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 ABSTRACT 

The aim of  this paper is to introduce the concept of G-Banach Space and prove a common fixed point theorem 
for six mappings in G-Banach spaces with weak–compatibility. 
Keywords: Fixed point , common fixed point , G-Banach Space , Continuous mappings , weak compatible 
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Introduction : This is well know that  the fundamental  contraction principle for proving fixed points results is 
the Banach Contraction principle. There have been a number of generalization of metric space and Banach space. 
One such generalization is G-Banach space.The concept of G-Banach space is introduce by Shrivastava 
R,Animesh,Yadav R.N.[4 ] which is a probable modification of the ordinary Banach Space.  

                         Recently in 2012,R.K. Bharadwaj [2 ] introduced fixed point theorems in G-Banach 
Space through weak compatibility and gave the following fixed point theorems for four  mappings- 

Theorems[A]: Let X be a G-Banach Space , such that ∇ Satisfy property with α - α ≤ 1. If A , B ,  S and  T  be 
mapping from X into itself satisfying the following condition: 

I. A(X) ⊆  T(X) ,  B(X) ⊆ S(X)  and  T(X) or  S(X) is a closed subset of X. 
II. The Pair (A,S)  and  (B,T) are weakly compatible, 

III. For all x,y∈X 

g||By-Ax  ||
 ≤  










∇≤

  ||Ty -Sx  ||

 ||By -Ty  ||||Ax -Tx  ||

||Ty -Sx  ||

||By -Sx  ||||Ax -Sx  ||

g

gg

g

gg
1k

            











∇+

g

gg

g

gg
2 ||Ty -Sx  ||

||Ax -Ty  ||||By -Sx  ||

  ||Ty -Sx  ||

 ||By -Ty  ||||Ax -Sx  ||
maxk

 
                           ( )ggggg3 ||Ty -Sx  ||||Ax -Ty  ||||By -Sx  ||||By -Ty  ||||Ax -Sx  || ∇∇∇∇+ k  

Where k1 , k2 , k3 > 0  and  0 <  k1 +  k2  + k3 < 1. Then A , B ,  S  and  T have a unique common fixed 
point in X. 
In 1980, Singh and Singh[5] gave the following theorem on metric space for self maps which is use to 
our main result- 

Theorems[B]: Let P, Q and T be self maps of a metric space (X, d) such that  
(i)    PT = TP and QT = TQ, (ii)  P(X) ∪ Q(X)  ⊆ T(X), (iii) T is continuous, 
(iv)  d(Px , Qy ) ≤ cλ (x, y),   

 where  λ (x, y) = max{d(Tx, Ty), d(Px, Tx), d(Qy, Ty), 
2
1

[d(Px, Ty)+d(Qy, Ty)]}  

for all  x, y ∈ X and 0 ≤ < 1. Further if  
(v)  X is complete then P, Q, T have a unique common fixed point in X.  
Just we recall the some definition of G-Banach space for the sake of completeness which as follows-  
  N be the set of natural numbers and R+ be the set of all positive numbers let binary operation  ∇  :  R+ × R+ → 
R+ satisfies the following conditions: 

i. ∇ is associative and commutative, 
ii. ∇ is continuous. 

Five typical example are as follows: 
i. a∇ b = max (a,b) 

ii. a∇ b = a+b 
iii. a∇ b =a.b 
iv. a∇ b = a.b+a+b 
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v. a∇ b = 
)1,,max( ba

ab
 

Definition 1: The binary operation ∇  is said to satisfy α-property if there exists a positive real number α , 
such that a ∇  b ≤ α max (a,b) for every a,b Є R+  
Example:If we define a∇ b = a + b  for each  a,b Є R+ then for α ≥ 2, we have  
 a ∇  b ≤ α max (a,b)  

if we define a∇ b = 
)1,,max( ba

ab
 for each  a,b Є R+ then for α ≥ 1, we have 

 a ∇  b ≤ α max (a,b) 
Definition 2: Let x be a nonempty set ,A Generalized Normed Space on X  is a function ║ ║g : x × x → R+ that 
satisfies the following conditions for each x,y,z, Є X 

1. ║x-y║g  > 0 
2. ║x-y║g = 0 if and only if x = y 
3. ║x-y║g = ║y-x║g  
4. ║ α x║g = │ α │║x║g for any scalar α 
5. ║x-y║g ≤ ║x-z║g ∇  ║z-x║g 

The pair (x, ║ ║g) is called generalized Normed Space or simply G-Normed Space. 
Definition 3:  A Sequence in X is said converges to x if ║xn-x║g→0 , as n → ∞. That is for each є > 0  there 
exists n0 Є N such that for every n ≥ n0  implies that ║xn-x║g < є  
Definition 4:   A sequence {xn} is said to be Cauchy sequence if for every  є > 0  there exists n0 є N such that  
║xm-xn║g < є  for each  m,n ≥ n0. G-Normed Space is said to be G-Banach Space if for every Cauchy sequence is 
converges in it.  
Definition 5:   Let (x, ║ ║g) be a G-Normed Space for r>0 we define 
  Bg (x,r) = {y є X : ║x-y║g < r } 
Let X  be a G-normed Space and A be a subset of X, then for every x є A, there exists r > 0 such that  Bg (x,r) ⊆ 
A , then the subset A is called open subset of X. A subset A of X is said to be closed if the complement of A is 
open in X. 
Definition 6: Let A and S be mappings from a G-Banach space X into itselt. Then  the mappings are said to 
be weakly compatible if they are commute at there coincidence point that is Ax= Sx implies that ASx = SAx    
                 Here we generalized and extend the results of R.K.Bhardwaj[2] (theorem A) for six  mappings 
opposed to four mappings in G-Banach space using the concept of weak-compatibility.  
Main Result :  
THEOREM(1) : Let X be a G-Banach Space , such that ∇ Satisfy property with α - α ≤ 1. If P , Q , A , B ,  S 
and  T  be mapping from X into itself satisfying the following condition: 

I. A(X) ⊆ Q(X) ∪ T(X) ,  B(X) ⊆ P(X) ∪ S(X)  and  T(X) or  S(X) is a closed subset of X. 
II. The Pair (A,S) and (P,S)  ,  (B,T) and (Q ,T) are weakly compatible, 

III. For all x,y∈X 
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Where  α , β   >  0  and  0 < α + β   < 1. Then  P , Q ,  A , B ,  S  and  T have a unique common 
fixed point in X. 
Proof: Let x0 be an arbitrary point in X then by (i)  we choose a point x1 in X such that  y0  =  Ax0   =   
Tx1  = Qx1     and    y1  =  Bx1   =   Sx2  =  Px2  . 
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In general there exists a sequence {yn}  such that  
y2n  =  Ax2n   =   Tx2n+1  = Qx2n+1     and     
y2n+1  =  Bx2n+1   =   Sx2n+2  =  Px2n+2  ,             for  n  =  1 , 2 , 3 , -------------- 
we claim that the sequence {yn}  is a Cauchy sequence. 
By  (iii)  we have  
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g12n2n ||y- y || +     ≤     (α β+  )   g2n1-2n ||y - y ||  

That is by induction we can show that 

g12n2n || y-y || +   ≤   (α β+  )n   g10 ||y - y || g12n2n ||y - y || +  

As  n → ∞  g12n2n ||y- y || +   →  0 , for any integer  m ≥ n   

It follows that the sequence {yn}  is a Cauchy sequence which converges to  y∈X . 
This implies that   lim n → ∞ yn  =  lim n → ∞ Ax2n   =  lim n → ∞ Tx2n+1  =  lim n → ∞ Qx2n+1  = lim n → ∞ 
Bx2n+1   = lim n → ∞ Sx2n+2  = lim n → ∞ Px2n+2  = y  
Now let us assume that T(X) is closed subset of X, then there exists  v∈X  such that  
Tv = Qv =  y  
We now prove that Bv = y , 

By (iii) we get  
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Which is contradiction ,  it follows that Bv = y = Tv = Qv . Since (B,T) and (Q,T)  are weakly compatible 
mappings , then we have  
   BTv = TBv    and     QTv = TQv 
    By  =  Ty     and      Qy = Ty  
Which implies     By  =  Qy. 
Now we prove that By = y for this by using (iii) we get 
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Which is contradiction. 
Thus     By  =  y = Ty = Qy   --------------------(A) 
Since   

 
B(X) ⊆ P(X) ∪ S(X)  , there exists w∈  X. such that  sw = y = Pw . we  show that Aw = y 

From (iii) we have 
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Which is contradiction , so that  Aw = y = Sw = Pw . 
Since (A , S) and (P , S) are weakly compatible , then  
ASw = Saw      and     PSw = SPw 
 Ay =  Sy                         Py = Sy 
Therefore  Ay = Py   
Now we Show that Ay = y, 
From (iii)   we have 
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Which  is contradiction thus  Ay = y   and   therefore  
               Ay  =  Sy =  Py = y  ---------------------------------------------(B) 
Now from equation (A) and (B) we get  
Ay = By = Py = Qy = Sy = Ty = y . 
Hence  y  is a common fixed  point of A ,B , S , T , P and Q .  
Uniqueness: 

Let  us assume that x is another  fixed point of  A ,B , S , T , P and Q  different from y in X. 
Then from (iii) we have 
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g||y- x || ≤   (α β+  ) g||y- x ||   

Which  is  contradiction . Thus  x = y . This completes the proof of the theorem. 

COROLLARY: 

Let X be a G-Banach Space  such that  ∇    Satisfy α- property with  α ≤ 1. If  T  be  a mapping from X into itself, 
satisfying the following condition: 
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For non-negative   α , β  suvh that   0 < α + β   < 1 and  r , s ∈  N(set of natural number). Then   T  
has  a unique common fixed point in X. 
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