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Abstract: A nonlinear dynamical system is proposed and qualitatively analyzed to study the dynamics of cholera disease in a
population. The basic model is extended to include; reduce infection rate (uy ), increase rate of seeking treatment (uz), decrease
development of achlorhydria condition (ua), increase recovery raie from achlorhydria condition (w4}, increase recovery rate
(improve efficacy of the drugs) (ug ). This leads to an optimal control problem which is qualitatively analyzed using Pontryaginas
maximum principle. Numerical simulation of the resulting optimal control problem is carried out to gain quantitative insights
into the implications of the model and pertinent results are displayed graphically. The simulation reveals that a multifaceted
approach to the fight against the disease is more effective than single control strategy.
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1. Introduction

Meodelling is a technique for simulating real-life situations with mathematical equations in order to predict future behavior by
penerating a simplified representation of a real system [1]. The modeling of infectious diseases is a tool that has been used to
study the mechanisms by which diseases spread, predict the future course of an outbreak and evaluate sirategies to control an
epidemic [2]. The study of the emergence of infectious diseases is likely to become increasingly important with increase in
human and livestock population and increasing stress placed on aquatic reservoirs [3]. Access to clean water through improved
water network systems and sanitary facilities therefore remains the most effective means of preventing cholera outbreaks [4].
Studies of gastric acidity and cholera are of interest, vibrie choleras is a very acid-labile organism and it has been proposed that
normal gastric acidity presents a barmer to the establishment of intestinal infection [3]. Several models have been formulated
and analysed to explain the dynamics of cholera transmission which include; [6] studied cholera dynamics with prevention and
control. Therapeutic treatment was in the form of administration of antibiotics or rehydration salts, vaccination and therapeutic
treatment were incorporated as prevention and control strategies against cholera transmission.  According to this study
availability and potency of these interventions were capable of averting 120 (K0 deaths due to cholera. [7] developed a model
on mathematical assessment of the role of environmental factors on the dynamical transmission of cholera. The objective was to
investigate the impact of environmental factors on the dynamical transmission of cholera within a human population on the
persistence of the disease. [8] discussed a model on cholera with hyper infectious and hypo infectious vibrios, in which both
humans and environment to humans transmissions were considered. A combination with quarantine, sanitation, vaccination and
treatment strategy is most efficient to prevent, control and eradicate cholera [9] developed a model considering optimal control
of cholera on presence of asymptotic transmission and control interventions (social mobilization, drug/oral re-hy dration solution
and safe water). The goal was to develop (deterministic and stochastic) mathematical models of cholera transmission and
control dynamics with the aim of investigating the effect of the three control interventions against cholera transmission in order
to find optimal control strategies, it was advised that the use of multiple control interventions be adopied for cholera in areas
where there were sufficient resources. However, in areas where there are limited or lack of resources, it was advised that
treatment of the asymptomatic individuals with drug or administration of oral re-hydration solution to the infected should be
used.

Achlorthydria refer to condition in which production of hydrochloric acid in the digestive system is respectively absent or
reduced, it is usually secondary to an underlying medical condition. Stomach pH in fasting, healthy people is between pH 2.5
and serves as a barmer to food-bome pathogens [10]. Vibrie cholerae survived well in normal gastric juice when the pH was
adjusted to neutrality but were rapidly killed at pH values less than 4.8 [5] Ther is evidence that patients with hypochlorhydria
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or achlorhydria or who have been treated with proton pump inhibitors or H-2 receptor antagonists are more susceptible to Vibrio
cholerae than healthy persons [11]. Proton pump inhibitors are available increasingly without prescription, so that people can
self-medicate without realizing that this might mean an increased risk of cholera disease. In a study conducted in the USA, adult
volunteers experimentally challenged with virulent strains of Vibrie chelerae only developed cholera after the gastric pH in the
volunteers was raised by antacid drugs [12]. Optimal control is a branch of mathematics developed to find optimal ways to control
a dynamic system [13]. There are few papers that apply optimal control to cholera models [14]. Here we propose and analyze
one such optimal control problem, where the control function represents the fraction of Susceptible(S), infected individuals 7,
and where I, will be submitted to treatment until complete recovery. The objective is to find the optimal control strategy that
minimizes the number of infected individuals and increases the number of susceptible individuals.

2. Derivation of the Models and Their Analysis

2.1. Mathematical modelling of cholera incorporating the dynamics of the induced achlorhydria condition and treatment

We had earlier discussed in [15] the impact of the induced achlorhydna condition on their role in fueling cholera transmission.
Model of cholera dynamics incorporating the dynamics of the induced achlorhydria condition and treatment was also developed.

2.2 Positivity of the Solution

Suppose that the initial data S{0) < 0, [(0) < 0, Io(0) <0, TL(0) < 0 and R(0) < 0 then the solutions (S(t), 1.(t),
I T.(t), B(t)) of the cholera control model (1) are non-negative for all £ = 0.
For the proof [15].

2.3, Boundedness of the Solution

All solutions (S(t), (), f.(t), To(t) and R(t) of the cholera control model are bounded that is 0 < NV < I% and
N = I} therefore Q@ = {S(t), La(t), I (). To(t), B(t) € RSN < f}»
For the proof [15]).

2.4. Disease Free Equilibrium Point (DFE)
The disease-free equilibrium is obtained in [15] by setting the LHS (left hand side) of the model to zero and then we
obtained the solution of the variables in the model.

2.5, Computation of basic reproduction mumber

The effective reproduction number My is obtained using the next generation matrix method [15]. The effective
reproduction number Ry is given as

Jie S‘C-ﬁ + Sﬁﬁﬂlﬂl n SﬂﬂST}z + Sﬂﬁmﬂlﬂg

.= = _ _ _ (1)
Nila Nkl Nlailg Nilatys

For the proof [15].

2.6. Existence of Endemic Equilibriom Point

Theorem. If By = 1 which has biclogical sense.
For the proof [15].

3. Model Formulation

The model is adopted from the classical SIR model. The model describe the transmission of Cholera incorporating the
dynamic of the induced achlorhydria condition and treatment. The total population is denoted as N which subdivide
into the following classes, (S) as the susceptible individuals, (1.} the cholera infected individuals, (I.) the cholera
infected individual with induced achlorhydria condition, (T,) those seeking treatment for cholera and (R) individual
who have recovered from cholera (3, Ie, for, Te, B). The main feature of the model is that the force of infection, A
i5 obtained by mass-mixing of individuals in a population, & infection rate is also considered. Infected individuals

34


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) l"—.i,l
Vol.12, No.2, 2022 IIS E

who joined the class I, can progress into I, due to implications of the induced achlorhydria condition or may die out
naturally. After progressing into this group and treatment of achlorhydria is done or correct mechanism by enhancing
production of hydrochlorie acid is done individual progress to (T,) where they seck treatment for cholera at a rate o.
Individuals recover from cholera and join class (R) and return to susceptible class (5) after gaining temporal immunity
against cholera. The next-generation matrix is used to derive the basic reproduction number, for a compartmental
model of the spread of infectious diseases, in population dynamics it is used to compute the basic reproduction number
for structured population models.

3.1. Model Equation

%:ﬂ'+¢ﬂ—ﬂ5—k5

’g: =AS —ple—al: — &1l — Vm,ﬁ&

dfTﬂ :Vm,ﬁ;ﬂ — il — 06Ty — vmﬁfﬂ (2)
= =vmﬁ:g tal, - 5T, — T, — uT,

% —uwT, — uR — ¢R

4. Extension of the model

In this section, we apply optimal control strategies on the model [15]. This help us to identify the best intervention
strategies that helps to eradicate the disease in the specified time. The optimal control model 15 an extension cholera
model by including the following five optimal controls defined as;

1. uyis the prevention effort, that reduces the possibility of susceptible from contacting the disease.

. up is the treatment effort, to minimize infection by treating infectious.

iii. ug is the prevention effort, that reduced development of achlorhvdria condition on individuals during cholera

outhreak.

iv. 1y 18 the treatment effort, that reduces achlorhydria condition on individuals with problem of gastric acid

secTetion.

v. ug 1s the curative effort, that help to increase the number of recovered individuals from cholera (improving

efficacy of the drugs).

After incorporating, iy, ¥, Us, s, Us in cholera model equations (2), we obtain the following optimal control model
of cholera:

4.1. Model Equation

%=w+¢ﬂ—#3—{l_uijs

‘fif: =1 —wy)& -l — (1 —ug)l. — &y 1. - szﬁh

dj_iﬂ :Vmuﬁﬂ: — il — 05,0 — Vmum:“—;rudfa 3)
‘i;” =Vmuﬁ:., + (1 — uz) — 82Te — pTe — (1 — ug)Te

O (- w)T.—uR - oR

To study the optimal levels of the controls, the control set U is Lebesgue measurable and it iz defined as
U= (g (£}, ual(t), walt), walt), us(t):

O<u <1,0<u <10y = 1,0<ug<1,0<us < 1,0<¢<T. Our aim i3 to obtain a control u and 8, I.,
I, T, and R that minimize the proposed objective function J and the form of the objective functional is taken in
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line with literature on epidemic models [16] given by

U1 ,Ug 103,

. b P (I,
J= min -L(b1!¢+bgfﬂr+b3]"c+52wiui}dt

i=1

i4)

where by, ba, bz and w; are positive. The expression %w;uf- represents cost which is associated with the controls w;.
The form is quadratic because we assume that costs are nonlinear in its nature. Our aim is to minimize the number
of carriers, infectives and costs. Thus, we seek to find an optimal five controls (u], u3, u), uj, u;) such that

Jiug, us, ug, wy, u) = mind{wy, v, g, vy, ug )1 € U
where U = (uq, uz, us, g, u5)/ each u; is measurable with 0 < u; < 1 for 0 < tat f.

5. The Hamiltonian and optimality system

By using the Pontryaginds Maximum Principle [13] we got the necessary conditions which is satisfied by optimal

pair. Therefore, by this principle, we obtained a Hamiltonian (H) defined as

H(SIo o, Tos Ry1) = L{Ioy Top, T g, g, g, g, s, 1)

L. | 4R
dt *dt

+Ju% +JL-_:%+ Jud{fhh
where

Ll Lo, Tty Uz, g, g, U5, t)

= byl + balo + BT, + %3’5 = lwyu}

Ani=12345

are the adjoint variable functions to be determined suitably by applying Pontryaginds maximal principle [13] and also

using [17] for existence of the optimal control pairs.

Theorem: For an optimal control set g, W, s, 4y, 45 that minimizes J over U, there 1= an adjoint variables, Ay, . . .

. Az such that:
dA
Elz—[—y—[l—ul]]li—{l—uijig
dAz 3 Uz
T [ — (1= uz)—dy — me]h - Vmurm
dAg Uy Uy
— = — [—u — 1 — Vmar——— A3 — Vipogz———— A
dt [F ! H_u'ﬁ"l&qlz HM+TI4 .
dA
Ed:—[(l—ﬂzj—ﬁg—ﬂ—[l—US]]J'-d_{l_U-S]J'-S
dAs
Tt

=— A — (-p— 6k

}'-3_

(3)
(1— ug)Md (&)
(7
(&)

i9)
(10

With transversality conditions, A;(fy) = 0, i = 1,...,5. Furthermore, we obtain the control set [uf,u$,uf, uj,ut)

characterized by

ui(t) = mazd, min(1, &),
wi(t) = mazl, min(1, &)
ug(t) = mazl, min(1, $z)
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. K . Ky
‘p‘z—[imr(ﬁ—m +'i'.!:]::|?)|? ‘mr(ﬁ—u +u3}2‘hjf‘:
. Ky . K
iy = .i"'mz.-—q.}' - sz - A Icr
2 = TEPERT Ko + 0] a)

By =(As — AT

Proof: The form of the adjoint equation and transversality conditions are standard results from Pontryaginis maximum

principle [13]. We differentiate Hamiltonian with respect to states 5, I, I, T, and R,
adjoint syvstem can be written as

B i (- )b — (1w

% == [ — (1~ un) — &y — "'mx:i T F““ﬁ
% = [ 051~ Vinar s ~ Vinaa e

B [~ )~y —p— (1= g) e — (1 — )

B o o~ (m -

respectively, and then the

Ag — (1 — ug)M

i1

Similarly by following the approach of [13], to get the controls, we solved the equation, g—i‘: =0atu; fori=1,2 3,

4, 5 and obtained:

T.[T_ =|;J|.2 - '}HJS
T.Iia :[)‘..{ - :’L-:r:]fg
. s Ky . Ky
= "’mui, ..,,.}l‘_l‘ _"m,u.z_ - -,-:'La Iﬂ
s Ve T w2 B s
. Ky . K
T.[‘ = “'mu.r——-q'}'d _.i"mr.—-q'}'-d Ir_'r
e e CIvERTLA
ug =(As — AT,

When we write by using standard control arpuments involving the bounds on the controls

By if0 ey <1,
ut = ¢0  difd0,

1 ifdy, = 1.

o ifl = da 1,
up =40 ifd, <0,

1 ifds > 1.

‘I"g ifﬂ{d"gﬁl:
wi =+ 0 ifdg <0,

(1 ifdy = 1.

By if0 . dy <1,
uwj =40 ifdy <0,

[1 ifdy = 1.
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‘135 I_ﬁ} = '13'5 = 1:
ut =40 ifd; <0,

1 ifdy = 1.
In compact notation

ui(t) = maz(0, min(1, $,)],
w5t} = maz(0, min(1, $2)],
uj(t) = maz[0, min(1, &3)],
w3t} = maz(0, min(1, $4)],
ug(t) = maz(0, min(1, $5)],

B, —(Az — A)S
By — (Mg — Aa)l.
. Km . Km
By = szr—q}'?_ i'mz-—}' Ir_'
3 [. (ﬁ_l.f'l'u:]::" I:ﬁ_u+‘l!:3}2 3:]
. Hpy . K
By = i'mz-—q-}' - i'mz-—}' Ir_'r
4 [. (ﬁ!d'i'ud.::" 3 (ﬁ_l.f'l'ud.}z 4:]

By =(As — M) T2

i12)
i13)
(14
i15)
i186)

The optimality system is formed from the optimal control system (the state system) and the adjoint variable system

by incorporating the characterized control set, initial and transversal condition.

& xR —ps—(1-up)S
dl, r u3
=(1 —ul)8 —pl, — (1 —us)f. — & 0. — Voo —e———— 1

T (1-uj)S—p (1—uz) 1 Kot + 05
dl . ui - uj
Lo e [l — 080 — Vi — [
dt For +ul . ! Ky + uj
Ty, Y b (1 —ws) e — 62Te — pTe— (1 — )T,
dt_mzﬁr_u+u§cr+l: g e — d2Te — ple — | Ugtle
dR .
— =(1 —u$)T. — pR— 6R

dA

= Fr— (= u)h - (- u)

dAa i u3 . uj

rraiaaianl _1_u;_£_i“mn:.-—}'- _"’mur.-—

i [—p =1 5) —dy .ﬁ_l.j+ﬂ5] z Kot

dAs . i} r uj

—_— == —u— a4 _l"rrmz.-— _"'mu:.'.-—

di |j..|i 1 ﬁ_l,j'i'uilz ﬁ_l.f'i'uid.

dA

E“:— [(1—u3) — &2 —p— (1 —ug)llda — (1 —ug)hs

dAs , ,

E‘:—(&}uj—l:—ﬂ—ﬂ])la

'}"ll:tf] =0,i=1,2,3, 4, 5, SLD] = 5o, [r_'{ﬂ':' =1, Icr':':}] = Icr]-::{ﬂ':' =T, and HI:G":I =My
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6. Uniqueness of the optimality system

Due to the prior boundedness of the state, adjoint functions and the resulting Lipschitz structure of the ordinary
differential equations, we can obtain the unigqueness of solutions of the optimality system for the small time interval.
Using Pontrvaginds maximum principle, the adjoint or costate eguations are obtained by differentiating the
Hamiltonian partially with respect to the state variables. Thus,we have

dhy  8H diy  8H ddy  8H diy  O6H dd; 6H an
dt ~ dS' di  dl, dt  dl. dt  dI. dt  dR

with ,\T=0fori=1,..5

Since the Hamiltonian 13 minimized at the optimal controls, the optimality conditions -g% = 0 u; = u} are met. These

optimality conditions can be used to obtain expressions for uf By standard control arguments involving the bounds
on the controls, 12-16 1s obtained, concluding the proof.

7. Numerical simulations

In this section, we perform some numerical expenmentation on the basic model equation (2) and the resulting optimality
system consisting of the state equations (3) and the adjoint systemi{4). We make use of the parameter values given in Table 2 [15]
for the simulation. An iterative scheme 1s used to find the optimal solution of the optimality system. Since the state systemi2)
has initial conditions and the adjoint systems (4) have final conditions, we solve the state system using a forward fourth-order
RungeiKutta method and solve the adjoint system using a backward fourth-order RungedKutta method. The solution iterative
scheme involves making a guess of the controls and using that guess to solve the state system. The initial guess of the control
together with the solution of the state systems is used to solve the adjoint systems. The controls are then updated using a convex
combination of the previous controls and the values obtained using the characterizations. The updated controls are then used to
repeat the solution of the state and adjoint systems. This process is repeated until the values in the current iteration are close
enough to the previous iteration values. Using different combinations of the controls, such as one control only at a time, two
controls at a time, three controls at a time, four controls at a time and also all controls at a time, that we analyse and compare
numerical results from simulations with the following scenarios.,

7.1. Control with preventive effort u; only

We simulate the model by preventive intervention only. Figure 1 and 2 we see that the increase in susceptible and decrease
in infectious due to implementation of prevention. This can be attribute the fact that prevention minimizes the rate of joining of
individuals in to infective compartments. This implies that optimized prevention reduces the burden of the infection of cholera
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.2, Control with preventive v, and treatment effort 15

We used prevention and treatment as intervention strategy, the susceptible goes up as the infectious goes down. Therefore, this
strategies is effective in eradicating the disease from the community in a specified peried of time.
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Infactad Populations
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Figure 3 Simulations of apitmal control wilk prevertion uy andireaimenl ue.
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Figure 4, Simulations of apitmal control wilk prevertion uy andireaimenl us.
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7.3, Control with preventive 1., treatment iz, preventive ug and treatment effort u,

We used preventive and treatment strategy. Figure 5 and 6 we observe that optimal control of the combination of prevention
and treatment helps to bring down the infectious as well as increasing the susceptible population which helps to eradicate the

disease in the community.

=10°

UeOu w0y wlu edu =0
i E ] + 5

e e e
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. 1 I i I . ;
20 2500 3000 == 4000

Time 1 iin days )

Figuere 5. Simulations of opimal control with prevention u), freatmenl wg, preventive iy and iresimen uy gfford
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7.4. Control with preventive u,, treatment iz, preventive ug, treatment 1y and curative effort g

We use preventive, treatment and curative strategy. Figure 7 and 8 shows an increase in susceptible and a decrease in infectious
compartment as these control are optimized since more individuals will be treated and go back to susceptible after gaining

temporal iImmunity.
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7.5. Control with preventive v, treatment @ and curative effort u;

We use preventive, treatment and curative strategy. Figure 9 and 10 show an increase in susceptible and a decrease in infectious
individuals. This strategy is effective once the control is optimized in a given community.

. =107
!I,‘ri}ll}r Dusr:qnus-u.:(}
U=l =u =y =y =0
35—
Al
=
E 25—
=
&
a
r-
-4
§ 15—
-
05—
p 1 1 1 | L L |
o jlee ) 2000 D 4000 5000 EO0D Toog ‘B00D
Time 1 {in days )
Figwre 9. Simulations of optimal control wilh prevention uy, remment us ond curative ur, gffors
. 10
u1:u=:n::u‘:u;:-:l
18- uw O Duge Quy =, =0
L ol
id—
=
ﬁ 2
=
&
.
o
2 oon -
0E
LR
02—
. I L 1 I 1 L I
o 1000 2000 3000 40040 5000 BO0D To0g ‘BDOD

Tima 1 {in days )

Figure 1. Simalaions of opimal control with prosention w, drecimend wg and aralive uwy, gffend

45


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)
Vol.12, No.2, 2022

ISSN 2225-0522 (Online) jlils_ii

7.6. Control with preventive wu,, treatment @z, preventive ua and carative effort ug

Preventive, treatment and curative strategy is applied in figure 11 and 12. Optimizing the controls leads to a great decrease in
infectious individuals this strategy is effective in controlling cholera in a given community.
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Figuwre 12, Simulations of apimal control with prevewtion u,, prevenlive uy and curadive ue, fford.
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7.7. Control with preventive u,, preventiveu; and treatment effort u,

Preventive and treatment as a control strategy is applied the susceptible increases while the infectious decrease which shows
this strategy is effective in controlling cholera.
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Figwre 11 Simsloiions of oplimal corirol with prevendion wy, prevendive uy ond decimend gfford ug offort
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Figwre 14, Simulations of optimal cortrod with prevention wy, preventive wa and drectment gffort u, gffors

47


http://www.iiste.org/

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.12, No.2, 2022

www.iiste.org

J U NN
NSTe

7.8. Control with treatment 1, preventive u; and treatment w,

We use treatment and preventive as control. The susceptible increase as more individuals receive treatment and go back to
susceptible compartment while infectious decrease since treatment minimizes infectious class. This strategy is efficient in a

community at a specified time.
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=105
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Figure I5. Simulat ioes of opt imeel comtrol with treciment we, prevemtive sy end treatment ffort wy effort
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Figare 16 Simulaiores of opf imal control wilh (reaimend e, prevendive uy and dregimend effori ug offord

7.9. Control with preventive v, and curative effort ug

We use prevention and curative on susceptible and infectious an increase in susceptible whike a decrease in infectious is
attributed by prevention and curative strategy. Optimizing these strategy in a given community are effective in controlling

cholera
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8. Discussions and conclusions

In Section 3 we analysed the model by obtaining the feasible region, positivity of the solution set, effective reproductive
number, equilibria points and their stability. In Section 4 we extended the model by applying optimal control interventions and
we obtained the Hamiltonian, the adjoint variables, the characterization of the controls and the optimality system. In Section 5
we applied the optimality system by considening different strate gies as follows:

By applying a single control

By applying two control, preventive 4y and treatment s

By applying four control, preventive u,, treatment wi, preventive ug and treatment u,.

By applying five control, preventive uy, tleatment iz, preventive g, treatment uy and curative s,

Ey applying three control, preventive wuy, treatment u; and curative us.

By applying four control, preventive uy, treatment uz, preventive wa and curative us.

Ey applying three control, preventive wu,, preventive ug and treatment w,.

By applying three control, treatment 4, preventive ug and treatment .

Ey applying two control, treatmentu; and curative ug

In section 7 numerically we investigated cost effectiveness to determine, the keast and the most efficient strategies. The purpose
is to find the optimal control that will eliminate spread of cholera using by minimising cost of control. From the result in this
study the simulation shows that a multifaceted approach to the fight against cholera disease is more effective than single control
strategies,
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