(1-g'(xn+en)), 

en+1= cen
p                                                 (b*)                                                                                         

And p > = 2. The method is at least quadratically convergent.

 
Here are several higher order fixed point methods (containing f(x) and its derivatives) for solving f(x) 

= 0. 
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     (6a) 

Here, in (6a), m is the multiplicity of a root r. For more information and many other methods one may 

refer [14, 15, 16]. Also the FPIM is

 x(n) = g(xn)                                                         (7)                                                                                

The Aitken’s method is 

xi+2 = xi+1-(∆xi)2/∆2xi-1                                        (8)                                                
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3. Experiments: applications on test equation models 

   In Civil and or Mechanical engineering, Euler–Bernoulli fourth order ordinary differential beam 

equation (ODBE) is used to compute or estimate the deflection or amount of bending. Here, we solve 

for the critical values and or stability points of the deflection w = y(x) of the beam boundary value 

problem (BVP) of the fourth order ODBE with the form: 
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                                    (9)                                                                                                         

Using symbolic matlab dsolve, the exact solution of (9) is: w(x) = ye = x5/120 - x3/60 + x/120. The 

critical points are roots of the first derivative of y(x), the gradient g(x) of w = y(x). Hence, 

g(x) = dy/dx = x4/24–x2/20+1/120                           (10)                                                                                    

To approximate the roots of g(x) in (10), i.e, and critical points of w(x) in (9), one solves using the 

root finding method. With x0 = 2 and x0 = 0, the critical points or values of the deflection are 

computed to be at x1 = 1.0000, x2 = 0.4472 with minimum deflection is w1=y(1) = 0 and the 

maximum is w2 = y(0.4472) = 0.0024. 

Here are some more test problems. 

1. f1(x) = cosx-3x+1 = 0,  

          g(x) = (cosx + 1)/3; x0 = 0; 

 r = 0.6071. 

2. f2(x) = x+ex = 0, g(x) = -ex;  

3. x0 = 0; r = -0.5671. 

4. f3(x) = x2 – 20 = 0, or,  x - 20 = 0 , g(x) = 20/x; x0 = 4; r = 4.4721. 

5.  (The examples below are for showing dynamical analysis) 

6. f4 = x3-1=0, r = 1. 

7. f5 = x4-1=0, r = -1. g(x) = 1/x3 

       7. 0,033)( 3

6 ==−= oxxxf ;r=1. 
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Table-1: Numerical Results of iterations

 

 

 

 

 

 

 

 

 

 

 

3.1.Graphical analysis 

 

Fig-1: Oscillation of FPIM (7) for f3(x) 

Fig-2: Convergence of method (1a) for f3(x) 

Eq. FPIM Aitken (1a) 

f1 

 

 

 

X0=0 

X1=0.6667 

X2=0.5953 

X3=0.6093…. 

…x6=0.6071 

X0=0 

X1=0.6667 

X2=0.5953 

X3=0.6022 

X4=0.6016 

X1=0.6667 

X2=0.5953 

X3=0.6093 

X4=0.6071 

X0=0 

X1=0.6667 

X2=0.6075 

X3=0.6071 

f2 FPIM Aitken (1a) 

 X0=0 

X1=-1 

X2=-0.3679 

X3= -0.6922 

…x16=-0.5671 

x17=-0.5672 

( oscillates) 

X0=0 

X1=-0.5 

X2=-0.5663 

X3=-0.5764 

X4=-0.5782 

X1=-1 

X2=-0.36 

X3= -0.6922 

X4= -0.2579 

…. 

X0=0 

X1=-0.5000 

X2=-0.5663 

X3=-0.5671 

f3 FPIM Aitken (1a) 

 X0=4 

X2n=4 

X2n-1=5 

Oscillates fast 

X0=4 

X1=4.4444 

X2=4.4720 

X3=4.9458 

X0=4 

X1=4.4444 

X2=4.4720 

X3=4.4721 
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Fig-3: Regions of basins of attraction of (7) for f5 

 

Fig-3: Regions of basins of attraction of (1a) for f5 = z4-1 [there are 4 roots, and 4 branches] 

 

Fig-4: Regions of basins of attraction of (6a) for f6 [r =1, m = 1] 

3.2. Discussions 

Some improvements and or drawbacks: 

One can derive several formulae for fixed point equations for a single nonlinear transcendental 

equation f(x). The new method can be applied to several of FPMs with convergence. There is a 

possibility that these methods converge faster even if successive approximation FPIM does not 

converge at all as shown in table above. The convergence speed of the new methods may be dependent 

on the form of the FPM. The new methods are acceleration convergence of FPIM and even can be 

faster convergent than Aitken’s method. The methods converge faster even when the FPIM oscillates 

or too slow. The methods converge faster than Aitken’s method if the same initial guess x0 is used and 

when the other two next estimations (x1 and x2) for Aitken’s are obtained from FPIM. And the new 

methods do not need more than one initial guesses. The method could be reformulated for system of 

equations.  

http://www.iiste.org/
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The convergence of the methods is investigated graphically and regions of basins of attractions highly 

depend on the fixed point equation of f(x). These graphs and the regions demonstrate the very 

behaviors of the new methods [See figures].   

4. Conclusions and future work 

 In this work, we developed new real root finding methods for nonlinear equations. We have examined 

different graphical analyses, resulting in beautiful arts. The main advantage is that the methods are 

simple to implement as they need only one single starting guess x0. There is no evaluation of f(x) or its 

derivatives. The other advantage is that the the possibility of offering algorithms with different 

complexities (since there can be many fixed point equations) related to the natural representation of 

f(x). With the same x0, they improve convergence speed of Aitken’s method which is a known 

acceleration convergence of FPIM, and some other methods. We have shown possible reformulation 

for solving system of nonlinear equations in higher dimensions. We discussed some existing methods 

and areas of applications (also in beam deflection BVP). The contemporary works look our good 

ingenuity and hope that further analysis will follow in our future. 

References 

[1] G. Albeanu, ON THE GENERALIZED HALLEY METHOD FOR SOLVING NONLINEAR EQUATIONS, 

ROMAI J., Vol. 4: 1-6, 2008 

[2] C. Chun, B. Neta ,  A third-order modification of Newton’s method for multiple roots, Applied Mathematics 

and Computation, Vol. 211, p 474–479, 2009 

[3] G. Dahlquist , A. Bjorck, Numerical methods in scientific computing Volume I  Siam Society for industrial 

and applied mathematics. Philadelphia, USA. 2008  

[4] B. N. Datta (Prof.), Numerical Solution of Root−Finding Problems (lecture note), DeKalb, IL. 60115 USA; 

URL: www.math.niu.edu/~dattab 

[5] J., Gerlach , Accelerated Convergence in Newton’s Method, Society for industrial and applied mathematics, 

Siam Review 36,  272-276, 1994. 

[6] Dr. B.S. Grewal, Numerical Methods in engineering & Science with programs in FORTRAN 77, C&C++, 

Khanna Publishers (7th ed.), 2005 

[7] J.M. Gutierrez , M.A. Hernandez, An acceleration of Newton's method: Super-Halley method, Applied 

Mathematics and Computation 117 (2001) 223-239, 2001 

[8] M.M., Hosseini, A note on one-step iteration methods for solving nonlinear equations, World Applied 

Sciences Journal 7 (special issue for applied math), IDOSI Publications, 90-95, 2009 

[9]  K. Jisheng, L. Yitian, W. Xiuhua, A uniparametric Chebyshev-type method free from second derivative, 

Applied Mathematics and Computational 179, 296-300, 2006 

[10] W. Kahan (Prof.Emeritus), Notes on Real Root-Finding, Math. Dept., and E.E. & Computer Science Dept., 

University of California at Berkeley, 2016 (https://people.eecs.berkeley.edu/~wkahan/Math128/RealRoots.pdf) 

[11] D. Levy, Methods for Solving Nonlinear Problems 

http://www.math.umd.edu/~dio/courses/AMSC466/Levy-notes.pdf 

[12] A. Quarteroni, R. Sacco, F.Saleri, Numerical mathematics (Texts in applied mathematics; 37), Springer-

Verlag New York, Inc., USA, 2000 

[13] A. Ralston, P. Rabinowitz , A first course in numerical analysis (2nd ed.), McGraw-Hill Book Company, 

New York, 1978 

[14] T., Gemechu, Some Root Finding With Extensions to Higher Dimensions, Mathematical Theory and 

Modeling ( U.S.A), Vol.7, No.4, ISSN 2222-2863, 2017. 

doi: https://doi.org/10.7176/MTM 

[15] T., Gemechu, Some multiple and simple Real Root Finding Methods, Mathematical Theory and Modeling 

( U.S.A), ISSN 2224-5804, Vol.7, No.10, 2017.  

 doi: https://doi.org/10.7176/MTM 

http://www.math.niu.edu/~dattab
https://people.eecs.berkeley.edu/~wkahan/Math128/RealRoots.pdf
http://www.math.umd.edu/~dio/courses/AMSC466/Levy-notes.pdf
https://doi.org/10.7176/MTM
https://doi.org/10.7176/MTM


24 

[16] T.,Gemechu,  Root Finding With Some Engineering Applications, IJISET, ISSN (Online) 2348 – 7968, 

Vol.3, Issue-6, 2016 

[17] S. C., Chapra & R. P., Canale, Numerical methods for engineers (7th edition), Published by McGraw-Hill 

Education, 2 Penn Plaza, New York, 2015 

[18] S., Thota, A NEW ROOT-FINDING ALGORITHM USING EXPONENTIAL SERIES,URAL-

MATHEMATICAL JOURNAL, Vol. 5, No. 1, pp. 83–90, 2019 

[19] S., Thota, T.,Gemechu, A NEWALGORITHM FOR COMPUTING A ROOT OF TRANSCENDENTAL 

EQUATIONS USING SERIES EXPANSION, Southeast-Asian J. of Sciences, Vol. 7, No. 2, pp. 106-114, 2019 

[20] S., Thota, T., Gemechu and P. Shanmugasundaram (Communicated by Suheel Khoury (S. Khuri)), NEW 

ALGORITHMS FOR COMPUTING A ROOT OF NON-LINEAR EQUATIONS USING EXPONENTIAL 

SERIES, Palestine Journal of Mathematics, Vol. 10(1) , 128–134, 2021 

[21]MATH1050(Rootfinding-for-Nonlinear-Equations): 

http://www.math.pitt.edu/~trenchea/math1070/MATH1070_5_Rootfinding.pdf 

[22](JohnHone)https://www.academia.edu/19338923/NumericalSolution_of_Nonlinear_Equations?auto=downlo

ad&email_work_card=download-paper; Chapter-1, numerical Solution of Nonlinear Equations 

[23] V. Raposo-Pulido &J. Peláez, An efficient code to solve the Kepler equation, Hyperbolic case; A&A 619, 

A129 (2018) [ESO 2018], https://doi.org/10.1051/0004-6361/201833563 

[24] M. K., Jain, S.R.K., Iyenger, S.R.K., and R.K., Jain: Numerical Methods for Scientific and Engineering 

Computation. Fifth Edition. New Age International (P) Limited Publishers, 2007 

[25]S.Weerakoon,T.G.I.Fernando, Avariant of Newton’s method with accelerated third order convergence, 

Appl.Math.Lett.13,87–93,2000 

[26] B. Kalantari, Polynomiography: A New Intersection between Mathematics and Art, Rutgers University, Hill 

Center, New Brunswick,NJ,08903 

[27] Y.H. Geum, Y.I.Kim & B. Neta, Constructing a family of optimal eighth-order modified Newton-type 

multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points, Journal of 

Computational and Applied Mathematics 333, 131–156,  2018 

[28] L. Liu and X. Yin,  A family of simultaneous zeros-finding accelerated methods, Chinese Journal of 

Engineering Mathematics, 29(5), 749-756, 2012. 

[29] D., Herceg, D.,Herceg, Eighth order family of iterative methods for nonlinear equations and their basins of 

attraction, Journal of Computational and Applied Mathematics 343, 458–480, 2018 

[30] C., Chun, B., Neta, Comparative study of methods of various orders for finding repeated roots of nonlinear 

equations, Journal of Computational and Applied Mathematics 340, 11–42, 2018 

 

 

http://www.math.pitt.edu/~trenchea/math1070/MATH1070_5_Rootfinding.pdf
https://www.academia.edu/19338923/NumericalSolution_of_Nonlinear_Equations?auto=download&email_work_card=download-paper
https://www.academia.edu/19338923/NumericalSolution_of_Nonlinear_Equations?auto=download&email_work_card=download-paper
https://doi.org/10.1051/0004-6361/201833563

