Fixed Points Theorem on A Pair of Random Generalized Non-Linear Contractions

R.N.Yadava
Director, Patel Group Of Institutions Bhopal (M.P.), India
(dryadava@gmail.com)
Rajesh Shrivastava
Department of Mathematics
Govt Science & commerce college Benazir, Bhopal(M.P.), India
(Rajeshraju0101@rediffmail.com)
S.K.Pandey
Department of Mathematics
Millennium Group of Institutions Bhopal(M.P.), India
(Sudeeppandey1976@gmail.com)

ABSTRACT
A fixed point theorem for a pair of random generalized non-linear contraction mappings involving four points of the space under consideration is proven. It is shown that this result includes the result of Lee and Padgett [1]. Also an application of the result is given.

Key words : Complete probability measure space, δ-algebras, Borel subsets, random operator, separable Banach space, upper semi-continuous functions. Bochner integral,
Mathematics Subject classification: Primary 60H99, 47H10, and Secondary 60H20.

1. Introduction and preliminaries
The idea of fixed points plays a very important role in solving deterministic operator equations. Recently the idea of random fixed point theorems which are the stochastic generalization of the classical fixed point theorems has become a very important part of the theory of some operator equations which can be regarded as random operator equations. Many interesting results have been established by various authors (see for example Bharucha – Reid [2], Hans [3], Padgett [4], Tsokos [5], Tsokas and padgett [6], Lee and padgett [7] in this area.
Recently, a fixed point theorem for a pair of generalized non-linear contraction mappings involving four points of the space under consideration, which includes many well known results as special cases has been established by Achari [8] (see also Achari [9], Pittanuer [10]).

The object of this paper is to study a stochastic version of a pair of generalized non-linear contraction mappings of Achari [8]. Also it has been shown that this result generalizes the result of Lee and padgett [1]. It is interesting to note that with suitable modification of the conditions of the theorem, we can easily obtain stochastic generalizations of the results of different classical fixed points. Finally, we apply theorem 2 to prove the existence of a solution in a Banach space of a random non-linear integral equation of the form
x (t; w) = h (t; w) + ∫_s^k (t, s; w) f (s, x (s; w) d, µ (s) (1.1)
where s is a locally compact metric space with metric d defined on S X S, µ is a complete δ-finite measure defined on the collection of Borel subsets of S and the integral is a Bochner integral.
In this section, we state some definitions as used by Lee and padgett [1]. Let (Ω, S, P) be complete probability measure space, and Let (X, β) and (Y, C) be two measurable spaces, where X and Y are Banach spaces and B and C are δ-algebras of Borel subsets of X and Y, respectively. First, we state the usual definitions of a Banach space-valued random variable and of a random operator.

Definition 1.1 : A function V : Ω → X is said to be an X – valued random variable (Random element in X, or generalized random variable) if { ω ∈ Ω : v (w) ∈ B} ∈ S for each B ∈ β.

Definition 1.2 : A mapping T (w) : Ω x X → Y is said to be a random operator if y (w) = T (w) x is a Y-valued random variable for every x ∈ X.

Definition 1.3 : Any X-valued random variable x (w) which satisfies the condition.

P ({ W : T (w) x (w) = y (w) }) = 1

is said to be a random solution of the random operator equation

T (w) x = y (w).

Definition 1.4 : Let y_j (w), j = 1, 2,, n be second order real valued random variables on a probability space (Ω, S, P), that is y_j (w) ∈ L_2 (Ω, S, P). The collection of all n-component random vectors y' (w) = (y_1 (w),, y_n (w)) constitutes a linear vector space if all equivalent random vectors are identified. Define the norm of y by
A fixed point theorem for a pair of random generalized non-linear contraction.

Definition 1.5: We define the space \(C(S, \mathbb{L}^n_2(\Omega, s, p)) \) to be the space of all continuous functions from \(S \) into \(\mathbb{L}^n_2(\Omega, s, p) \) with the topology of uniform convergence on compacta. It may be noted that \(C(S, \mathbb{L}^n_2(\Omega, s, p)) \) is a locally convex space whose topology is defined by a countable family of seminorms given by –

\[
\| x(t; w) \| = \sup_{t \in \mathbb{C}_j} \| x(t; w) \|, j = 1, 2, \ldots , 7.
\]

Definition 1.6: Let \(B \) and \(D \) be Banach spaces. The pair \((B, D)\) is said to be admissible with respect to a random operator \(U(w) \) if \(U(w) \in D \).

Main results

A fixed point theorem for a pair of random generalized non-linear contraction.

Theorem 2.1: Suppose \(A_1(w) \) and \(A_2(w) \) are a pair of random operators from a separable Banach space \(X \) into itself such that

\[
\| A_1(w) x - A_2(w) y \| \leq \Psi_1(\| x_1 - x_2 \|) + \Psi_2(\| x_1 - A_1(w) x_2 \|) + \Psi_3(\| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_4(\| x_1 - A_1(w) x_2 \|) + \Psi_5(\| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_6(\| x_1 - A_1(w) x_2 \| + \| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_7(\| x_1 - A_1(w) x_2 \| + \| x_2 - A_2(w) x_1 \|)
\]

For all \(x_1, x_2 \in D(T(w)) \).

Proof: Let \(x, y \in X \) and we define.

\[
x_1 = A_2(w)y, x_2 = A_1(w)x, x_4 = x, x_4 = y
\]

Then (2.1) takes the form

\[
\| A_1(w) x - A_2(w) y \| \leq \Psi_1(\| x - x_2 \|) + \Psi_2(\| x - A_1(w) x_2 \|) + \Psi_3(\| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_4(\| x_1 - A_1(w) x_2 \|) + \Psi_5(\| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_6(\| x_1 - A_1(w) x_2 \| + \| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_7(\| x_1 - A_1(w) x_2 \| + \| x_2 - A_2(w) x_1 \|)
\]

Where \(\Psi_i(w), i = 1, 2, \ldots , 7 \), are non-negative real-valued upper semi-continuous functions satisfying \(\Psi_i(w) < \frac{r}{7} \) for \(r > 0, \Psi_i(0) = 0 \) and for all \(x_1, x_2, x_3, x_4 \in X \). Then there exists an \(x \) valued random variable \(\eta(w) \) which is the unique common fixed point of \(A_1(w) \) and \(A_2(w) \).

Proof: Let \(x, y \in X \) and we define.

\[
x_1 = A_2(w)y, x_2 = A_1(w)x, x_4 = x, x_4 = y
\]

Then (2.1) takes the form

\[
\| A_1(w) x - A_2(w) y \| \leq \Psi_1(\| x - x_2 \|) + \Psi_2(\| x - A_1(w) x_2 \|) + \Psi_3(\| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_4(\| x_1 - A_1(w) x_2 \|) + \Psi_5(\| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_6(\| x_1 - A_1(w) x_2 \| + \| x_2 - A_2(w) x_1 \|)
\]

\[
+ \Psi_7(\| x_1 - A_1(w) x_2 \| + \| x_2 - A_2(w) x_1 \|)
\]
Now, we shall show that there exist \(m(k) \) and \(n(k) \) with \(m(k) > n(k) \). Then

\[
\text{From (2.4) it is clear that } \alpha_n \rightarrow 0. \text{ Then since } \alpha_n \text{ decrease with } n \text{ and hence } \alpha_n \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Let \(\alpha_n \) decrease with \(n \) and hence \(\alpha_n \rightarrow 0 \) as \(n \rightarrow \infty \). Let \(\alpha > 0 \). Then since \(\Psi_1 \) is upper semi-continuous, we obtain in the limit as \(n \rightarrow \infty \)

\[
\alpha \leq \Psi_1 (\alpha) + \Psi_2 (\alpha) + \Psi_3 (\alpha) + \Psi_6 (\alpha) + \Psi_7 (\alpha) < \frac{5}{7} \alpha
\]

which is impossible unless \(\alpha = 0 \).

Now, we shall show that \(\{x_n\} \) is a cauchy sequence. If not, then there is an \(\epsilon > 0 \) and for all positive integers \(K \), there exist \(\{m(k)\} \) and \(\{n(k)\} \) with \(m(k) > n(k) \) such that

\[
d_k = ||x_{m(k)} - x_{n(k)}|| \geq \epsilon, \quad \text{(2.5)}
\]

We may assume that

\[
\text{by choosing } m(k) \text{ to be the smallest number exceeding } n(k) \text{ for which (2.5) holds. Then we have}
\]

\[
d_k \leq ||x_{m(k)} - x_{n(k)}|| + ||x_{m(k)} - x_{n(k+1)}|| \leq \alpha_k + \epsilon
\]

which implies that \(d_k \rightarrow \epsilon \) as \(k \rightarrow \infty \). Now the following cases are to be considered.

(i) \(m \) is even and \(n \) is odd,

(ii) \(m \) and \(n \) are both odd,

(iii) \(m \) is odd and \(n \) is even,

(iv) \(m \) and \(n \) are both even

\[\text{i.e. (i) :}
\]

\[
d_k = ||x_m - x_n|| \leq ||x_m - x_{m+1}|| + ||x_{m+1} - x_n|| + ||x_n - x_{m+1}|| + ||x_{m+1} - x_n||
\]

\[
\leq \alpha_{m+1} + \alpha_{n+1} + ||A_1(w)x_m - A_2(w)x_n||
\]

By putting \(x_1 = x_m, x_2 = x_{m+1}, x_3 = x_{n+1}, x_4 = x_n \), in (2.1), we have

\[
\leq \alpha_{m+1} + \alpha_{n+1} + ||x_n - x_{n+1}|| + ||x_{n+1} - x_m|| + ||x_{n+1} - x_m|| + ||x_n - x_{n+1}|| + ||x_{n+1} - x_m|| + ||x_n - x_{n+1}||
\]

\[
+ \Psi_6 \left(\frac{(||x_n - A_1(w)x_{n+1}|| + ||x_n - A_2(w)x_{m+1}||)}{1 + ||x_n - A_1(w)x_{n+1}|| + ||x_n - A_2(w)x_{m+1}||} \right)
\]

\[
+ \Psi_7 \left(\frac{(||x_n - A_1(w)x_{n+1}|| + ||x_{n+1} - A_1(w)x_{m+1}||)}{1 + ||x_n - A_1(w)x_{n+1}|| + ||x_{n+1} - A_1(w)x_{m+1}||} \right)
\]

\[\text{From (2.4) it is clear that } \alpha_n \text{ decrease with } n \text{ and hence } \alpha_n \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Let \(\alpha_n \) decrease with \(n \) and hence \(\alpha_n \rightarrow 0 \) as \(n \rightarrow \infty \). Let \(\alpha > 0 \). Then since \(\Psi_1 \) is upper semi-continuous, we obtain in the limit as \(n \rightarrow \infty \)

\[
\alpha \leq \Psi_1 (\alpha) + \Psi_2 (\alpha) + \Psi_3 (\alpha) + \Psi_6 (\alpha) + \Psi_7 (\alpha) < \frac{5}{7} \alpha
\]

which is impossible unless \(\alpha = 0 \).

Now, we shall show that \(\{x_n\} \) is a cauchy sequence. If not, then there is an \(\epsilon > 0 \) and for all positive integers \(K \), there exist \(\{m(k)\} \) and \(\{n(k)\} \) with \(m(k) > n(k) \) such that

\[
d_k = ||x_{m(k)} - x_{n(k)}|| \geq \epsilon, \quad \text{(2.5)}
\]

We may assume that

\[
\text{by choosing } m(k) \text{ to be the smallest number exceeding } n(k) \text{ for which (2.5) holds. Then we have}
\]

\[
d_k \leq ||x_{m(k)} - x_{n(k)}|| + ||x_{m(k)} - x_{n(k+1)}|| \leq \alpha_k + \epsilon
\]

which implies that \(d_k \rightarrow \epsilon \) as \(k \rightarrow \infty \). Now the following cases are to be considered.

(i) \(m \) is even and \(n \) is odd,

(ii) \(m \) and \(n \) are both odd,

(iii) \(m \) is odd and \(n \) is even,

(iv) \(m \) and \(n \) are both even

\[\text{i.e. (i) :}
\]

\[
d_k = ||x_m - x_n|| \leq ||x_m - x_{m+1}|| + ||x_{m+1} - x_n|| + ||x_n - x_{m+1}|| + ||x_{m+1} - x_n||
\]

\[
\leq \alpha_{m+1} + \alpha_{n+1} + ||A_1(w)x_m - A_2(w)x_n||
\]

By putting \(x_1 = x_m, x_2 = x_{m+1}, x_3 = x_{n+1}, x_4 = x_n \), in (2.1), we have

\[
\leq \alpha_{m+1} + \alpha_{n+1} + ||x_n - x_{n+1}|| + ||x_{n+1} - x_m|| + ||x_{n+1} - x_m|| + ||x_n - x_{n+1}||
\]

\[
+ \Psi_6 \left(\frac{(||x_n - A_1(w)x_{n+1}|| + ||x_n - A_2(w)x_{m+1}||)}{1 + ||x_n - A_1(w)x_{n+1}|| + ||x_n - A_2(w)x_{m+1}||} \right)
\]

\[
+ \Psi_7 \left(\frac{(||x_n - A_1(w)x_{n+1}|| + ||x_{n+1} - A_1(w)x_{m+1}||)}{1 + ||x_n - A_1(w)x_{n+1}|| + ||x_{n+1} - A_1(w)x_{m+1}||} \right)
\]
\[\alpha_{m+1} + \alpha_{m+1} + \Psi_1 (d_k) + \Psi_4 (d_k) + \Psi_5 (d_k) + \Psi_6 (d_k) + \Psi_7 (d_k) \] letting \(k \to \infty \) we have
\[\varepsilon \leq \frac{5}{7} \approx \varepsilon \]
This is contradiction if \(\varepsilon > 0 \). In the case (ii), we have
\[d_k = \| x_{n-k} - x_n \| \leq \| x_m - x_{n+1} \| + \| x_{m+2} - x_{m+1} \| \]
By putting \(x_i = x_0, x_2 = x_{m+1}, x_3 = x_{n+1}, x_4 = x_m \), in (3.1), we get
\[\leq \alpha_{m+1} + \alpha_{m+1} + \Psi_1 (d_k) + \Psi_2 (\| x_{m+2} - x_0 \|) + \Psi_2 (\| x_{m+2} - x_{n+1} \|) + \Psi_2 (\| x_{m+2} - x_m \|) + \Psi_6 (\| x_{m+2} - x_m \|) + \Psi_6 (\| x_{m+2} - x_m \|)
\]
Letting \(k \to \infty \) in the above inequality we obtain \(\varepsilon \leq \frac{5}{7} \varepsilon \), which is a contradiction if \(\varepsilon > 0 \). Similarly, the cases (iii) and (iv) may be disposed of. This leads us to conclude that \(\{x_n\} \) is a cauchy sequence. Let \(\eta (w) \) be the limit of the sequence. We shall now show that
\[A_1 (w) \eta (w) = \eta (w) = A_2 (w) \eta (w) \]
Putting \(x_1 = x_{n-1}, x_2 = \eta (w), x_3 = x_{n+1}, x_4 = x_m \) in (2.1), we get
\[\| A_1 (w) x_{n-1} - A_2 (w) \eta (w) \| \]
\[\leq \Psi_1 (\| x_{n-1} - (w) \|) + \Psi_2 (\| x_{n+1} - A_1 (w) x_{n+1} \|) + \Psi_3 (\| (w) - A_2 (w) x_{n+1} \|) + \Psi_4 (\| x_{m+1} - A_2 (w) x_{m+1} \|) + \Psi_5 (\| (w) - A_1 (w) x_{m+1} \|) + \Psi_6 (\| (w) - A_1 (w) x_{m+1} \|)
\]
Letting \(n \to \infty \), we get \(\| \eta (w) - A_2 (w) \eta (w) \| \leq 0 \) which is a contradiction and hence \(\eta (w) = A_2 (w) \eta (w) \). In the same way, it is possible to show that \(\eta (w) = A_1 (w) \eta (w) \). Thus \(\eta (w) \) is a common fixed point of \(A_1 (w) \) and \(A_2 (w) \). Suppose there is another fixed point \(\xi (w) \neq \eta (w) \) of \(A_1 (w) \) and \(A_2 (w) \). Then putting \(x_1 = x_2 = \eta (w) \) and \(x_2 = x_4 = \xi (w) \) in (2.1), we have
\[\| \eta (w) - \xi (w) \| \]
\[\leq \Psi_1 (\| \eta (w) - \xi (w) \|) + \Psi_2 (\| \eta (w) - \xi (w) \|) + \Psi_3 (\| \eta (w) - \xi (w) \|) + \Psi_4 (\| \eta (w) - \xi (w) \|) + \Psi_5 (\| \eta (w) - \xi (w) \|) + \Psi_6 (\| \eta (w) - \xi (w) \|) + \Psi_7 (\| \eta (w) - \xi (w) \|)
\]
\[\leq \frac{5}{7} \| \eta (w) - \xi (w) \|
\]
which is contradiction. Hence \(\eta (w) = \xi (w) \). This completes the proof. If in theorem 2.1, we put \(A_1 (w) = A_2 (w) = A (w) \) and \(x_1 = x_2 = x, x_2 = x_4 = y \) then we have the following theorem which we only state without proof.

Theorem 2.2: If \(A (w) \) is a random generalized non-linear contraction from a separable Banach space \(X \) into itself, then there exists an \(x \) valued random variable which is the unique fixed point of \(A (w) \).

We now have the following corollary of theorem 2.2

Corollary 2.3: If \(A^b (w) \) is a random generalized contraction from \(x \) into itself for some positive integer \(b \), then \(A (w) \) has a unique fixed point \(\eta (w) \) which is an \(x \) valued random variable.

Proof: Since \(A^b (w) \) is a random generalized non-linear contraction operator on \(X \), by theorem 2.2, there exists a unique \(x \) valued random variable \(\eta (w) \) such that
\[A^b (w) \eta (w) = \eta (w) \]
We claim that \(A (w) \eta (w) = \eta (w) \). If not, consider
\[\| A^{b+1} (w) \eta (w) - A^b (w) \eta (w) \|
\]
\[\leq \Psi_1 (\| A (w) \eta (w) - \eta (w) \|) + \Psi_2 (\| A (w) \eta (w) - A^{b+1} (w) \eta (w) \|)
\]
\[+ \Psi_3 (\| (w) - A^b (w) \eta (w) \|) + \Psi_4 (\| A (w) \eta (w) - A^b (w) \eta (w) \|)
\]
\[+ \Psi_5 (|| \eta (w) - A^{b+1} (w) \eta (w) ||) \]
\[+ \Psi_6 \left(\left(|| A (w) \eta (w) - A^{b+1} (w) \eta (w) || \right)^2 \right) \]
\[+ \Psi_5 (|| \eta (w) - A^b (w) \eta (w) ||) \]
\[+ \Psi_6 \left(\left(|| A (w) \eta (w) - A^b (w) \eta (w) || \right)^2 \right) \]
\[+ \Psi_5 (|| \eta (w) - A^{b+1} (w) \eta (w) ||) \]
\[+ \Psi_6 \left(\left(|| A (w) \eta (w) - A^{b+1} (w) \eta (w) || \right)^2 \right) \]

Moreover, the left hand side of (2.31) is
\[\| A^{b+1} (w) \eta (w) - A^b (w) \eta (w) \| = \| A (w) \eta (w) - \eta (w) \| \]
From (2.31) and (2.32), we have
\[\| A (w) \eta (w) - \eta (w) \| \]

\[\leq \Psi_1 (\| A (w) \eta (w) - \eta (w) \|) + \Psi_2 (\| A (w) \eta (w) - \eta (w) \|) \]
\[+ \Psi_3 (\| A (w) \eta (w) - \eta (w) \|) + \Psi_4 (\| A (w) \eta (w) - \eta (w) \|) \]
\[+ \Psi_5 (\| A (w) \eta (w) - \eta (w) \|) \]

which is, a contradiction and hence \(A (w) \eta (w) = \eta (w) \)

we remark that under the conditions \(A \)

the theorem 2.1 reduces to the following corollary.

Corollary 2.4 (Lee and Padgett [1]) :- If \(A (w) \) is a random non-linear contraction operator from a separable Banach space \(x \) into itself, then there exists an \(x \) - valued random variable \(\eta (w) \) which is the unique random fixed point of \(A (w) \).

2.4 Application to a Random Non-linear Integral Equation :-

In this section we give an application of a random non-linear integral equation. To do so we have followed the steps of Lee and Padgett [1] with necessary modifications as required for the more general settings.

We shall assume the following conditions concerning the random kernel \(k (t, s, w) \). The function \(k (., . ; .) : S \times S \times \Omega \rightarrow R \) is such that

(i) \(K (t, s, w) : S \times S \rightarrow L^n (\Omega, S, P) \) such that \(\| k (t, s, w) \| \cdot \| x (s, w) \| \) \(L^n \) is \(\mu \)-integrable with respect to \(s \in S \) for each \(t \in S \) and \(x \in C (s, L^n _2 (\Omega, s, p)) \) where for each \(t, S) \in s \times S \)

\[\| k (t, s, w) \| \cdot \| x (s, w) \| \) \(L^n \) \(\mu \)-integrable for \(x \in C (s, L^n _2 (\Omega, S, P)) \) and such that for each \(s, t \in S \).

\[\| K (t, u; w) - K (s, u; w) \| \cdot \| x (u; w) \| \] \(L^n \) \(\mu \)-integrable with respect to \(\Omega, S, P) \) and that is a continuous linear operator from \(C (s, L^n _2 (\Omega, S, P)) \) into itself. We now have the following theorem.

Theorem 2.5 : We consider the stochastic integral equation (1.1) subject to the following conditions :

(a) \(B \) and \(D \) are Banach spaces stronger (cf. [1]) then \(C (s, L^n _2 (\Omega, S, P)) \) such that \((B, D) \) is admissible with respect to the integral operator defined by (4.1);

(b) \(x (t; w) \rightarrow f (t, x (t; w)) \) is an operator from the set \(Q (p) = \{ x (t; w) : x (t; w) \in D, \| x (t; w) \| \leq p \} \)

into the space \(B \) satisfying.

\[\| f (t, x (t; w)) - f (t, y (t; w)) \| \] \(L^n \)
\[\leq \Psi_1 (w) (\| x (t; w) - y (t; w) \|) + \Psi_2 (w) (\| x (t; w) - f (t, x (t; w)) \|) \]
Now \(\Psi (w) (y (t; w) - f (t, x (t; w))) \) + \(\Psi (w) (x (t; w) - f (t, y (t; w))) \) = \(h (t; w) \) + \(\int \int \rho \left(\frac{c (w) || \Psi (w) (y (t; w) - f (t, x (t; w))) ||}{\rho} + \frac{c (w) || \Psi (w) (x (t; w) - f (t, y (t; w))) ||}{\rho} \right) \) for \(x (t; w), y (t; w) \in Q (\rho) \), where \(\Psi_i (w), i = 1, 2, ..., 7 \) are non-negative real-valued upper semi-continuous functions satisfying \(\Psi (w) (r) < \frac{r}{7} \) for \(r > 0 \) and \(\Psi (0) = 0 \).

(c) \(h (t; w) \in D \).

Then there exists a unique random solution of (1.1) in \(Q (\rho) \), provided \(c (w) < 1 \) and \(|| h (t; w) || + 2c (w) || f (t; \rho) || \leq \rho (1 - c (w)) \) where \(c (w) \) is the norm of \(T (w) \).

Proof: Define the operator \(U (w) \) from \(Q (\rho) \) into \(D \) by

\[
[U (w) x] (t; w) = h (t; w) + \int \int k (t, s; w) f (s; w) d \mu (s).
\]

Now \(|| U (w) x || (t; w) \leq || h (t; w) || + c (w) || f (t, x (t; w)) || + \int \int \rho \left(\frac{c (w) || \Psi (w) (y (t; w) - f (t, x (t; w))) ||}{\rho} + \frac{c (w) || \Psi (w) (x (t; w) - f (t, y (t; w))) ||}{\rho} \right) \) for \(x (t; w), y (t; w) \in Q (\rho) \), where \(c (w) \) is the norm of \(T (w) \).

Then from the conditions of the theorem.

\[
|| U (w) x || (t; w) \leq || h (t; w) || + 2 c (w) || f (t; \rho) || + c (w) || f (t, x (t; w) - f (t, \rho)) || \leq \rho (1 - c (w)) + c (w) \rho < \rho.
\]

Hence

\[
|| U (w) x || (t; w) \leq || h (t; w) || + 2 c (w) || f (t; \rho) || + c (w) \rho < \rho.
\]

Hence, \(U (w) x \) \(x (t; w) \in Q (\rho) \).

Now, for \(x (t; w), y (t; w) \in Q (\rho) \) we have by condition (b)

\[
|| U (w) x || (t; w) = || U (w) y || (t; w) \leq c (w) \int \int k (t, s; w) f (s, x (s; w)) - f (s, y (s; w)) d \mu (s) \leq c (w) \int \int k (t, s; w) f (s, x (s; w)) - f (s, y (s; w)) d \mu (s).
\]

\[
|| h (t; w) || + \int \int \rho \left(\frac{c (w) || \Psi (w) (y (t; w) - f (t, x (t; w))) ||}{\rho} + \frac{c (w) || \Psi (w) (x (t; w) - f (t, y (t; w))) ||}{\rho} \right) \leq \rho (1 - c (w)) + c (w) \rho < \rho.
\]

331
\[
\begin{align*}
&+ \Psi_6 \frac{\left(\| x(t;w) - f(t,x(t;w)) \|_b \right) + \left(\| x(t;w) - f(t,y(t;w)) \|_b \right)}{1 + \left(\| x(t;w) - f(t,x(t;w)) \|_b \right) \left(\| y(t;w) - f(t,x(t;w)) \|_b \right)} \\
&+ \Psi_7 \frac{\left(\| y(t;w) - f(t,y(t;w)) \|_b \right) + \left(\| y(t;w) - f(t,x(t;w)) \|_b \right)}{1 + \left(\| y(t;w) - f(t,y(t;w)) \|_b \right) \left(\| y(t;w) - f(t,x(t;w)) \|_b \right)}
\end{align*}
\]

Since \(c(w) \leq 1 \). Thus \(U(w) \) is a random non-linear contraction operator on \(Q(\rho) \). Hence, by theorem 2.2 there exists a unique \(x \)-valued random variable \(x^*(t;w) \in Q(\rho) \) which is a fixed point of \(U(w) \), that is \(x^*(t;w) \) is the unique random solution of the equation (1.1).

REFERENCES
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar