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1. INTRODUCTION: 

            Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, 

which is a very dynamic area of mathematical research. The notion of probabilistic metric space is introduced by 

Menger in 1942 [9] and the first result about the existence of a fixed point of a mapping which is defined on a 

Menger space is obtained by Sehgel and Barucha-Reid. 

               Recently, a number of fixed point theorems for single valued and multivalued mappings in menger 

probabilistic metric space have been considered by many authors [1],[2],[3],[4],[5],[6]. In 1998, Jungck [7] 

introduced the concept weakly compatible maps and proved many theorems in metric space. In this paper we 

prove common fixed point theorem for four mapping with weak compatibility   and rational contraction without 

appeal to continuity in probabilistic metric space. Also we illustrate example in support of our theorem. 

 

2. PRELIMINARIES: 

 Now we begin with some definition  

  Definition 2.1: Let R denote the set of reals and �� the non-negative reals. A mapping �: � →  �� is called a 

distribution function if it is non decreasing left continuous with    inf ( ) 0 sup ( ) 1
t R

t R

F t and F t
∈

∈

= =  

 Definition 2.2: A probabilistic metric space is an ordered pair (�, �) where X is a nonempty set, L be set of all 

distribution function and  �: � × � →  � . We shall denote the distribution function by � (, �) or ��,�; , � ∈ � 

and ��,� (�)  will represents the value of � (, �)  at � ∈ � . The function �(, �)  is assumed to satisfy the 

following conditions: 1. ��,�(�) = 1 ��� ��� � > 0 �� ��  ���! ��  = � 2. ��,�(0) = 0 ��� #$#�! , � ∈ � 3. ��,�  =  ��,� ��� #$#�! , � ∈ � 4. ��,�(�) = 1  ��  ��,'(!) = 1  (ℎ#� ��,'(� + !) = 1 ��� #$#�! , �, � ∈ �.  
In metric space (�,  ) , the metric d induces a mapping �: � ×  � →  �  such that ��,�(�) = ��,� = + (� –   (, �))  for every , � ∈  � and � ∈  �, where H is the distribution function defined as  

    +(�) =  -0, if x ≤ 01, if x > 0 2                                                    

 Definition 2.3: A mapping ∗ :  [0, 1]  [0, 1]  →  [0, 1] is called t-norm if  

1. (� ∗ 1) =  � ∀ � ∈ [0,1] 
2.  (0 ∗  0) =  0, ∀ �, 7 ∈ [0,1] 
3. (� ∗ 7)  =  (7 ∗ �), 

4. (8 ∗  )  ≥   (� ∗ 7) ��� 8 ≥  �,   ≥  7, and  

5.  ( (� ∗ 7) ∗ 8 )  =   ( � ∗ (7 ∗ 8 )) 

    Example: (i) (� ∗  7)  =  �7,                (ii)  (� ∗ 7)  =  :�� (�, 7)  

(iii) (� ∗ 7) = :�� (� + 7 − 1; 0) 

Definition 2.4: A Menger space is a triplet (�, �,∗) where (�, �)a PM-space and ∆ is is a t-norm with the 

following condition �<,=(� + !) ≥  �<,>(�) ∗ �>,=(!) 

The above inequality is called Menger’s triangle inequality. 

EXAMPLE: Let � =  �, (� ∗ 7) =  :��(�, 7)  �, 7 ∈  (0,1) and 
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    �<,>(�) =  -   +(�)  ��� ? ≠ $1       ��� ? = $ 2 
where   +(�) =  A 0      � ≤ 0   �   0 ≤ � ≤ 11         � ≥ 1

2 
Then (�, �,∗ ) is a  Menger space. 

Definition 2.5: Let (�, �,∗) be a Menger space. If ? ∈  �, B >  0, C ∈  (0, 1), then an (B, C) neighbourhood of u, 

denoted by D< (B, C) is defined as  

       D<(B, C) = E$ ∈ �; �<,>(B) > 1 − CF.       
If (�, �,∗) be a Menger space with the continuous t-norm t, then the familyD<(B, C); ? ∈ �; B > 0, C ∈ (0,1) of 

neighbourhood induces a hausdorff topology on X and if   supJKL(a ∗ a) = 1, it is metrizable.           

Definition 2.6: A sequence NOP in (�, �,∗) is said to be convergent to a point  ∈ �  if for every B >  0 and C >  0, there exists an integer Q =  Q(B, C) such that O ∈ D�(B, C) for all � ≥  Q or equivalently   �RS,R(T) >1 − C for all � ≥  Q. 
Definition 2.7: A sequence NOP  in (�, �,∗) is said to be Cauchy sequence if for every B >  0 and  C >  0, there 

exists an integer Q =  Q(B, C) such that ��S,�U(T) > 1 − C for all  �, : ≥  Q.  

Definition 2.8: A Menger space (�, �,∗) with the continuous t-norm ∆ is said to be complete if every Cauchy 

sequence in X converges to a point in X. 

Definition 2.9: A coincidence point (or simply coincidence) of two mappings is a point in their domain having 

the same image point under both mappings. 

Formally, given two mappings �, V ∶ � → X we say that a point x in X is a coincidence point of f and g if  �(�)  =  V(�). 
Definition 2.10: Let (�, �,∗) be a Menger space. Two mappings �, V ∶ � → � are said to be weakly compatible 

if they commute at the coincidence point, i.e., the pair N�, VP is weakly compatible pair if and only if �� =  V� 

implies that �V� =  V��.  

Example: Define the pair Y, Z: [0, 3] → [0, 3]  by 

Y(�) = -�, � ∈ [0, 1)3, � ∈ [1, 3] 2         ,                          Z(�) = -3 − �, � ∈ [0, 1)3,              � ∈ [1, 3]. 2    
Then for any � ∈ [1, 3], YZ� = ZY�,  showing that A, S are weakly compatible maps on [0, 3].  
Definition 2.11: Let (�, �,∗) be a Menger space. Two mappings Y, Z ∶ � → � are said to be semi compatible if �[\RS,\R(() → 1for all ( > 0 whenever N�OP is a sequence in � such that Y�O , Z�O →  for some p in � as� → ∞. 
It follows that (Y, Z) is semi compatible and Y! = Z!  imply YZ! = ZY! by taking N�OP = ! ��  � = Y! = Z!. 
Lemma 2.12[15]: Let NOP be a sequence in Menger space (�, �,∗) where ∗ is continuous and (� ∗  �)  ≥  � for 

all � ∈ [0, 1]. If there exists a constant ] ∈  (0, 1) such that � >  0 and � ∈ Q   ��S,�S^_(]�) ≥ ��S`_,�S(�), then NOP is a Cauchy sequence. 

Lemma 2.13[13]: If (�,  ) is a metric space, then the metric d induces a mapping �: � ×  � →  �, defined by � (, �)  =  + (� –    (, �)) ,   , � ∈ � ��  � ∈ �.  Further more if ∗: [0,1] × [0,1] → [0,1]  is defined by (� ∗ 7) =  :��(�, 7), then (�, �,∗) is a  Menger space. It is complete if (�,  ) is complete. The space (�, �,∗) 

so obtained is called the induced   Menger space. 

Lemma 2.14[10]: Let (�, �,∗) be a Menger space. If there exists a constant ] ∈  (0, 1) such that   �R,a(]() ≥�R,a((), for all �, ! ∈ � and ( > 0 then � = ! . 
 

3. MAIN RESULT: 

Theorem 3.1: Let (�, �,∗) be a complete Menger space where ∗ is continuous and  (( ∗  ()  ≥  ( for all ( ∈ [0,1]. 
Let A, B, T and S be mappings from X into itself such that  

3.1.1. Y(�) ⊂ Z(�) ��  c(�) ⊂ d(�)  

3.1.2. Z �� d  are continuous 

3.1.3. The pair (Z, Y) and (d, c) are Semi compatible  

3.1.4. There exists a number ] ∈ (0,1) such that  �[R,ea(]() ≥ �\R,fa(() ∗ �\R,[R(() ∗ �[R,fa(() ∗ �fa,ea(() ∗ �\R,eag(2 − h)(i ��� ��� �, ! ∈ �, h ∈ (0,2) ��  ( > 0. 
Then, Y, c, Z and d have a unique common fixed point in X. 

Proof: Since Y(�) ⊂ Z(�)  for any  �j ∈ �   there exists a point �L ∈ � such thatY�j = Z�L . Since c(�) ⊂d(�) for this point  �L  we can choose a point  �k ∈ � such that d�L = c�k.  
Inductively we can find a sequence N!OP  as follows !kO = Y�kO = Z�kO�L  ��  !kO�L = c�kO�L = d�kO�k  
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For � =  0, 1, 2, 3 … … …. by (3.1.4.), for all ( > 0 ��  h = 1 − �  with  � ∈ (0,1), we have  �amS,amS^_(]() = �[RmS ,eRmS^_ (]() ≥ �\RmS,fRmS^_(() ∗ �\RmS^_,[RmS^_(() ∗ �[RmS,fRmS^_(() ∗ �fRmS^_,eRmS^_(() ∗ �\RmS,eRmS^_g(1 + �)(i                = �amS`_,amS(() ∗ �amS,amS^_(() ∗ �amS,amS^_(() ∗ �amS,amS^_(() ∗ �amS`_,amS^_g(1 + �)(i               ≥ �amS`_,amS(() ∗ �amS,amS^_(() ∗ �amS`_,amS(() ∗ �amS,amS^_(�()               = �amS`_,amS(() ∗ �amS,amS^_(() ∗ �amS,amS^_(�() 

Since t-norm is continuous, letting � → 1, we have  �amS,amS^_(]() ≥ �amS`_,amS(() ∗ �amS,amS^_(() 

Similarly  �amS^_,amS^m(]() ≥ �amS,amS^_(() ∗ �amS^_,amS^m(() 

Similarly �amS^m,amS^n(]() ≥ �amS^_,amS^m(() ∗ �amS^m,amS^n(() 

Therefore �aS,aS^_(]() ≥ �aS`_,aS(() ∗ �aS,aS^_(() ��� ��� � ∈ o 

Consequently �aS,aS^_(() ≥ �aS`_,aS(]pL() ∗, �aS,aS^_(]pL() ��� ��� � ∈ o 

Repeated application of this inequality will imply that  �aS,aS^_(() ≥ �aS`_,aS(]pL() ∗ �aS,aS^_(]pL() ≥ ⋯ … … … . ≥  �aS`_,aS(]pL() ∗ �aS,aS^_(]pr(), � ∈ o 

Since �aS,aS^_(]pr() → 1 �s � → ∞, it follows that  �aS,aS^_(() ≥ �aS`_,aS(]pL() ��� ��� � ∈ o 

 

Consequently �aS,aS^_(]() ≥ �aS`_,aS(() for all � ∈ o 

Therefore by Lemma [2.12], N!OP  is a Cauchy sequence in X. Since X is complete,N!OPconverges to a point t ∈�. Since NY�kOP, Nc�kO�L P, NZ�kO�L P  ��  Nd�kO�k P  are subsequences of N!OP , they also converge to the point 

z,  �. #.  as � → ∞, Y�kO, c�kO�L , Z�kO�L d�kO�k → t.   
Case I: Since S is continuous. In this case we have  ZY�O → Zt, ZZ�O → Zt 

Also (Y, Z)is semi-compatible, we have  YZ�O → Zt 

Step I: Let � = Z�O , ! = �O  u�(ℎ h = 1 in (3.1.4) we get  �[\RS,eRS(]() ≥ �\\RS,fRS(() ∗ �\\RS,[\RS(() ∗ �[\RS,fRS(() ∗ �fRS,eRS(() ∗ �\\RS,eRS(() �\v,v(]() ≥ �\v,v(() ∗ �\v,\v(() ∗ �\v,v(() ∗ �v,v(() ∗ �\v,v(() �\v,v(]() ≥ �\v,v(() 

So we get Zt = t. 
Step II: By putting � = t, ! = �O u�(ℎ h = 1 in (3.1.4) we get �[v,eRS(]() ≥ �\v,fRS(() ∗ �\v,[v(() ∗ �[v,fRS(() ∗ �fRS,eRS(() ∗ �\v,eRS(() �[v,v(]() ≥ �v,v(() ∗ �v,[v(() ∗ �[v,v(() ∗ �v,v(() ∗ �v,v(() �[v,v(]() ≥ �[v,v(() 

So we get Yt = t. 
Case II: Since T is continuous. In this case we have  dc�O → dt, dd�O → dt 

Also (c, d)is semi-compatible, we have  cd�O → dt 

Step I: Let � = �O , ! = d�O u�(ℎ h = 1 in (3.1.4) we get  �[RS,efRS(]() ≥ �\RS ,ffRS(() ∗ �\RS,[RS(() ∗ �[RS ,ffRS(() ∗ �ffRS,efRS(() ∗ �\RS,efRS(() �v,fv(]() ≥ �v,fv(() ∗ �v,v(() ∗ �v,fv(() ∗ �fv,fv(() ∗ �v,fv(() �v,fv(]() ≥ �v,fv(() 

So we get dt = t. 
Step II: By putting � = �O , ! = t u�(ℎ h = 1 in (3.1.4) we get �[RS,ev(]() ≥ �\RS,fv(() ∗ �\RS,[RS(() ∗ �[RS ,fv(() ∗ �fv,ev(() ∗ �\RS ,ev(() �v,ev(]() ≥ �v,v(() ∗ �v,v(() ∗ �v,v(() ∗ �v,ev(() ∗ �v,ev(() �ev,v(]() ≥ �ev,v(() 

So we get ct = t. 
Thus, we have  Yt = Zt = dt = ct = t. 
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That is z is a common fixed point of Z, d, Y and c. 

For uniqueness, let u (u ≠ t)  be another common fixed point of Z, d, Y and c  .Then Yu = Zu == cu =du = u . 
Put � = t, ! = u and w =  1, in (3.1.4.), we get �[v,e=(]() ≥ �\v,f=(() ∗ �\v,[=(() ∗ �[v,f=(() ∗ �f=,e=(() ∗ �\v,e=(() �v,=(]() ≥ �v,=(() ∗ �v,=(() ∗ �v,=(() ∗ �=,=(() ∗ �v,=(() �v,=(]() ≥ �v,=(() ∗ �v,=(() ∗ �v,=(() ∗ 1 ∗ �v,=(() �v,=(]() ≥ �v,=(() 

Thus we havet =  u. Therefore z is a unique fixed point of A,S, B and T. 

This completes the proof of the theorem. 

COROLLARY 3.2: Let (�, �,∗)  be a complete Menger space where ∗  is continuous and  (( ∗  ()  ≥  (  for 

all ( ∈ [0,1]. Let A, and S be mappings from X into itself such that  

3.2.1. Y(�) ⊂ Z(�)  
3.2.2. Z   is continuous 

3.2.3. The pair (Z, Y) is semi compatible  

3.2.4. There exists a number ] ∈ (0,1) such that  �[R,\a(]() ≥ �\R,\a(() ∗ �\R,[R(() ∗ �[R,\a(() ∗ �\a,[a(() ∗ �\R,[ag(2 − h)(i ��� ��� �, ! ∈ �, h ∈ (0,2) ��  ( > 0. 
Then, Y,  and Z have a unique common fixed point in X. 
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