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ABSTRACT 

In this research article we are proving common fixed point theorem using Occasionally Weakly Compatible 

Mapping in fuzzy metric space. 
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1. INTRODUCTION 

It proved  a  turning  point in the development of mathematics  when  the notion of fuzzy  set  was  introduced  

by  Zadeh [24 ] which laid the foundation of fuzzy mathematics. Kramosil and Michalek [11] introduced the 

notion of a fuzzy metric space by generalizing the concept of the probabilistic metric space to the fuzzy situation. 

George and Veeramani [7] modified the concept of fuzzy metric spaces introduced by Kramosil and Michalek 

[11]. There are many view points of the notion of the metric space in fuzzy topology for instance one can refer to 

Kaleva and Seikkala [10], Kramosil and Michalek [11], George and Veeramani [7].  

                  . 

2. PRELIMINARIES:  

Definition 2.1. [24]   Let X be any non empty set. A fuzzy set M in X is a function with domain X and values in 

[0, 1]. 

 

Definition 2.2. [19]  A binary operation  ∗ :[0,1]×[0,1]→[0,1] is a continuous t-norm if it satisfy the following 

condition: 

(i)   ∗ is associative and commutative . 

(ii)  ∗ is continous function. 

(iii)  a∗1=a for all  a∈ [0,1] 

(iv) a∗b ≤ c∗d whenever a ≤ c and b ≤ d and   a, b,c,d ∈[0,1] 

 

Definition 2.3. [11] The 3 − tuple (X, M,∗) is called a fuzzy metric space in the sense of Kramosil and Michalek 

if X is an arbitrary set, is a continuous t − norm and M is a fuzzy 

set in X
2
× [0,∞) satisfying the following conditions: 

(a) M(x, y, t) > 0, 

(b) M(x, y, t) = 1 for all t > 0 if and only if x = y, 

(c) M(x, y, t) = M(y, x, t), 

(d) M(x, y, t) M(y, z, s) ≤ M(x, z, t + s), 

(e) M(x, y, .) : [0,∞) → [0, 1] is a continuous function, for all x, y, z ∈ X and t, s > 0. 

  

Definition 2.4 [11] Let (X, M, ∗) be a fuzzy metric space . Then  

(i) A sequence {xn} in X converges to x if and only if for each t >0 there exists n0 ∈N,    such that,  

     lim n→∞ M (xn, x, t) = 1, for all n ≥ n0. 

(ii) The sequence (xn) n∈N is called Cauchy sequence if lim�→�M (xn,xn+p, t) = 1, for all        t > 0 and p ∈ N. 

(iii) A fuzzy metric space X is called complete if every Cauchy sequence is convergent in X. 

 

Definition 2.5. [23] Two self-mappings f and g of a fuzzy metric space (X, M, ∗) are said to be weakly 

commuting if M(fgx, gfx, t) ≥ M(fx, gx, t), for each x ∈X and for each t > 0. 

 

Definition 2.6 [5] Two self mappings f and g of a fuzzy metric space(X, M,∗) are called compatible if  lim�→�M 

(fgxn, gfxn, t) = 1 whenever {xn} is a sequence in X such thatlim�→� fx�  = lim�→� gx� = x for some x in X. 

Definition 2.7.[2] A pair of mappings f and g from a fuzzy metric space (X,M,∗) into itself are weakly 

compatible if they commute at their coincidence points,i.e., fx = gx implies that   fgx = gfx. 

 

Definition 2.8 Let X be a set, f, g selfmaps of X. A point x in X is called a coincidence point of f and g iff fx = 

gx. We shall call w = fx = gx a point of coincidence of f and g.  
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Definition 2.9 [2] A pair of maps S and T is called weakly compatible pair if they commute at coincidence 

points. 

 

Definition 2.10.[4]  Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a 

point x in X which is a coincidence point of f and g at which f and g commute. 

 

A. Al-Thagafi and Naseer Shahzad [4] shown that occasionally weakly compatible is weakly compatible but 

converse is not true. 

 

Lemma 2.11 [4] Let X be a set, f, g  owc  self maps of X. If f and g have a unique point of coincidence, w = fx = 

gx, then w is the unique common fixed point of f and g. 

 

 

3. IMPLICIT RELATIONS:  

(a) Let (Ф) be the set of all real continuous functions   ∅ : (��)
5
 → ��satisfying the  condition ∅: (u, u, v, v, u,) 

≥0 imply u ≥ v, for all u, v ∈ [0,1]. 

(b) Let (Ф) be the set of all real continuous functions   ∅ : (��)
4
 → ��satisfying the  condition ∅: (u, v, u, u,) ≥0 

imply u≥ v, for all u, v ∈ [0,1]. 

 

4. MAIN RESULTS 

 

Theorem 4.1.: Let (X, M,∗) be a fuzzy metric space with ∗ continuous t-norm. Let A, B, S, T be self mappings 

of X satisfying 

 

(i)  The pair (A, S) and (B, T) be owc. 

 

(ii) For some ∅ ∈ Ф and for all x, y ∈ X and every t > 0,  

         ∅{M (Ax, By, t), M (Sx, Ty, t), M (Sx, Ax, t), M (Ty, By, t), M (Sx, By, t)}≥ 0 

 

then there exists a unique point w ∈X such that Aw = Sw = w and a unique point z ∈X such that Bz = T z = z. 

Moreover, z = w, so that there is a unique common fixed point of A, B, S and T. 

 

Proof: Let the pairs {A, S} and {B, T} be owc, so there are points x, y ∈X such that         Ax = Sx and By = T y. 

We claim that Ax = By. If not, by inequality (ii) 

 

∅{M (Ax, By, t), M (Ax, By, t), M (Ax, Ax, t), M (By, By, t), M (Ax, By, t)}≥ 0 

 

∅{M (Ax, By, t), M (Ax, By, t), 1, 1, M (Ax, By, t)}≥ 0 

 

∅{M (Ax, By, t), M (Ax, By, t), 1, 1, M (Ax, By, t)}≥ 0 

 

In view of Ф we get  Ax = By i.e.  Ax = Sx = By = T y 

 

Suppose that there is a another point z such that Az = Sz then by (i) we have Az = Sz = By = T y, so Ax = Az 

and w = Ax = Sx is the unique point of coincidence of A and S. By Lemma 2.11 w is the only common fixed 

point of A and S. Similarly there is a unique point z ∈ X such that z = Bz = T z. 

 Assume that w ≠ z. We have 

  

∅{M(Aw, Bz, t), M(Sw,Tz, t), M(Sw, Aw, t), M(Tz,Bz,t),M(Sw,Bz, t)}≥ 0 

 

∅{M (w, z, t), M (w, z, t), M (w, w, t), M (z, z, t), M (w, z, t)}≥ 0 

 

∅{M (w, z, t), M (w, z, t), 1, 1, M (w, z, t)}≥ 0 

 

∅{M (w, z, t), M (w, z, t), 1, 1, M (w, z, t)}≥ 0 

 

In view of Ф we get w = z. by Lemma 2.11 and z is a common fixed point of A, B, S and T. The uniqueness of 

the fixed point holds from (ii) 
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Theorem 4.2.: Let (X, M, ∗ ) be a fuzzy metric space with ∗ continuous t-norm. Let A, B, S, T be self mappings 

of X satisfying 

 

(i)  The pair (A, S) and (B, T) be owc. 

 

(ii) For some ∅ ∈Ф and for all x, y ∈ X and every t > 0,  

 

∅�M�Sx, Ty, t�, M�Sx, Ax, t�, M�Sx, By, t�, M�Ty, Ax, t�� ≥ 0 

then there exists a unique point w ∈ X such that Aw = Sw = w and a unique point z ∈X such that Bz = T z = z. 

Moreover, z = w, so that there is a unique common fixed point of A, B, S and T. 

 

Proof: Let the pairs {A, S} and {B, T} be owc, so there are points x, y ∈ X such that       Ax = Sx and By = T y. 

We claim that Ax = By. If not, by inequality (ii). 

 

∅�, M�Ax, By, t�, M�Ax, Ax, t�, M�Ax, By, t�, M�By, Ax, t�� ≥ 0 

∅�M�Ax, By, t�, M�Ax, Ax, t�, M�Ax, By, t�, M�Ax, By, t�� ≥ 0 

∅��M�Ax, By, t�, 1, M�Ax, By, t�, M�Ax, By, t��! ≥ 0 

 

In view of Ф we get Ax = By i.e.  Ax = Sx = By = T y 

 

Suppose that there is a another point z such that Az = Sz then by (i) we have Az = Sz = By = T y, so Ax = Az 

and w = Ax = Sx is the unique point of coincidence of A and S.    By Lemma 2.12   w is the only common fixed 

point of A and S. Similarly there is a unique point z ∈ X such that z = Bz = T z. 

 

∅� M�Sw, Tz, t�, M�Sw, Aw, t�, M�Sw, Bz, t�, M�Tz, Aw, t�� ≥ 0 

∅� M�w, z, t�, M�w, w, t�, M�w, z, t�, M�z, w, t�� ≥ 0 

∅�M�w, z, t�,1, M�w, z, t�, M� w, z, t�� ≥ 0 

In view of Ф we get w = z. by Lemma 2.11 and z is a common fixed point of A, B, S and T. The uniqueness of 

the fixed point holds from (ii) 
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