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ABSTRACT 

Survey sampling methods are used in the estimation of population parameters of interest. This field has received 

increased demand due to the reliable statistics they produce. Information is extracted from the samples and used 

to make inferences about the population. In this paper, a nonparametric estimator for a finite population total that 

addresses the problem of boundary bias is proposed. The properties of this estimator were studied in order to 

determine its accuracy. The estimator was applied to a simulated data and the analysis was done using R statistical 

package version i386 4.0.3 and the results of the bias confirmed. The performance of the proposed estimator was 

tested and compared to the design-based Horvitz-Thompson estimator, the model-based approach proposed by 

Dorfman and the ratio estimator. This was done by studying both the unconditional and conditional properties of 

the estimators under the linear, quadratic and exponential mean functions. The proposed estimator outperformed 

other estimators in quadratic and exponential mean functions and therefore can be recommended for estimation 

and addressing the boundary problem.  

Keywords: data transformation, data reflection, boundary bias 

 

1. Introduction 

The intensions of surveys are not only in estimating population target parameters, but also in the estimation of 

subpopulation characteristics. In sample survey, researchers extract information from samples and use such 

information in making inference about some population quantities such as the mean, proportion or totals. The 

collection of information can be done either by the use of sampling methods or census. However, census is a 

tedious and expensive method as it entails complete enumeration of individuals or units contained in a population. 

Therefore, statisticians rely on the use of sampling methods which involve the selection of a sample from a 

population of interest and use information obtained from such samples to get estimators of the whole population 

(Cochran, 1977). 

In survey sampling, the estimation of finite population quantities of interest such as the proportions, averages or 

totals can be done using nonparametric regression method. Nonparametric regression method was introduced early 

on in the studies by (Nadaraya, 1964) and (Watson, 1964). According to (Dorfman, 1992) nonparametric regression 

estimators are considered to be more flexible and robust as compared to the estimators based on parametric 
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regression. In sample survey, auxiliary information is used estimating finite population parameters of interest. 

However, the use of auxiliary information in estimation of parameters is a key problem in sample surveys. To 

address this problem, statisticians assume a working super population model to describe the relationship between 

the auxiliary variable X and the study variable Y (Dorfman, 1992). This super population working model is used 

in the prediction of the non-sampled part of the population (Sanchez-Borego, 2009). 

1.1   Statement of the Problem 

In nonparametric, estimation of population totals relies on the use of kernel smoothers since it’s an approach for 

developing a robust estimator. Generally, kernel smoothers suffer the problem of boundary bias.  A 

nonparametric estimator for a finite population total to address this problem based on a hybrid of data 

transformation and reflection techniques is proposed in this paper. 

1.2   Objective. 

i. To propose a nonparametric estimator for a finite population total based on a hybrid of data 

transformation and reflection techniques. 

ii. To study the properties of the proposed estimator 

iii. To apply the proposed estimator on a simulated data 

iv. To compare the performance of the proposed estimator with existing estimators.  

 

2. Summary of Literature 

2.1    Nonparametric Regression 

The idea of data exploration using nonparametric regression methods has history of introduction. A regression 

model summarizes the relationship between two variables X and Y by quantifying the contributions of the 

explanatory variable X to the survey variable Y. There are four main approaches used in estimating finite 

population totals in sample surveys; model-based approach, design-based approach, model-assisted approach and 

design-assisted approach.  

A model-based approach is applied in this study. In this approach the distribution is a structure existing in the 

population itself and is unexplored but capable of being modelled. In this forecast approach, the expectations are 

over all possible realizations of a linear regression stochastic model linking the study variable Y with a set of 

auxiliary variables X. In the presence of auxiliary information, statisticians assume a working superpopulation 

model to describe the relationship between the variable of interest and the set of auxiliary variables. We assume 

that Y is a function of X, hence we have the model 

 𝑌𝑖 = 𝑚(𝑋𝑖) + 휀𝑖                                                                                                                                 (1) 

2.2   Review of Selected Nonparametric Estimators 

The idea of nonparametric estimation methods was first introduced by (Nadaraya, 1964) and (Watson, 1964). It 

was introduced in the estimation of a regression curve using the model  
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Y= m(𝑥𝑖) + 𝛿(𝑥𝑖)𝑒  

where m(x) is the smoothing function, e is a random error component with a mean of zero and a constant finite 

variance. The objective of their paper was in estimating the smoothing function m(x). The N-W estimator of the 

smooth function is given by  

�̂�(𝑥) = ∑ 𝑤𝑖(𝑥)𝑦𝑖𝑖𝜖𝑠                                                                                                                 (2)  

Orwa et al, (2010) proposed a nonparametric regression approach of a finite population total in model-based 

framework in the case of a stratified sampling. The estimator was based on the modified N-W kernel estimator and 

it led to relatively small error. Syengo, (2018) considered local polynomial regression under stratified random 

sampling in the estimation of finite population totals. The population of interest is divided into strata, a simple 

random sample is selected without replacement from a stratum and the size of the sample should be sufficiently 

large. The estimates of the study were found to be asymptotically unbiased and consistent. Kim et al adapted the 

(Breidt and Opsomer, 2000) local polynomial nonparametric regression estimation to two-stage cluster sampling. 

A probability sample of clusters is drawn from the population of clusters according to a fixed size design and then 

subsamples of every sampled cluster were obtained. Breidt and Opsomer, (2005) considered a nonparametric 

design-based regression estimator based on penalized splines. He suggests that they can be used to improve the 

efficiency of estimators in situations where linear models are not appropriate and are also easy to be incorporated 

into more complicated models like the additive semiparametric models. 

2.2.1 Data Reflection 

The basic idea in this method is to reflect the data points at the origin and work with them. It is used in the reduction 

of bias problems encountered at the boundaries. Lang’at, (2017) studied robust estimation of finite population total 

in nonparametric regression incorporating data reflection method. The estimator was under model-based 

framework. The estimator obtained minimized the boundary bias significantly thus it was superior than all other 

apart from where the ratio estimator dominated in linear model. In their study. Lang’at et al, (2020) explored 

nonparametric estimation of finite population total under model-based framework. They used kernel smoother in 

the construction of the estimator. However, this estimator suffers boundary problems which they catered for by 

modifying it by the use of reflection technique. 

2.2.2 Transformation of Data 

This technique was introduced in a study by (Wand et al, 1991). Here, one can take a one-to-one function which 

is continuous and then a regular kernel estimator is used with the transformed data. (Kaarunamuni and Alberts, 

2006) applied a locally adaptive transformation method of boundary correction in kernel density estimation. The 

method was computationally easy and convenient. They found out that the amount of transformation was 

dependent upon the estimation point. Their estimator depends on the density function applied. Bii et al, (2020) 

used a modified transformation of data method in estimating finite population mean. 
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3. Methods 

Let 𝑋1, 𝑋2, … , 𝑋𝑁   be independent and identically distributed random variables with continuous distribution 

function. Further, let there be a sample of size n and a kernel function k which is symmetric around the origin. 

Therefore, the standard kernel density estimator is given as; 

�̂�(𝑋𝑖) =
1

𝑛ℎ
∑ 𝑘𝑘

𝑖=1 (
𝑥−𝑋𝑖

ℎ
)                                                                                                     (3) 

Where h is the bandwidth and k is a non-negative integrable smoothing kernel. 

3.1. Data reflection technique 

Let {(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛)} be the set of n observations from the sample. Under reflection of all the points 

in the boundary, the data increases in number to give the new set of data of the form, 

{(𝑋1, 𝑌1), (−𝑋1, −𝑌1), (𝑋2, 𝑌2), (−𝑋2, −𝑌2), … , (𝑋𝑛 , 𝑌𝑛), (−𝑋𝑛 , −𝑌𝑛). Therefore, the kernel estimate obtained from 

this estimate is of size 2n. The standard kernel estimator for this method is written as 

�̂�𝑅(𝑥) =
1

2𝑛ℎ
∑ 𝑘 (

𝑥−𝑋𝑖

ℎ
)    2𝑛

𝑗=1 x𝜖ℝ                                                                                        (4) 

This can be written as, 

  �̂�𝑅(𝑥) =
1

𝑛ℎ
∑ {𝑘 (

𝑥−𝑋𝑖

ℎ
) + 𝑘(

𝑥+𝑋𝑖

ℎ
)}𝑛

𝑖=1   x≥0         

3.2. Transformation of Data Method 

The idea behind transformation is based on transforming the original data 𝑋1, 𝑋2, … , 𝑋𝑁 through a function g to 

obtain a transformed data given as 𝑔(𝑋1), 𝑔(𝑋2), … , 𝑔(𝑋𝑁). Here, g is a positive, continuous and monotonically 

increasing function. From the standard kernel estimator, the transformed kernel density estimator is of the form,  

�̂�𝑇(𝑥) =
1

𝑛ℎ
∑ 𝑘 (

𝑥−𝑔(𝑋𝑖)

ℎ
)𝑛

𝑖=1                                                                                                 (5) 

Where h is the bandwidth and k is a symmetric positive kernel function. 

3.3. The Proposed Estimator 

The proposed hybrid method was obtained by combining data transformation and data reflection techniques to 

come up with the superior method of estimation. Given the two formulas,  �̂�𝑅(𝑥) =
1

𝑛ℎ
∑ {𝑘 (

𝑥−𝑋𝑖

ℎ
) + 𝑘(

𝑥+𝑋𝑖

ℎ
)}𝑛

𝑖=1  

and  �̂�𝑇(𝑥) =
1

𝑛ℎ
∑ 𝑘 (

𝑥−𝑔(𝑋𝑖)

ℎ
)𝑛

𝑖=1 , we attain the proposed estimator by combining the two to have, 

�̂�𝑅𝑇(𝑥) =
1

𝑛ℎ
∑ {𝑘 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝑘 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)}𝑛

𝑖=1                                                                   (6)                                                                                       

Where h is the bandwidth, k is the kernel function, 𝑔1𝑎𝑛𝑑 𝑔2 are transformations that were determined. For 

convenience it was assumed that 𝑔1 = 𝑔2 for this study. Following the standard formula for estimating finite 

population totals given as; 
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�̂� = ∑ 𝑌𝑖 + ∑ �̂�(𝑥)𝑖∉𝑠𝑖𝜖𝑠                                                                                                        (7) 

The proposed estimator becomes; 

�̂�𝑅𝑇 = ∑ 𝑌𝑖 + ∑ {
1

𝑛ℎ
∑ [𝑘 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝑘 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑖∉𝑠𝑖𝜖𝑠                                               (8) 

The assumptions reviewed by (Bii et al, 2020) are used in deriving the bias and variance of the proposed estimator. 

Assume the transformation 𝑔(𝑥) = 𝑥2 + 2𝑥 + 2 is non-negative continuous and monotonically increasing 

functions defined on [0,∞). Further, assume that 𝑔𝑖
−1 exists, 𝑔𝑖(0)=2, 𝑔𝑖

′(0)=2 and that 𝑔′′ and 𝑔′′′ and are 

continuous on [0,∞) where 𝑔𝑖
(𝑗)

 denotes the jth derivative of 𝑔𝑖 with 𝑔𝑖
(0)

=𝑔𝑖 and 𝑔𝑖
−1 denoting the inverse function 

of 𝑔𝑖, i=1,2. Suppose that mj is the jth derivative of m and that it exists and is continuous on [0,∞), j=0,1,2 with 

𝑚(0)=m. Furthermore, let x =ch where 0≤ 𝑐 ≤ 1. Assume the kernel function k is non-negative symmetric function 

with support [-1,1] such that it satisfies  

Bias(�̂�𝑇𝑅) = 𝐸(�̂� − 𝑇) 

Bias(�̂�𝑅𝑇) = 𝐸(∑ �̂�𝑅𝑇(𝑥𝑖) − ∑ 𝑚(𝑥)𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1 )                                                                (9) 

The proposed estimator is given as, 

       �̂�𝑅𝑇(𝑥) =
1

𝑛ℎ
∑ {𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)}𝑛

𝑖=1   

E(�̂�𝑅𝑇(𝑥𝑖)) =
1

𝑛ℎ
𝐸 {∑ 𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + (

𝑥+𝑔2(𝑋𝑖)

ℎ
)𝑛

𝑖=1 } 

∑ [(�̂�𝑅𝑇(𝑥𝑖))] =
1

𝑛ℎ
∑ {𝐸 ∑ [𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑁
𝑖=𝑛+1

𝑁
𝑖=𝑛+1                                                         (10)      

Analyzing the first part of the equation  

=
1

𝑛ℎ
∑ {∑ 𝐸 [𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑁
𝑖=𝑛+1   

 =
𝑁−𝑛

𝑛ℎ
∫ 𝐾 (

𝑥−𝑔1(𝑋𝑖)

ℎ
) 𝑚(𝑋𝑖)𝑑𝑋

∞

0
 

=
𝑁−𝑛

𝑛
∫ 𝐾(𝑡)

𝑚(𝑔1
−1(𝑐−𝑡)ℎ)

𝑔1
′ (𝑔1

−1(𝑐−𝑡)ℎ)

𝑐

−1
dt                                                                                             (11)  

Using Taylor series expansion of order 2 under condition t=c 

=
𝑁 − 𝑛

𝑛
∫ {

𝑚(𝑔1
−1(0))

𝑔1
′ (𝑔1

−1(0))
− (𝑡 − 𝑐)ℎ

𝑔1
′ (𝑔1

−1(0))𝑚′(𝑔1
−1(0)) − 𝑔1

′′(𝑔1
−1(0))𝑚(𝑔1

−1(0))

[𝑔1
′ (𝑔1

−1(0))]
3

𝑐

−1

+
ℎ2

2
(𝑡 − 𝑐)2 [

𝑔1
′ (𝑔1

−1(0))𝑚′′(𝑔1
−1(0)) − 𝑔1

′′′(𝑔1
−1(0))𝑚(𝑔1

−1(0))

[𝑔1
′ (𝑔1

−1(0))]4

−
3𝑔1

′′(𝑔1
−1(0)){𝑔1

′ (𝑔1
−1(0))𝑚′(𝑔1

−1(0)) − 𝑔1
′′(𝑔1

−1(0))𝑚(𝑔1
−1(0))}

[𝑔1
′ (𝑔1

−1(0))]5
]} 𝑑𝑡 + 𝑜(ℎ2) 

                                                                                                                                                                          (12)                                   
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Using the assumptions 𝑔−1(0) = 0 𝑎𝑛𝑑 𝑔′(0) = 2 the equation reduces to 

=
𝑁−𝑛

𝑛
{𝑚(0) ∫ 𝐾(𝑡)𝑑𝑡 − 2ℎ ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡[𝑚′(0) − 𝑔1

′′(0)𝑚(0)] +
2ℎ2

2
∫ (𝑡 −

𝑐

−1

𝑐

−1

𝑐

−1

𝑐)2𝐾(𝑡)𝑑𝑡{𝑚′′(0) − 𝑔1
′′′(0)𝑚(0) − 3𝑔1

′′(0)[2𝑚′(0) − 𝑔1
′′(0)𝑚(0)]}} + 𝑜(ℎ2)           

                                                                                                                                                          (13)   

For the second part of the equation we have, 

=
1

𝑛ℎ
∑ {∑ 𝐸 [𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]𝑛

𝑖=1 }𝑁
𝑖=𝑛+1   

=
𝑁−𝑛

𝑛ℎ
∫ 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
) 𝑚(𝑋𝑖)𝑑𝑋

∞

0
                                                                                                              

Using change of variables technique, we have, 

=
𝑁−𝑛

𝑛
∫ 𝐾(𝑡)

𝑚(𝑔2
−1(𝑡−𝑐)ℎ)

𝑔2
′ (𝑔2

−1(𝑡−𝑐)ℎ)

1

𝑐
dt                                                                                           (14)    

Under Taylor series expansion of order 2 at t=c the equation becomes 

𝐸(�̂�𝑅𝑇(𝑥𝑖)) =
𝑁−𝑛

𝑛
{𝑚(0) + 2ℎ [∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡{𝑚′(0) − 𝑔1

′′(0)𝑚(0)}
1

𝑐
] − 2ℎ[∫ (𝑡 −

𝑐

−1

𝑐)𝐾(𝑡)𝑑𝑡{𝑚′(0) − 𝑔2
′′(0)𝑚(0)}] +

2ℎ2

2
{∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡[𝑚′′(0) − 𝑔1

′′′(0)𝑚(0) −
1

𝑐

3𝑔1
′′(0){2𝑚′(0) − 𝑔1

′′(0)𝑚(0)}]} +
2ℎ2

2
{∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡[𝑚′′(0) − 𝑔2

′′′(0)𝑚(0) −
𝑐

−1

3𝑔2
′′(0){2𝑚′(0) − 𝑔2

′′(0)𝑚(0)}]}} + 𝑜(ℎ2)                                                                                  (15) 

 = 𝑚(𝑥) + 2ℎ {2𝑚′(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 − 𝑔1
′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 − 𝑔2

′′(0)𝑚(0) (𝑐 + ∫ (𝑡 −
1

𝑐

1

𝑐

1

𝑐

𝑐)𝐾(𝑡)𝑑𝑡)} +
2ℎ2

2
{−𝑐2𝑚′′(0) + 𝑚′′(0) ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

−1
[𝑔1

′′′(0)𝑚(0) + 3𝑔1
′′(0){2𝑚′(0) −

𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔2

′′′(0)𝑚(0) + 3𝑔2
′′(0){2𝑚′(0) − 𝑔2

′′(0)𝑚(0)}] ∫ (𝑡 −
𝑐

−1

1

𝑐

𝑐)2𝐾(𝑡)𝑑𝑡} + 𝑜(ℎ2)                      

                                                                                                                                                           (16)                                                                                                                                                      

Thus, the bias is given as, 

𝐸[�̂�𝑅𝑇(𝑥𝑖)] − 𝑚(𝑥)  

=
𝑁−𝑛

𝑛
{2ℎ [2𝑚′(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡 −

1

𝑐
𝑔1

′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡  − 𝑔2
′′(0)𝑚(0) (𝑐 + ∫ (𝑡 −

1

𝑐

1

𝑐

𝑐)𝐾(𝑡)𝑑𝑡)] +
2ℎ2

2
[−𝑐2𝑚′′(0) + 𝑚′′(0) ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔1

′′′(0)𝑚(0) + 3𝑔1
′′(0){2𝑚′(0) −

1

−1

𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔2

′′′(0)𝑚(0) + 3𝑔2
′′(0){2𝑚′(0) − 𝑔2

′′(0)𝑚(0)}] ∫ (𝑡 −
𝑐

−1

1

𝑐

𝑐)2𝐾(𝑡)𝑑𝑡]} + 𝑜(ℎ2)                                                                                                                       (17)   
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The estimator is asymptotically unbiased. As 𝑛 → ∞ 𝑎𝑛𝑑 ℎ → 0 the bias of the estimator tends to zero. 

3.4. Variance of the Proposed Estimator. 

The variance of the proposed estimator is given as 

𝑣𝑎𝑟(𝑇) = 𝐸[𝑇]2 − [𝐸(𝑇)]2                                                                                              (18) 

𝑣𝑎𝑟[∑ (�̂�𝑅𝑇)𝑁
𝑖=𝑛+1 ] =

(𝑁−𝑛)2

𝑛ℎ2 {𝑣𝑎𝑟 [𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]}                                                (19) 

                =
(𝑁−𝑛)2

𝑛ℎ2 {𝐸 [𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]

2

− [𝐸 (𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝐼)

ℎ
))]

2

}    (20) 

We let, 

𝐴 =
(𝑁−𝑛)2

𝑛ℎ2 {𝐸 [𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) + 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
)]

2

}  

   =
(𝑁−𝑛)2

𝑛ℎ2 {∫ 𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
)

2

𝑚(𝑋)𝑑𝑋 + ∫ 𝐾 (
𝑥+𝑔2(𝑋𝑖)

ℎ
)

2

𝑚(𝑋)𝑑𝑋 +
∞

0

∞

0

       2 ∫ 𝐾 (
𝑥−𝑔1(𝑋𝑖)

ℎ
) 𝐾 (

𝑥+𝑔2(𝑋𝑖)

ℎ
) 𝑚(𝑋)𝑑𝑋

∞

0
}                                                                                 (21)         

Using the change of variable technique, by letting 𝑋𝑖 = 𝑢, we have, 

 =
(𝑁−𝑛)2

𝑛ℎ2 {∫ 𝐾 (
𝑥−𝑔1(𝑢)

ℎ
)

2

𝑚(𝑢)𝑑𝑢 + ∫ 𝐾 (
𝑥+𝑔2(𝑢)

ℎ
)

2

𝑚(𝑢)𝑑𝑢 +
∞

0

∞

0

       2 ∫ 𝐾 (
𝑥−𝑔1(𝑢)

ℎ
) 𝐾 (

𝑥+𝑔2(𝑢)

ℎ
) 𝑚(𝑢)𝑑𝑢

∞

0
}                                                                                   (22)                                                      

=
(𝑁−𝑛)2

𝑛ℎ2 [ℎ ∫ 𝐾2(𝑡)
𝑚(𝑔1

−1((𝑐−𝑡)ℎ)

𝑔1
′ (𝑔1

−1((𝑐−𝑡)ℎ))
𝑑𝑡 + ℎ ∫ 𝐾2(𝑡)

𝑚(𝑔2
−1((𝑡−𝑐)ℎ)

𝑔2
′ (𝑔2

−1((𝑡−𝑐)ℎ))

1

𝑐

𝑐

−1
𝑑𝑡]                                     (23)                             

=
(𝑁−𝑛)2𝑚(0)

𝑛ℎ
∫ 𝐾(𝑡)2𝑑𝑡 + 𝑜 (

1

𝑛ℎ
)

1

−1
                                                                                                (24)                                                                        

By the continuity property of 𝑔1
′′ 𝑎𝑛𝑑 𝑔2

′′ and by Taylor expansion of order two on 𝑔1 and 𝑔2, we have, 

𝑔1((𝑐 − 𝑡)ℎ) = 𝑔1(0) + (𝑡 − 𝑐)(−ℎ)𝑔1
′ (0) + 𝑂(ℎ2)  

                       = 2 + 2(𝑐 − 𝑡)ℎ + 𝑂(ℎ2)                                                                                                     (25)    

And, 

𝑔2((𝑐 − 𝑡)ℎ) = 𝑔2(0) + (𝑡 − 𝑐)(−ℎ)𝑔2
′ (0) + 𝑂(ℎ2)  

                       = 2 + 2(𝑐 − 𝑡)ℎ + 𝑂(ℎ2)                                                                                                     (26)   

Since 𝑔𝑖(0) = 2 and 𝑔𝑖
′(0) = 2, i=1,2 using the two equations above and by the change of variables  

𝑡 =
𝑥−𝑔1(𝑋𝑖)

ℎ
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𝑋𝑖 = 𝑔1
−1(𝑥 − ℎ𝑡)  

𝐴2 =
2(𝑁−𝑛)2

𝑛ℎ2 {∫ 𝐾 (
𝑥+𝑔1(𝑋𝑖)

ℎ
) 𝐾 (

𝑥−𝑔2(𝑋𝑖)

ℎ
) 𝑚(𝑋𝑖)𝑑𝑋}                                                       (27) 

        =
2(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)𝐾 (

𝑥−𝑔2(𝑔1
−1(ℎ𝑡−𝑥))

ℎ
) 𝑚(𝑔1

−1(ℎ𝑡 − 𝑥))𝑑𝑡
𝑐

−1
}                                 (28) 

        =
2(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)𝐾 (

𝑥−(2+2(𝑡−𝑐)ℎ+𝑂(ℎ2))

ℎ
) 𝑚(𝑔1

−1(ℎ𝑡 − 𝑥))𝑑𝑡
𝑐

−1
}                             (29) 

        =
2(𝑁−𝑛)2

𝑛ℎ
∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡 + 𝑂(ℎ)))(𝑚(0) + 𝑂(ℎ))𝑑𝑡

𝑐

−1
                          (30) 

    =
2(𝑁−𝑛)2

𝑛ℎ
∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡 + 𝑜 (

1

𝑛ℎ
)

𝑐

−1
                                                      (31)                                                                                

𝐵 =
1

𝑛ℎ2 {𝐸 [𝐾 (
𝑥+𝑔1(𝑥𝑖)

ℎ
) + 𝐾 (

𝑥−𝑔2(𝑥𝑖)

ℎ
)]}

2

                                                                      (32) 

    =𝑜 (
1

𝑛ℎ
)                                                                                                                            (33)                                                                                 

Therefore, by combining the equations above, we have 

𝑉𝑎𝑟(�̂�𝑅𝑇(𝑥)) =
(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)2𝑑𝑡 +

1

−1
2 ∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡

𝑐

−1
} + 𝑜 (

1

𝑛ℎ
)             

                                                                                                                                            (34)  

The variance of �̂�(𝑥) decreases in 𝑛ℎ as 𝑛 → ∞ and the bandwidth h→ 0. This implies that the variance of the 

estimator converges to zero hence its statistically consistent. 

3.5. Mean Squared Error  

The mean squared error brings together the variance of the estimator and the square of the bias term of the 

estimator. 

That is, 

MSE(�̂�) = 𝐸(�̂� − 𝑇)2 or this can be given as 

MSE(�̂�) = 𝑉𝑎𝑟(�̂�) + (𝐵𝑖𝑎𝑠)2 

=
(𝑁−𝑛)2

𝑛ℎ
{∫ 𝐾(𝑡)2𝑑𝑡 +

1

−1
2 ∫ 𝐾(𝑡)𝐾(−2 + (3𝑐 − 2𝑡))𝑑𝑡

𝑐

−1
} + [

𝑁−𝑛

𝑛
{2ℎ [2𝑚′(0) ∫ (𝑡 −

1

𝑐

𝑐)𝐾(𝑡)𝑑𝑡 − 𝑔1
′′(0)𝑚(0) ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡  − 𝑔2

′′(0)𝑚(0) (𝑐 + ∫ (𝑡 − 𝑐)𝐾(𝑡)𝑑𝑡
1

𝑐
)

1

𝑐
] +

2ℎ2

2
[−𝑐2𝑚′′(0) +

𝑚′′(0) ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 − [𝑔1
′′′(0)𝑚(0) + 3𝑔1

′′(0){2𝑚′(0) − 𝑔1
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡 −

1

𝑐

1

−1

[𝑔2
′′′(0)𝑚(0) + 3𝑔2

′′(0){2𝑚′(0) − 𝑔2
′′(0)𝑚(0)}] ∫ (𝑡 − 𝑐)2𝐾(𝑡)𝑑𝑡

𝑐

−1
]}]

2

+ 𝑜 (
1

𝑛ℎ
)                   (35) 

Since the estimator is asymptotically unbiased and its variance converges to zero, the mean squared error also 

converges to zero as sample size increase. 
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4. Simulation Study 

Simulation was done using R statistical software version i386 4.0 using three of the theoretical data variables 

employed by (Breidt and Opsomer, 2000).  

The linear model was used to simulate the first data set. The model is given as 

𝑌𝑖 = 1 + 2(𝑥𝑖 − 0.5) + 𝑒𝑖                                                                               (36) 

The second data set was obtained through simulation by the use of a quadratic model given as  

𝑌𝑖 = 1 + 2(𝑥𝑖 − 0.5)2 + 𝑒𝑖                                                                             (37) 

The third data set was simulated by the use of an exponential model given as 

𝑌𝑖 = exp(−8𝑥𝑖) + 𝑒𝑖                                                                                      (38) 

The random variable X is generated as independent and identically distributed U(0,1) and the error component is 

a standard normal. In all the three data variables, a population of size 1000 was simulated and samples of size 300 

are selected from each population and the estimates of the population total and the mean squared error computed. 

4.1   Unconditional Properties of the Estimator 

4.1.1 Unconditional Biases 

The biases of our estimator, the estimator proposed by (Dorfman, 1992), the Horvitz-Thompson estimator and the 

ratio estimator are computed as (�̂�𝑇𝑅 − 𝑌), (�̂�𝑁𝑊 − 𝑌), 

 (�̂�𝐻𝑇 − 𝑌) 𝑎𝑛𝑑 (�̂�𝑅 − 𝑌) respectively. 

Table 1: unconditional Bias of the estimators 

MODEL �̂�𝑹𝑻 �̂�𝑵𝑾 𝑻 ̂𝑯𝑻 �̂�𝑹 

Linear 212.1953 935.7327 -16.70931 -16.08618 

Quadratic 12.20103 568.9697 -30.06625 -31.18455 

Exponential -2.273007 -57.98402 -12.75688 -5.988498 

 

From Table 1, some of the values of the biases are negative and others are positive which indicate either 

underestimation or overestimation. For the linear function, the ratio estimator has the lowest bias followed by the 

Horvitz-Thompson estimator and the proposed estimator is the third. In quadratic model, the proposed estimator 

performs the best. In exponential model, the proposed estimator has the lowest bias which indicates that it’s the 

best. 

4.1.2 Mean Squared Error 

The measures of the mean squared errors were computed for the four data sets and then compared.  

𝑀𝑆𝐸 =
∑ (�̂�𝑖−𝑇)2300

𝑖=1

300
                                                                                          (39)     
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Table  2 unconditional MSE 

MODEL 𝑻𝑹𝑻 �̂�𝑵𝑾 �̂�𝑯𝑻 �̂�𝑹 

Linear 150.0895 2918.652 0.9306704 0.8625511 

Quadratic 0.4962173 1079.088 3.013264 3.241588 

Exponential 0.01722187 11.20716 0.5424597 0.1195404 

 

From Table 2, the ratio estimator has the least MSE followed by the Horvitz-Thompson estimator under the linear 

function. For the quadratic function, the proposed estimator performed the best followed by the Horvitz-Thompson 

estimator. For the exponential, the proposed estimator outperformed the other three models. 

4.2   Conditional Properties of the Estimator 

Here, the samples selected are grouped into groups of size 20 therefore we have 15 groups. The grand mean for 

each group is computed as  

�̿� =
1

15
∑ �̅�𝑖

20
𝑖=1                                                                                             (40)                                                

The mean estimator is also computed as 

�̂̅�𝑇𝑅 =
1

15
∑ �̂�𝑇𝑅 𝑖

20
𝑖=1                                                                                      (41)                                                                    

The conditional bias for each group was then computed as (�̂̅�𝑇𝑅 − �̅�) 

The figures 4.1, 4.2 and 4.3 below show the trend of the conditional bias for each estimator under the three mean 

functions.  
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Figure 1 conditional bias linear function                       Figure 2 conditional bias quadratic function 

 

Figure 3 conditional bias for exponential function 

From figure 1, where the linear mean function was applied, the ratio estimator gave the best results. This is 

attributed to the fact that the ratio estimator is the Best Linear Unbiased Estimator (BLUE) thus it cannot be 

outperformed by any other estimator. It can be observed from the graph that the biases of the estimators are minimal 

Figure 2 where a quadratic mean function was applied, the proposed estimator gave the best estimates followed by 

the Horvitz-Thompson estimator, ratio estimator and the Nadaraya-Watson estimator performed poorly. It can also 

be observed from the graph that the bias between the estimators is large on the left but reduces towards the right 

as the mean increases. 
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From figure 3 the exponential mean function was applied, the proposed estimator gave better estimates of the 

population total followed by the Nadaraya-Watson estimator, the Horvitz-Thompson estimator and the ratio 

estimator performed poorly. It can be observed from the graph that the biases are minimal throughout the graph. 

 

5. Conclusions and Recommendations 

In this paper, we developed an estimator for finite population total based on a composite of data transformation 

and data reflection techniques which addressed the problem of boundary bias effectively as shown from the 

biases in Table 4.1. The proposed estimator was found to perform quite well under the quadratic and exponential 

models where it produced low biases as compared to the Ratio estimator, Horvitz-Thompson and the Nadaraya-

Watson estimator. However, the ratio estimator was the best under linear models since it’s the Best Linear 

Unbiased Estimator (BLUE). Our estimator has the least mean squared error over the two models. 

5.1   Recommendations 

The proposed nonparametric estimator for a finite population total was developed and it performed better than 

(Dorfman, 1992) estimator and therefore can be recommended for estimation and addressing the boundary 

problem. In this paper estimation is carried out using stratified sampling, therefore estimation using cluster 

sampling is recommended to compare the  performance of the estimator. Also, an improvement of the estimator 

in order to work on all the theoretical data variables are recommended. 
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